• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania?

    2016-04-08 06:35:58QunqingHoZhiqingWngXinchunMoChunyoZhouDongxuDiXuemingYngStteKeyLortoryofMoleculrRectionDynmicsDlinInstituteofChemiclPhysicsChineseAcdemyofScienceDlin116023ChinCenterofInterfceDynmicsforSustinilityInstituteofMter
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Qun-qing Ho,Zhi-qing Wng,Xin-chun Mo,Chun-yo Zhou?,Dong-xu Di,Xue-ming Yng?.Stte Key Lortory of Moleculr Rection Dynmics,Dlin Institute of Chemicl Physics,ChineseAcdemy of Science,Dlin 116023,Chin.Center of Interfce Dynmics for Sustinility,Institute of Mterils,Chin Acdemy of EngineeringPhysics,Chengdu 610200,Chin(Dted:Received on Jnury 11,2016;Accepted on Ferury 6,2016)

    ?

    ARTICLE Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania?

    Qun-qing Haoa,Zhi-qiang Wanga,Xin-chun Maob,Chuan-yao Zhoua?,Dong-xu Daia,Xue-ming Yanga?a.State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese
    Academy of Science,Dalian 116023,China
    b.Center of Interface Dynamics for Sustainability,Institute of Materials,China Academy of Engineering
    Physics,Chengdu 610200,China
    (Dated:Received on January 11,2016;Accepted on February 6,2016)

    The crystal phase,morphology and facet signi fi cantly in fl uence the catalytic and photocatalytic activity of TiO2.In view of optimizing the performance of catalysts,extensive e ff orts have been devoted to designing new sophisticate TiO2structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface.In this work,we have examined the photooxidation of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1) by two-photon photoemission spectroscopy(2PPE).An excited state at 2.5 eV above the Fermi level(EF)on methanol covered(011)and(110)interface has been detected.The excited state is an indicator of reduction of TiO2interface.Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)is ascribed to the interface reduction by producing surface hydroxyls.The reaction rate of photooxidation of methanol on TiO2(110)-(1×1)is about 11.4 times faster than that on TiO2(011)-(2×1),which is tentatively explained by the di ff erence in the surface atomic con fi guration.This work not only provides a detailed characterization of the electronic structure of methanol/TiO2interface by 2PPE,but also shows the importance of the surface structure in the photoreactivity on TiO2.

    Key words:TiO2,Excited state,Two-photon photoemission spectroscopy,Reaction rate of photooxidation

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: chuanyaozhou@dicp.ac.cn,xmyang@dicp.ac.cn,Tel.:+86-411-84695174,FAX:+86-411-84675584

    I.INTRODUCTION

    Titanium dioxide(TiO2)is a versatile material in both scienti fi c and technological fi elds,ranging from surface science,catalysis and photocatalysis to paint, gas sensor and lithium batteries[1?3].The interaction between adsorbates(molecules or ions)and TiO2substrate is the core of the above mentioned scienti fi c issues and functional applications.To a large extent, such adsorbate-substrate interaction is determined by the electronic structure as well as the atomic structure of TiO2.Therefore,great e ff ort has been devoted to the investigation of the surface dependence of reactivity of TiO2[4?6].The anisotropic chemical reactivity of TiO2surfaces has stimulated the fabrication of di ff erent TiO2nanostructures with speci fi c facets to optimize the performance in the past few years[7,8].In surface science and catalysis,there is a conventional criterion for the reactivity,which says that surfaces with higher percentage of undercoordinated surface atoms are regarded more reactive.

    Rutile,the most stable and abundant structure of titania,has attracted tremendous attention in the past decades in surface science and catalysis fi elds.Rutile (110)surface(Fig.1(b)),one of the most extensively studied metal oxides,has become a prototype for surface chemistry and photochemistry research.The structure of TiO2(110)-(1×1)has been well understood[2]. On the surface, fi vefold coordinated Ti ions(Ti5c)and twofold coordinated bridge O ions(Ob)run alternatively along the[001]azimuth.Reduction leads to the creation of surface oxygen vacancies(Ov)and subsurface Ti interstitials(Tiint)which contribute to the band gap states[9,10].In addition to TiO2(110)-(1×1),the structure of TiO2(011)surface has also been investigated,though less extensively[11?15].The most stable phase of TiO2(011)is reconstructured by(2×1).The atomic structure of TiO2(011)-(2×1)as suggested by surface X-ray di ff raction(SXRD)and density functional theory(DFT)calculations[12,14]is shown in Fig.1(a). Di ff erent from TiO2(110)-(1×1),inequivalent types of undercoordinated Ti and O atoms exist,namely the valley Ti5c,ridge Ti5c,top Oband bridge Ob.The topObatoms display in a zig-zag style,which shade the ridge Ti5csites severely.Missing of the top Obatoms creates Ov.All of the Ti sites on TiO2(011)-(2×1)surface are undercoordinated,while on TiO2(110)-(1×1), only half of them are unsaturated.According to the conventional criterion,the former should be more reactive than the latter.

    FIG.1StructureofrutileTiO2(011)-(2×1)(a)and TiO2(110)-(1×1)(b)surfaces.Oxygen and Ti atoms are represented as red and gray spheres,respectively.Surface oxygen vacancies are created by removing the bridge bonded oxygen atoms labeled by dashed circles.Adsorption of methanol on Ti5csites of these two surfaces are also shown.

    The surface dependence of the photoreactivity of rutile has been extensively investigated,especially the low Miller index surfaces such as(110)and(011)[16?24]. Ohno and coworkers reported the selectively photoassisted deposition of nanoparticles on di ff erent surfaces of TiO2[20].Under ultraviolet(UV)irradiation,photooxidation of Pb2+into PbO2took place on(011)surface,while photoreduction of Pt2+into Pt occurred on(110)surface.Such a result suggests the rutile(011)surface is more reactive towards photocatalyzed oxidation reaction.Takahashi et al.also found(011)is about two times more e ffi cient than (110)in the photocatalyzed oxidation of methylene blue [23].From the percentage of undercoordinated surface metal ions point of view,these examples seem consistent with the conventional criterion.In fact,researchers have tried to explain the enhanced photocatalytic activity of rutile(011)based on the electronic structures[25].In this work,Tao and coworkers compared the valence electronic structure of TiO2(011)-(2×1)and TiO2(110)-(1×1)using ultraviolet photoelectron spectroscopy(UPS).Finding the binding energy of the band gap state on the(011)surface is 0.34 eV higher than that on(110),they expect the electron trapping and therefore the electro-hole separation of the former surface is more e ffi cient than the latter.

