• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania?

    2016-04-08 06:35:58QunqingHoZhiqingWngXinchunMoChunyoZhouDongxuDiXuemingYngStteKeyLortoryofMoleculrRectionDynmicsDlinInstituteofChemiclPhysicsChineseAcdemyofScienceDlin116023ChinCenterofInterfceDynmicsforSustinilityInstituteofMter
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Qun-qing Ho,Zhi-qing Wng,Xin-chun Mo,Chun-yo Zhou?,Dong-xu Di,Xue-ming Yng?.Stte Key Lortory of Moleculr Rection Dynmics,Dlin Institute of Chemicl Physics,ChineseAcdemy of Science,Dlin 116023,Chin.Center of Interfce Dynmics for Sustinility,Institute of Mterils,Chin Acdemy of EngineeringPhysics,Chengdu 610200,Chin(Dted:Received on Jnury 11,2016;Accepted on Ferury 6,2016)

    ?

    ARTICLE Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania?

    Qun-qing Haoa,Zhi-qiang Wanga,Xin-chun Maob,Chuan-yao Zhoua?,Dong-xu Daia,Xue-ming Yanga?a.State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese
    Academy of Science,Dalian 116023,China
    b.Center of Interface Dynamics for Sustainability,Institute of Materials,China Academy of Engineering
    Physics,Chengdu 610200,China
    (Dated:Received on January 11,2016;Accepted on February 6,2016)

    The crystal phase,morphology and facet signi fi cantly in fl uence the catalytic and photocatalytic activity of TiO2.In view of optimizing the performance of catalysts,extensive e ff orts have been devoted to designing new sophisticate TiO2structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface.In this work,we have examined the photooxidation of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1) by two-photon photoemission spectroscopy(2PPE).An excited state at 2.5 eV above the Fermi level(EF)on methanol covered(011)and(110)interface has been detected.The excited state is an indicator of reduction of TiO2interface.Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)is ascribed to the interface reduction by producing surface hydroxyls.The reaction rate of photooxidation of methanol on TiO2(110)-(1×1)is about 11.4 times faster than that on TiO2(011)-(2×1),which is tentatively explained by the di ff erence in the surface atomic con fi guration.This work not only provides a detailed characterization of the electronic structure of methanol/TiO2interface by 2PPE,but also shows the importance of the surface structure in the photoreactivity on TiO2.

    Key words:TiO2,Excited state,Two-photon photoemission spectroscopy,Reaction rate of photooxidation

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: chuanyaozhou@dicp.ac.cn,xmyang@dicp.ac.cn,Tel.:+86-411-84695174,FAX:+86-411-84675584

    I.INTRODUCTION

    Titanium dioxide(TiO2)is a versatile material in both scienti fi c and technological fi elds,ranging from surface science,catalysis and photocatalysis to paint, gas sensor and lithium batteries[1?3].The interaction between adsorbates(molecules or ions)and TiO2substrate is the core of the above mentioned scienti fi c issues and functional applications.To a large extent, such adsorbate-substrate interaction is determined by the electronic structure as well as the atomic structure of TiO2.Therefore,great e ff ort has been devoted to the investigation of the surface dependence of reactivity of TiO2[4?6].The anisotropic chemical reactivity of TiO2surfaces has stimulated the fabrication of di ff erent TiO2nanostructures with speci fi c facets to optimize the performance in the past few years[7,8].In surface science and catalysis,there is a conventional criterion for the reactivity,which says that surfaces with higher percentage of undercoordinated surface atoms are regarded more reactive.

    Rutile,the most stable and abundant structure of titania,has attracted tremendous attention in the past decades in surface science and catalysis fi elds.Rutile (110)surface(Fig.1(b)),one of the most extensively studied metal oxides,has become a prototype for surface chemistry and photochemistry research.The structure of TiO2(110)-(1×1)has been well understood[2]. On the surface, fi vefold coordinated Ti ions(Ti5c)and twofold coordinated bridge O ions(Ob)run alternatively along the[001]azimuth.Reduction leads to the creation of surface oxygen vacancies(Ov)and subsurface Ti interstitials(Tiint)which contribute to the band gap states[9,10].In addition to TiO2(110)-(1×1),the structure of TiO2(011)surface has also been investigated,though less extensively[11?15].The most stable phase of TiO2(011)is reconstructured by(2×1).The atomic structure of TiO2(011)-(2×1)as suggested by surface X-ray di ff raction(SXRD)and density functional theory(DFT)calculations[12,14]is shown in Fig.1(a). Di ff erent from TiO2(110)-(1×1),inequivalent types of undercoordinated Ti and O atoms exist,namely the valley Ti5c,ridge Ti5c,top Oband bridge Ob.The topObatoms display in a zig-zag style,which shade the ridge Ti5csites severely.Missing of the top Obatoms creates Ov.All of the Ti sites on TiO2(011)-(2×1)surface are undercoordinated,while on TiO2(110)-(1×1), only half of them are unsaturated.According to the conventional criterion,the former should be more reactive than the latter.

    FIG.1StructureofrutileTiO2(011)-(2×1)(a)and TiO2(110)-(1×1)(b)surfaces.Oxygen and Ti atoms are represented as red and gray spheres,respectively.Surface oxygen vacancies are created by removing the bridge bonded oxygen atoms labeled by dashed circles.Adsorption of methanol on Ti5csites of these two surfaces are also shown.

    The surface dependence of the photoreactivity of rutile has been extensively investigated,especially the low Miller index surfaces such as(110)and(011)[16?24]. Ohno and coworkers reported the selectively photoassisted deposition of nanoparticles on di ff erent surfaces of TiO2[20].Under ultraviolet(UV)irradiation,photooxidation of Pb2+into PbO2took place on(011)surface,while photoreduction of Pt2+into Pt occurred on(110)surface.Such a result suggests the rutile(011)surface is more reactive towards photocatalyzed oxidation reaction.Takahashi et al.also found(011)is about two times more e ffi cient than (110)in the photocatalyzed oxidation of