    Most recently,we have reassessed the photoactivity of TiO2(011)-(2×1)and TiO2(110)-(1×1)making use of the photocatalyzed oxidation of methanol[26].Temperature programmed desorption measurements showed the photocatalytic chemical reactions on these two surfaces are the same under identical experimental condition.Methanol molecules adsorbed on Ti5csites are converted into formaldehyde under ultraviolet(UV) irradiation;released hydroxyl and methyl hydrogen atoms,which transfer to the neighboring Obsites,generating bridging hydroxyls which experience recombinative desorption as water by abstracting lattice oxygen above 400 K;cross coupling of methoxy and formaldehyde produces methyl formate.Despite the same photocatalyzed oxidation reaction of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1),the reaction rate of the latter is 2.4 times of that of the former.The result suggests the reactivity of TiO2(011)-(2×1)is lower than TiO2(110)-(1×1)towards photoxidation reaction, in contrast with previous studies[20,23].The controdiction likely comes from the structure of the TiO2surface.In Refs.[20,23],the reactions took place in aqueous,while in our study,the measurements were carried out in ultrahigh vacuum(UHV)environment.

    As an extension of our previous study[26],we have studied the photochemistry of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)using twophoton photoemission spectroscopy(2PPE).An excited state at 2.5 eV above the Fermi level(EF)of clean and methanol/TiO2interfaces,which serves as an indicator of surface reduction,has been detected.The properties of this state,for example,the energy level, angular distribution,lifetime and transition dipole moment,have been characterized.The excited resonance signal on both methanol/TiO2interfaces increase with UV light exposure,which corresponds to the reduction of the TiO2interface by depositing hydrogen atoms onto the surface during the photooxidation of methanol. Though the photocatalyzed reactions of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are the same,the reaction rate on the latter surface is 11.4 times of that on the former.This work implies the role of surface structure in the photoreactivity of photocatalysts.

    II.EXPERIMENTS

    All experiments were conducted in a UHV chamber(base pressure better than 5×10?11mbar),which has been described in detail previously[27].Brie fl y,a preparation and characterization together with an electron spectroscopy measurement chamber are included in the UHV system.Ar+ion source,home-made resistive heater,low energy electron di ff raction(LEED)and X-ray photoelectron spectroscopy(XPS)detectors are equipped for sample preparation and characterization respectively.The whole probing chamber is shieldedfrom the earth magnetism byμ-metal.The key element of this apparatus is the hemispherical electron energy analyzer(PHOIBOS 100,SPECS)for photoelectron detection.The energy and angular distribution of photoelectrons are recorded by a two-dimension(2D) CCD camera which facilitates the measurement of the whole photoelectrons within the energy range of interest simultaneously.Therefore,study of the kinetics of the surface reaction becomes feasible.The fundamental output of a tunable oscillator(MaiTai eHP,Spectra-Physics)is adjusted at about 800 nm with a pulse width of about 70 fs.It is converted to the second harmonic (around 400 nm,FWHM=4 nm)and then focused onto the sample(diameter≈100μm).The pulse width and average power of the 400 nm laser beam at the sample surface is about 90 fs and 150 mW,respectively.Polarization of the excitation light is rotated through a λ/2 plate before the lens.The experimental geometry is shown in Fig.2.For p-polarization(s-polarization),the electric fi eld of the laser lies in the horizontal(vertical) plane.In the case of the two-photon(ca.400 nm)excitation from the TiO2interface[28],the fi rst photon excites an electron from below the EFto above it,and the second photon excites the electron to the vacuum.The energy and angular distribution of the photoelectrons give rise to the 2PPE spectra.Both time-resolved 2PPE (TR-2PPE)and time-dependent 2PPE(TD-2PPE)experiments can be carried out on this instrument.In the TR-2PPE experiment,one can study the ultrafast dynamics of excited electronic states,while TD-2PPE can measure the photochemical kinetics of molecularly adsorbed surfaces.

    FIG.2(a)Unit cell of rutile TiO2.The(110)and(011) surfaces are outlined by the blue and green rectangles,respectively.(b)Schematic overview of the experimental geometry.The electric fi eld of the laser can be varied by a half waveplate.For p-polarization(s-polarization),the electric fi eld of the laser lies in the XZ(Y Z)plane.

    FIG.3 LEED pattern of rutile TiO2(011)-(2×1)(top)and TiO2(110)-(1×1)(bottom)surfaces.Azimuth directions are labeled by arrows.In the 2PPE measurements,the incident planes are the horizontal planes along the[01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and TiO2(110)-(1×1),respectively.

    TiO2samples(PrincetonScienti fi cCorp., 10 mm×10 mm×1 mm)are mounted on a manipulator with four freedoms(translation along X,Y, Z axes and rotation around the polar axis)and are heated through resistive heating method and cooled by liquid nitrogen.K type thermocouples are glued directly to the TiO2surfaces using a ceramic adhesive (Ceramabond 503,Aremco Products,INC)to provide accurate temperature reading.The as received TiO2samples are polished on both sides to ensure maximum thermal contact.The samples were cleaned by cycles of Ar+sputtering(1 keV,15 min)and UHV annealing at 850 K(30 min).After this preparation procedure, no contamination could be detected in XPS,and sharp (2×1)and(1×1)LEED patterns were observed for (011)and(110)surface respectively(Fig.3).The preparation history of these two surface studied in the present work was similar.

    Methanol(Sigma-Aldridge)was puri fi ed by freezepump-thaw cycles and introduced onto the TiO2surfaces through a home-built,calibrated e ff usive molecular beam doser at 120 K.A mass spectrometer (SRS,RGA 200)which was shielded by a glass enclosure and di ff erentially pumped was chosen to measure the relative coverage of methanol via TPD method [29].Temperature was ramped at 2 K/s during all the TPD experiments.Methanol coverage was measured with respect to the corresponding density of Ti5csites.Here,monolayer(ML)corresponds to 5.2×1014molecules/cm2on(110)-(1×1)while,this value is 4.0×1014molecules/cm2on(011)-(2×1)[30].

    III.RESULTS AND DISCUSSION

    Beforetheadsorptionofmethanol,theelectronic structures of both clean TiO2(011)-(2×1)and TiO2(110)-(1×1)are characterized and compared by 2PPE(Fig.4).In the present work,the incident planes are the horizontal planes along the[01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and(110)-(1×1),respectively(Fig.2 and Fig.3).In accord with our previous studies[31], the work function(de fi ned as the half intensity point of the secondary electron edge)of the clean TiO2(110)-(1×1)is 5.1 eV,and an excited state at 2.5 eV above the EFis detected by the 2PPE spectra acquired by p-polarized(p-2PPE)rather than s-polarized light(s-2PPE).The net excited state signal was obtained by subtracting the normalized s-2PPE from the p-2PPE (P-NS in Fig.4(b)).Whereas the 2PPE measurements on TiO2(011)-(2×1)show some di ff erences compared with(110)-(1×1).First of all,the work function is about 0.1 eV higher,although the preparation history of these two surfaces is similar.As the work function re fl ect the reduction of the surfaces,this result indicates the(110)is easier to reduce than(011),which is consistent with the stronger band gap state signal on the former surface measured by UPS[25].The most prominent di ff erence comes from the polarization dependence of the excited state.For TiO2(110)-(1×1), when the incident plane is along[1ˉ10]azimuth,the excited state can only be detected by p-polarized,while the s-polarized light is totally“blind”to this state. However,on TiO2(011)-(2×1)(Fig.4(a)),when the incident plane is along[01ˉ1]azimuth,s-2PPE is much more pronounced at 5.6 eV( fi nal state energy)than p-2PPE.We have proven the resonance at 5.6 eV is from an excited state in both s-2PPE and p-2PPE.The varied polarization dependence of the excited state on TiO2(011)-(2×1)and TiO2(110)-(1×1)suggests di ff erent transition dipole moment relative to the distinct surface.The excited states on both surfaces show little angular dependence,suggesting the localized character. In addition,the lifetime of the excited states are too short to measure according to the TR-2PPE using 90 fs width pulse.

    The photochemistry of alcohol on TiO2(110)-(1×1) investigated by 2PPE has been reported by our group in the last several years[28,32?35].Figure 5 shows the 2PPE measurements of the 0.5 ML methanol covered TiO2(011)-(2×1)(a)and TiO2(110)-(1×1)(b),after the methanol/TiO2interfaces have been exposed to the 2PPE probe light for more than 200 and 2000 s in the case of(011)and(110)surface respectively.Compared with the bare surfaces,the 2PPE spectra on both methanol covered TiO2interfaces showed similar angular distribution,lifetime,decrease of work function and increase of the overall intensity[36].The excited states become much more pronounced,and moreover, no change in the light polarization dependence of the 2PPE has been detected.

    FIG.4 Typical 2PPE spectra for the clean(a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)surfaces respectively.The spectra were measured with both p-polarized(P)and spolarized(S)light with a photon energy of 3.10 eV.For comparison,S was normalized to P at the secondary electron signal edge.NS-P or P-NS denotes the di ff erence spectra.The signal was integrated from?5?to+5?.Energies are measured with respect to EF;those in the bottom axis represent fi nal state,after absorption of two photons,while those in the top X-axis refer to the intermediate state,before absorption of the second photon.Work function(WF)is labeled by the arrow at the middle of the secondary electron edge.The incident planes are the horizontal planes along the [01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and TiO2(110)-(1×1), respectively.

    TD-2PPEshowedtheevolutionoftheelectronicstructureasafunctionoflightirradiation on both methanol covered TiO2(011)-(2×1)and TiO2TiO2(110)-(1×1)(Fig.6).During the TD-2PPE measurements,the probe light was directed to the methanol/TiO2interface without any interruption,and the 2PPE spectra were collected every second.The irradiation dependence of the excited resonance signal suggests the occurrence of photoinduced chemistry on the methanol/TiO2interfaces.The excited resonance signal on methanol/TiO2(110)-(1×1)(Fig.6(b))increased by 68%when the light exposure time was increased from zero to 200 s.While on methanol/TiO2(011)-(2×1) (Fig.6(a)),this signal was doubled when the irradiation time reached 2000 s.It should be noted in Fig.6, the 2PPE spectra were acquired by p-polarized and s-polarized light on TiO2(110)-(1×1)and TiO2(011)-(2×1)interface respectively to maximize the excited resonance signal.

    FIG.5 Typical 2PPE spectra for the 0.5 ML methanol covered(a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)surfaces respectively.The signal was integrated from?5?to +5?.Energies are measured with respect to EF.Before the acquisition of these spectra,the TiO2(011)-(2×1)and TiO2(110)-(1×1)interfaces has been exposed to the 2PPE light for more than 2000 and 200 s respectively.

    Since the energy level,angular distribution,lifetime and the light polarization dependence of the excited state are similar,it is natural for one to think the origins of the excited states on both clean and adsorbated covered TiO2are the same.In our most recently combined 2PPE and density functions theory(DFT)calculations study[31],we have demonstrated the band gap state and the excited state at about 2.5 eV above the EFof TiO2(110)-(1×1)result from the splitting of the d orbitals of Ti3+in the distorted octahedral fi eld.This means both the band gap state and the excited state we discuss here are indicators for reduction of TiO2surface.And on TiO2(011)-(2×1),we have proven this conclusion is still correct(data are not shown).The irradiation dependence of the electronic structure on methanol/TiO2interfaces is consistent with our interpretation to the excited state on clean TiO2surfaces.As revealed by TPD studies,methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)experienced photocatalyzed oxidation under UV exposure, releasing hydrogen atoms onto the surface bridge oxygen atoms to produce hydroxyls.Similar to the creation of surface Ovand subsurface Ti interstitials,hydroxylation is another way to reduce the TiO2surface[29].Therefore,as methanol molecules are split by UV light,more and more hydrogen atoms are deposited onto the TiO2interface where more and more Ti3+ions are generated.Consequently,the density of states(DOS)of both the band gap state and the excited state become intensi fi ed.As demonstrated,the 2PPE measured excited resonance signal scales linearly with the coverage of surface hydroxyls on clean TiO2surface [31].Furthermore,on adsorbate(methanol or water) covered TiO2,the excited resonance signal is also proportional to the density of coadsorbed hydroxyls(data not shown).Therefore,the increase of the excited resonance signal during the photochemistry of methanol in fact re fl ects the accumulation of surface hydroxyls on TiO2interface.

    FIG.6 2PPE spectra for the 0.5 ML methanol covered (a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)as a function of the probe laser irradiation time.Most of the laser parameters(center wavelength,band width and power)in the two experimental measurements were exactly the same except the polarization.On TiO2(110)-(1×1)and TiO2(011)-(2×1) interfaces,2PPE spectra were acquired by p-polarized and s-polarized light respectively to maximize the excited resonance signal.The signal in these spectra was integrated from?5?to+5?.The energies were measured with respect to the Fermi level.

    Since the 2PPE measured excited resonance signal is an indicator of the density of hydroxyls on TiO2interface,it provides a fi ngerprint to trace the kinetics of the photocatalyzed oxidation of methanol on TiO2. Figure 7 displays the time-dependent excited resonance together with the fi tting by a fractal-like model[28, 32,33].On TiO2(011)-(2×1),the signal was integrated between 5.25 and 6.20 eV from s-2PPE(Fig.6(a)), whereas on TiO2(110)-(1×1),the excited resonance was accumulated in a span of 5.00?6.25 eV from p-2PPE(Fig.6(b)).Although the photocatalytic chemical reactions of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are similar,the reaction rate,however,di ff ers dramatically from each other.From Fig.7,one can see that it takes 61.3 s for the excited resonance signal on TiO2(110)-(1×1)to rise to 90%of the maximum signal level,while on TiO2(011)-(2×1),it costs 698.3 s,showing a 11.4 times di ff erence from the reaction rate.The photocatalyzed oxidation of methanol on TiO2(011)-(2×1)is less e ffi cient than on TiO2(110)-(1×1),in accord with our previous TPD investigation [26].In the same work,our DFT calculations provided some interpretation to the di ff erence of the photocatalyzed oxidation of methanol on these two TiO2surfaces.Methanol molecules are converted into methoxy before further photoxidation to formaldehyde,and the cleavage of C?H bond on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are the rate determining step during the photoxidation of methanol.Nevertheless,due to the corrugated structure,the distance between the nearest surface oxygen atoms and the methyl hydrogen of methoxy intermediate on TiO2(011)-(2×1)is 0.3?A larger than that on TiO2(110)-(1×1),leading to the 0.2 eV higher reaction barrier of break of the C?H bond.Anisotropic bulk charge transportation along different directions might also be a factor which a ff ects the surface dependence of photochemistry[24].

    TABLE I Comparison of the light source parameters in the 2PPE and TPD studies.

    FIG.7 Normalized time dependent signal of the excited resonance feature of 0.5 ML methanol covered TiO2(011)-(2×1)(blue circle)and TiO2(110)-(1×1)(olive circle)and the fractal-like kinetics model fi tting(red line). On TiO2(011)-(2×1),the signal was integrated between 5.25 and 6.20 eV from s-2PPE(Fig.6(a)),whereas on TiO2(110)-(1×1),the excited resonance was accumulated in a span of 5.00?6.25 eV from p-2PPE(Fig.6(b)).

    Thoughbothour2PPEandTPD[26]measurements suggest TiO2(011)-(2×1)is less e ffi cient than TiO2(110)-(1×1)towards the photooxidation of methanol,the relative photoreactivity obtained in these two studies are di ff erent.In the present 2PPE work,the reaction rate on TiO2(110)-(1×1)is 11.4 times faster, while the TPD results show a 2.4 times of di ff erence. The discrepancy possibly originates from the di ff erent light source chosen in these two studies(Table I).The fl ux(number of photons per unit area per second)in the TPD experiments is about 60 times of that in the 2PPE measurements.It is well known the light fl ux a ff ects the dynamics of the charge carriers signi fi cantly [37].It has also been proven the charge carrier transportation in TiO2is anisotropic[38].Therefore,it is possible the dependence of the charge carrier kinetics and dynamics on the light fl ux along[110]and[011] direction are di ff erent,which might lead to the discrepancy in the relative photoreactivity under di ff erent light irradiation condition.However,in both studies,we have found TiO2(011)-(2×1)is inferior to TiO2(110)-(1×1) towards the photooxidation of methanol.

    Our previous[26]and present investigations of the photooxidation of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)show inconsistency with others’work which suggest TiO2(011)is more e ffi cient towards photooxidation reactions than TiO2(110)[20,23].The discrepancy likely originates from the structure of the TiO2photocatalyst.It is worth noting the photoreactivity tested in Ref.[20,23]is in aqueous environment which often alters the surface structure dramatically,causing it di ffi cult to establish the correlation between activity and surface structure from an atomic level[39].To avoid such complexity,photocatalysis studied in UHV condition is necessary.Since the surface structure in vacuum can be well characterized,and submonolayer adsorbates usually change the surface structure slightly [40].

    IV.CONCLUSION

    We have investigated the electronic structure of clean and methanol covered TiO2(011)-(2×1)and TiO2(110)-(1×1).An excited state at 2.5 eV above the EFon all the four TiO2interfaces(clean and methanol covered (011)and(110))studied here has been detected.The energy level,angular distribution and lifetime of this excited state are similar on both(110)and(011)interfaces.However,the transition dipole moment shows di ff erent con fi guration relative to the interfaces.The excited state is an indicator of reduction of TiO2interface.Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)is attributed to the reduction of the interfaces by depositing hydrogenatoms.The reaction rate of photooxidation of methanol on TiO2(110)-(1×1)is about 11.4 times faster than that on TiO2(011)-(2×1),which is tentatively explained by the di ff erence in the surface atomic con fi guration.

    This work not only provides a detailed characterization of the electronic structure of methanol/TiO2interface by 2PPE,but also shows the importance of the surface structure in the photoreactivity on TiO2. Anisotropy of the surface properties are attracting more and more attention.For example,charge separation in photocatalysis has been successfully realized by constructing heterostructures with di ff erent facets[41]. Therefore,studying the properties of individual surface and the dependence on the surfaces are desirable.

    V.ACKNOWLEDGMENTS

    ThisworkwassupportedtheNaturalScience Foundation of Liaoning Province(No.2015020242), the National Natural Science Foundation of China (No.21203189 and No.21573225),and the State Key Laboratory of Molecular Reaction Dynamics(No.ZZ-2014-02).

    [1]A.L.Linsebigler,G.Q.Lu,and J.T.Yates,Chem. Rev.95,735(1995).

    [2]U.Diebold,Surf.Sci.Rep.48,53(2003).

    [3]Q.Guo,C.Zhou,Z.Ma,Z.Ren,H.Fan,and X.Yang, Chem.Soc.Rev.DOI:10.1039/c5cs00448,(2015).

    [4]C.Xu,W.Yang,Q.Guo,D.Dai,M.Chen,and X. Yang,J.Am.Chem.Soc.135,10206(2013).

    [5]C.Xu,W.Yang,Q.Guo,D.Dai,M.Chen,and X. Yang,J.Am.Chem.Soc.136,602(2014).

    [6]A.Vittadini,A.Selloni,F.P.Rotzinger,and M. Gratzel,Phys.Rev.Lett.81,2954(1998).

    [7]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [8]G.Liu,H.G.Yang,J.Pan,Y.Q.Yang,G.Q.Lu,and H.M.Cheng,Chem.Rev.114,9559(2014).

    [9]V.E.Henrich,G.Dresselhaus,and H.J.Zeiger,Phys. Rev.Lett.36,1335(1976).

    [10]S.Wendt,P.T.Sprunger,E.Lira,G.K.H.Madsen, Z.S.Li,J.O.Hansen,J.Matthiesen,A.Blekinge-Rasmussen,E.Laegsgaard,B.Hammer,and F.Besenbacher,Science 320,1755(2008).

    [11]T.J.Beck,A.Klust,M.Batzill,U.Diebold,C.Di Valentin,and A.Selloni,Phys.Rev.Lett.93,036104 (2004).

    [12]X.Torrelles,G.Cabailh,R.Lindsay,O.Bikondoa,J. Roy,J.Zegenhagen,G.Teobaldi,W.A.Hofer,and G. Thornton,Phys.Rev.Lett.101,185501(2008).

    [13]S.E.Chamberlin,C.J.Hirschmugl,H.C.Poon,and D.K.Saldin,Surf.Sci.603,3367(2009).

    [14]X.Q.Gong,N.Khorshidi,A.Stierle,V.Vonk,C. Ellinger,H.Dosch,H.Z.Cheng,A.Selloni,Y.B.He, O.Dulub,and U.Diebold,Surface Science 603,138 (2009).

    [15]T.Woolcot,G.Teobaldi,C.L.Pang,N.S.Beglitis,A. J.Fisher,W.A.Hofer,and G.Thornton,Phys.Rev. Lett.109,156105(2012).

    [16]P.A.M.Hotsenpiller,J.D.Bolt,W.E.Farneth,J.B. Lowekamp,and G.S.Rohrer,J.Phys.Chem.B 102, 3216(1998).

    [17]J.B.Lowekamp,G.S.Rohrer,P.A.M.Hotsenpiller, J.D.Bolt,and W.E.Farneth,J.Phys.Chem.B 102, 7323(1998).

    [18]T.Sugiura,S.Itoh,T.Ooi,T.Yoshida,K.Kuroda,and H.Minoura,J.Electroanal.Chem.473,204(1999).

    [19]A.Tsujiko,T.Kisumi,Y.Magari,K.Murakoshi,and Y.Nakato,J Phys.Chem.B 104,4873(2000).

    [20]T.Ohno,K.Sarukawa,and M.Matsumura,New J. Chem.26,1167(2002).

    [21]A.Y.Ahmed,T.A.Kandiel,T.Oekermann,and D. Bahnemann,J.Phys.Chem.Lett.2,2461(2011).

    [22]Y.Nakabayashi and Y.Nosaka,J.Phys.Chem.C 117, 23832(2013).

    [23]H.Takahashi,R.Watanabe,Y.Miyauchi,and G.Mizutani,J.Chem.Phys.134,154704(2011).

    [24]T.Luttrell,S.Halpegamage,J.Tao,A.Kramer,E. Sutter,and M.Batzill,Sci.Rep.4,4043(2014).

    [25]J.G.Tao and M.Batzill,J.Phys.Chem.Lett.1,3200 (2010).

    [26]X.Mao,Z.Wang,X.Lang,Q.Hao,B.Wen,D.Dai,C. Zhou,L.M.Liu,and X.Yang,J.Phys.Chem.C 119, 6121(2015).

    [27]Z.F.Ren,C.Y.Zhou,Z.B.Ma,C.L.Xiao,X.C. Mao,D.X.Dai,J.LaRue,R.Cooper,A.M.Wodtke, and X.M.Yang,Chin.J.Chem.Phys.23,255(2010). [28]C.Zhou,Z.Ma,Z.Ren,A.M.Wodtke,and X.Yang, Energy Environ.Sci.5,6833(2012).

    [29]X.C.Mao,X.F.Lang,Z.Q.Wang,Q.Q.Hao,B. Wen,Z.F.Ren,D.X.Dai,C.Y.Zhou,L.M.Liu,and X.M.Yang,J.Phys.Chem.Lett.4,3839(2013).

    [30]J.Tao,Q.Cuan,X.Q.Gong,and M.Batzill,J.Phys. Chem.C 116,20438(2012).

    [31]Z.Wang,B.Wen,Q.Hao,L.M.Liu,C.Zhou,X.Mao, X.Lang,W.J.Yin,D.Dai,A.Selloni,and X.Yang, J.Am.Chem.Soc.137,9146(2015).

    [32]C.Y.Zhou,Z.F.Ren,S.J.Tan,Z.B.Ma,X.C.Mao, D.X.Dai,H.J.Fan,X.M.Yang,J.LaRue,R.Cooper, A.M.Wodtke,Z.Wang,Z.Y.Li,B.Wang,J.L.Yang, and J.G.Hou,Chem.Sci.1,575(2010).

    [33]C.Zhou,Z.Ma,Z.Ren,X.Mao,D.Dai,and X.Yang, Chem.Sci.2,1980(2011).

    [34]Z.Ma,Q.Guo,X.Mao,Z.Ren,X.Wang,C.Xu,W. Yang,D.Dai,C.Zhou,H.Fan,and X.Yang,J.Phys. Chem.C 117,10336(2013).

    [35]Z.B.Ma,C.Y.Zhou,X.C.Mao,Z.F.Ren,D.X.Dai, and X.M.Yang,Chin.J.Chem.Phys.26,1(2013).

    [36]Z.Wang,Q.Hao,X.Mao,C.Zhou,Z.Ma,Z.Ren,D. Dai,and X.Yang,Chin.J.Chem.Phys.28,123(2015). [37]Y.Tamaki,A.Furube,M.Murai,K.Hara,R.Katoh, and M.Tachiya,Phys.Chem.Chem.Phys.9,1453 (2007).

    [38]L.Thulin and J.Guerra,Phys.Rev.B 77,195112 (2008).

    [39]U.Aschauer and A.Selloni,Phys.Rev.Lett.106, 166102(2011).

    [40]R.S.de Armas,J.Oviedo,M.A.San Miguel,and J. F.Sanz,J.Phys.Chem.C 111,10023(2007).

    [41]R.Li,F.Zhang,D.Wang,J.Yang,M.Li,J.Zhu,X. Zhou,H.Han,and C.Li,Nat.Commun.4,1432(2013).

    在线观看免费日韩欧美大片| 日韩不卡一区二区三区视频在线| 亚洲天堂av无毛| 日韩不卡一区二区三区视频在线| 99久久综合免费| 久久久久久免费高清国产稀缺| 日本91视频免费播放| www.av在线官网国产| 久久久亚洲精品成人影院| 亚洲精品乱久久久久久| 欧美人与性动交α欧美软件| 久久精品国产a三级三级三级| 日韩,欧美,国产一区二区三区| 天天躁夜夜躁狠狠久久av| 日韩三级伦理在线观看| 久久国内精品自在自线图片| 精品国产一区二区三区四区第35| 久久久国产精品麻豆| 大香蕉久久成人网| 中国国产av一级| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 男的添女的下面高潮视频| 亚洲国产av新网站| 热re99久久国产66热| 欧美成人精品欧美一级黄| 亚洲国产精品999| 一级,二级,三级黄色视频| 一边亲一边摸免费视频| 97人妻天天添夜夜摸| 日本欧美视频一区| 永久免费av网站大全| 91午夜精品亚洲一区二区三区| 午夜福利网站1000一区二区三区| 捣出白浆h1v1| 午夜免费观看性视频| 在线观看免费视频网站a站| 18禁观看日本| 999精品在线视频| 最近的中文字幕免费完整| 高清欧美精品videossex| 亚洲av免费高清在线观看| 亚洲国产最新在线播放| 一二三四中文在线观看免费高清| 中文字幕av电影在线播放| av一本久久久久| 99香蕉大伊视频| 久久这里只有精品19| 日韩av免费高清视频| 久久午夜综合久久蜜桃| 色播在线永久视频| 国产精品三级大全| 亚洲欧洲精品一区二区精品久久久 | 日韩免费高清中文字幕av| 好男人视频免费观看在线| 亚洲精品日本国产第一区| 青春草国产在线视频| 乱人伦中国视频| 岛国毛片在线播放| 国产国语露脸激情在线看| 日日摸夜夜添夜夜爱| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 丝袜人妻中文字幕| 免费观看性生交大片5| 欧美成人午夜精品| 欧美激情极品国产一区二区三区| 欧美人与性动交α欧美精品济南到 | 黑人猛操日本美女一级片| 欧美少妇被猛烈插入视频| 久久精品亚洲av国产电影网| 久久精品亚洲av国产电影网| 最黄视频免费看| 色吧在线观看| 一二三四中文在线观看免费高清| 人妻系列 视频| 女人高潮潮喷娇喘18禁视频| 久久精品人人爽人人爽视色| 啦啦啦在线观看免费高清www| 天天躁日日躁夜夜躁夜夜| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 精品一区在线观看国产| 丝袜在线中文字幕| 国产欧美亚洲国产| 人人妻人人澡人人看| 久久韩国三级中文字幕| 日韩电影二区| 欧美日韩成人在线一区二区| 啦啦啦在线免费观看视频4| 成年av动漫网址| 99精国产麻豆久久婷婷| 亚洲av.av天堂| 中文字幕精品免费在线观看视频| 日本欧美视频一区| 97在线人人人人妻| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品| 国产野战对白在线观看| 自线自在国产av| 午夜免费鲁丝| 在线看a的网站| 黄色配什么色好看| 在线天堂最新版资源| 亚洲一码二码三码区别大吗| 日韩不卡一区二区三区视频在线| 啦啦啦在线观看免费高清www| 精品少妇内射三级| 亚洲国产色片| 精品人妻在线不人妻| 亚洲av国产av综合av卡| 久久久久久久精品精品| 乱人伦中国视频| 永久网站在线| av一本久久久久| 久久久久久免费高清国产稀缺| 黄色配什么色好看| 国产精品人妻久久久影院| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| 777久久人妻少妇嫩草av网站| 热99久久久久精品小说推荐| 久久精品久久久久久噜噜老黄| 国产免费一区二区三区四区乱码| 人妻 亚洲 视频| 亚洲精品,欧美精品| 国产av国产精品国产| 日日啪夜夜爽| 日韩人妻精品一区2区三区| 国产精品一区二区在线不卡| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品一区三区| 高清在线视频一区二区三区| 日韩av在线免费看完整版不卡| 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久久免| 久久人妻熟女aⅴ| www.精华液| 国产无遮挡羞羞视频在线观看| 黄色配什么色好看| 亚洲欧洲日产国产| 亚洲美女搞黄在线观看| 中文天堂在线官网| 在线观看免费高清a一片| 丁香六月天网| 精品人妻偷拍中文字幕| 嫩草影院入口| 蜜桃在线观看..| 欧美日韩一级在线毛片| 最近手机中文字幕大全| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久成人av| 日本欧美视频一区| 精品国产露脸久久av麻豆| 你懂的网址亚洲精品在线观看| 亚洲av日韩在线播放| 91国产中文字幕| 777米奇影视久久| 亚洲av电影在线观看一区二区三区| 久久热在线av| 2021少妇久久久久久久久久久| av电影中文网址| 一区二区三区激情视频| 丝瓜视频免费看黄片| 丁香六月天网| 久久久欧美国产精品| 欧美黄色片欧美黄色片| 狠狠婷婷综合久久久久久88av| 成人国产麻豆网| 一区二区三区四区激情视频| 亚洲五月色婷婷综合| 国产日韩欧美亚洲二区| 欧美老熟妇乱子伦牲交| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 亚洲情色 制服丝袜| 成年人午夜在线观看视频| 欧美av亚洲av综合av国产av | 亚洲一区二区三区欧美精品| 性少妇av在线| 久久人人爽av亚洲精品天堂| 一级毛片我不卡| 国产精品一二三区在线看| 国产又爽黄色视频| 国产男女超爽视频在线观看| 久久精品久久久久久噜噜老黄| 中文字幕色久视频| 午夜福利,免费看| 日韩熟女老妇一区二区性免费视频| 欧美精品人与动牲交sv欧美| 日韩精品有码人妻一区| xxxhd国产人妻xxx| 丰满饥渴人妻一区二区三| 国产又色又爽无遮挡免| 91国产中文字幕| av国产精品久久久久影院| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲av电影在线观看一区二区三区| 日日啪夜夜爽| 免费观看a级毛片全部| 老司机亚洲免费影院| 不卡视频在线观看欧美| 女人精品久久久久毛片| 激情视频va一区二区三区| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 韩国av在线不卡| 波野结衣二区三区在线| 伦理电影免费视频| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 免费在线观看视频国产中文字幕亚洲 | 日韩一本色道免费dvd| 热re99久久国产66热| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 黄色视频在线播放观看不卡| videosex国产| 亚洲av电影在线观看一区二区三区| videos熟女内射| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| 考比视频在线观看| 国产在线免费精品| 亚洲三区欧美一区| 丝袜喷水一区| 日韩熟女老妇一区二区性免费视频| 午夜福利网站1000一区二区三区| 国产精品无大码| 国产女主播在线喷水免费视频网站| 人体艺术视频欧美日本| 91aial.com中文字幕在线观看| 我的亚洲天堂| 午夜免费男女啪啪视频观看| 国产精品亚洲av一区麻豆 | 999久久久国产精品视频| 男的添女的下面高潮视频| 午夜日韩欧美国产| 99re6热这里在线精品视频| 久久久久视频综合| av在线app专区| 两性夫妻黄色片| 老司机亚洲免费影院| 久久久久久久久久久免费av| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲 | 一区二区三区精品91| 久久精品国产综合久久久| 久久久欧美国产精品| 国产精品亚洲av一区麻豆 | 国产免费现黄频在线看| 久久久久久久久免费视频了| 久久婷婷青草| 一级毛片 在线播放| 青春草国产在线视频| 国产福利在线免费观看视频| 人妻人人澡人人爽人人| 午夜福利在线免费观看网站| 成人漫画全彩无遮挡| 亚洲精品一区蜜桃| 欧美日韩一级在线毛片| 啦啦啦啦在线视频资源| 超色免费av| 精品国产国语对白av| 欧美黄色片欧美黄色片| av网站在线播放免费| 老熟女久久久| 一区在线观看完整版| 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| 99久久综合免费| 国产成人一区二区在线| 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 国产97色在线日韩免费| 飞空精品影院首页| 人成视频在线观看免费观看| 一本久久精品| 国产精品.久久久| 亚洲国产精品一区三区| 少妇的逼水好多| 18禁裸乳无遮挡动漫免费视频| 999久久久国产精品视频| 国产黄频视频在线观看| 水蜜桃什么品种好| 久久久久久久久久久久大奶| 超碰成人久久| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩国产mv在线观看视频| 久久鲁丝午夜福利片| 国产视频首页在线观看| 久久久欧美国产精品| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 七月丁香在线播放| 老熟女久久久| 精品久久久久久电影网| 成年av动漫网址| 18在线观看网站| 亚洲国产欧美网| 超碰97精品在线观看| 国产xxxxx性猛交| 成人亚洲精品一区在线观看| 国产欧美日韩综合在线一区二区| 亚洲情色 制服丝袜| 青春草国产在线视频| 亚洲精品一二三| 国产黄频视频在线观看| 免费观看无遮挡的男女| 亚洲国产精品成人久久小说| 午夜影院在线不卡| 99精国产麻豆久久婷婷| 十分钟在线观看高清视频www| 久久国内精品自在自线图片| 亚洲国产毛片av蜜桃av| 久久久久国产网址| 亚洲精品,欧美精品| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 尾随美女入室| 可以免费在线观看a视频的电影网站 | 免费av中文字幕在线| 久久人人97超碰香蕉20202| 久久久国产精品麻豆| 国产亚洲午夜精品一区二区久久| 久久久久国产精品人妻一区二区| 777久久人妻少妇嫩草av网站| 人人妻人人爽人人添夜夜欢视频| 日韩大片免费观看网站| 亚洲精品日本国产第一区| 蜜桃在线观看..| 久久久精品国产亚洲av高清涩受| 在线 av 中文字幕| 日本91视频免费播放| 精品人妻偷拍中文字幕| 久久97久久精品| 午夜影院在线不卡| 国产一区二区三区av在线| 春色校园在线视频观看| kizo精华| 日韩一卡2卡3卡4卡2021年| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 黄片小视频在线播放| 男女国产视频网站| 国产不卡av网站在线观看| 男女国产视频网站| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 如何舔出高潮| 一区二区av电影网| 国产日韩欧美亚洲二区| 成年女人毛片免费观看观看9 | 我的亚洲天堂| 午夜影院在线不卡| 最近的中文字幕免费完整| 少妇被粗大的猛进出69影院| 久久免费观看电影| xxxhd国产人妻xxx| 亚洲欧美色中文字幕在线| 超色免费av| 亚洲成人手机| 国产午夜精品一二区理论片| 观看av在线不卡| 亚洲欧美中文字幕日韩二区| 国产一区二区激情短视频 | 国产在线一区二区三区精| 亚洲国产av新网站| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 久久久精品94久久精品| 伊人久久国产一区二区| 波多野结衣一区麻豆| 午夜日韩欧美国产| 高清av免费在线| 少妇熟女欧美另类| 丰满的人妻完整版| 大码成人一级视频| 午夜精品国产一区二区电影| 天天添夜夜摸| 黄色丝袜av网址大全| 国产乱人伦免费视频| 久久精品影院6| 国产成人一区二区三区免费视频网站| 国产精品乱码一区二三区的特点 | 黄色 视频免费看| 久久中文字幕一级| 国产精品 欧美亚洲| 国产精品亚洲一级av第二区| 露出奶头的视频| √禁漫天堂资源中文www| 精品一区二区三区视频在线观看免费 | 深夜精品福利| 国产精品久久电影中文字幕| 女人高潮潮喷娇喘18禁视频| 久久香蕉激情| 国产精品亚洲一级av第二区| 亚洲欧美一区二区三区黑人| 午夜免费鲁丝| 涩涩av久久男人的天堂| cao死你这个sao货| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产 | 妹子高潮喷水视频| 满18在线观看网站| 一区二区三区国产精品乱码| 宅男免费午夜| www国产在线视频色| 999久久久国产精品视频| 男人的好看免费观看在线视频 | 欧美在线一区亚洲| 成人特级黄色片久久久久久久| 后天国语完整版免费观看| 亚洲国产欧美日韩在线播放| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品sss在线观看 | 久久国产乱子伦精品免费另类| 老司机福利观看| 久久亚洲精品不卡| 人人妻人人添人人爽欧美一区卜| 国产精品九九99| 国产熟女xx| 亚洲aⅴ乱码一区二区在线播放 | 97超级碰碰碰精品色视频在线观看| 波多野结衣av一区二区av| 首页视频小说图片口味搜索| 黄色女人牲交| 免费在线观看日本一区| 亚洲人成77777在线视频| 欧美人与性动交α欧美软件| 麻豆av在线久日| 身体一侧抽搐| 人人妻人人澡人人看| 波多野结衣av一区二区av| 欧美中文综合在线视频| 中文字幕人妻丝袜一区二区| 看黄色毛片网站| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 久久午夜亚洲精品久久| av中文乱码字幕在线| 成人三级做爰电影| a级片在线免费高清观看视频| 精品一区二区三区av网在线观看| 国产欧美日韩一区二区三区在线| 久久久久久久精品吃奶| 热re99久久精品国产66热6| 欧美日韩一级在线毛片| 国产成人系列免费观看| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 欧美人与性动交α欧美软件| 视频在线观看一区二区三区| 女同久久另类99精品国产91| 18禁黄网站禁片午夜丰满| 亚洲国产精品999在线| 国内久久婷婷六月综合欲色啪| www.999成人在线观看| 亚洲av成人一区二区三| av网站免费在线观看视频| 久久久久久免费高清国产稀缺| 视频区图区小说| 天天影视国产精品| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 一边摸一边抽搐一进一出视频| 日韩欧美免费精品| 国产亚洲精品久久久久久毛片| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| 亚洲人成电影观看| 久久香蕉激情| 高清欧美精品videossex| 国内毛片毛片毛片毛片毛片| 亚洲av片天天在线观看| 国产蜜桃级精品一区二区三区| 色婷婷av一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 久久狼人影院| 桃色一区二区三区在线观看| 老司机靠b影院| 青草久久国产| 在线观看免费高清a一片| 丁香欧美五月| 很黄的视频免费| 亚洲精品国产区一区二| 男人的好看免费观看在线视频 | 狠狠狠狠99中文字幕| 日本黄色视频三级网站网址| 夜夜夜夜夜久久久久| 另类亚洲欧美激情| 成人18禁在线播放| 久久久国产精品麻豆| 曰老女人黄片| 欧美成狂野欧美在线观看| 国产野战对白在线观看| 最新美女视频免费是黄的| 午夜福利在线免费观看网站| 在线观看66精品国产| 18禁黄网站禁片午夜丰满| av在线播放免费不卡| 国产99久久九九免费精品| 亚洲欧美一区二区三区黑人| 色哟哟哟哟哟哟| 中文字幕色久视频| 99国产精品免费福利视频| 一本大道久久a久久精品| 国产精华一区二区三区| 久久久国产欧美日韩av| 国产精品一区二区免费欧美| 少妇裸体淫交视频免费看高清 | 老鸭窝网址在线观看| ponron亚洲| 中出人妻视频一区二区| 长腿黑丝高跟| 不卡av一区二区三区| 大香蕉久久成人网| 精品久久久久久,| 人人澡人人妻人| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| 两人在一起打扑克的视频| 18禁国产床啪视频网站| 亚洲av成人一区二区三| 十八禁人妻一区二区| 涩涩av久久男人的天堂| 9色porny在线观看| 18禁美女被吸乳视频| 欧美亚洲日本最大视频资源| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出 | 午夜精品在线福利| 久久国产精品男人的天堂亚洲| 亚洲精品久久午夜乱码| 久久久久久久精品吃奶| 亚洲全国av大片| 国产精品永久免费网站| 午夜福利免费观看在线| 欧美成人午夜精品| 夜夜夜夜夜久久久久| 99热只有精品国产| 不卡av一区二区三区| 久久香蕉激情| 国产主播在线观看一区二区| 午夜日韩欧美国产| 嫁个100分男人电影在线观看| 精品人妻1区二区| 精品第一国产精品| 国产一区二区三区在线臀色熟女 | 国产国语露脸激情在线看| 午夜福利一区二区在线看| 美女福利国产在线| 日韩高清综合在线| av天堂在线播放| 国产精品一区二区免费欧美| 亚洲欧美一区二区三区黑人| 国产精品综合久久久久久久免费 | 国产成人免费无遮挡视频| 久久天躁狠狠躁夜夜2o2o| 午夜免费成人在线视频| 淫妇啪啪啪对白视频| 男女下面插进去视频免费观看| 天天躁夜夜躁狠狠躁躁| 搡老乐熟女国产| 国产伦人伦偷精品视频| 欧美亚洲日本最大视频资源| 亚洲国产中文字幕在线视频| 国产一区二区激情短视频| 亚洲欧美日韩另类电影网站| 性少妇av在线| www.999成人在线观看| 欧美人与性动交α欧美软件| 午夜福利在线观看吧| 国产高清视频在线播放一区| 99热国产这里只有精品6| 国产深夜福利视频在线观看| 久久香蕉激情| 亚洲精品在线观看二区| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| 91麻豆av在线| 男女做爰动态图高潮gif福利片 | 极品教师在线免费播放| 超碰成人久久| 久久精品成人免费网站| 久久久久久免费高清国产稀缺| 黄片大片在线免费观看| 亚洲一区二区三区色噜噜 | 男女高潮啪啪啪动态图| 在线免费观看的www视频| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看| 成人精品一区二区免费| 成在线人永久免费视频| 久久久久国产精品人妻aⅴ院| 超色免费av| 国产精品影院久久| 国产成人啪精品午夜网站| 十八禁网站免费在线| 欧美乱码精品一区二区三区| 亚洲国产欧美一区二区综合| 亚洲成人久久性| 欧美一级毛片孕妇|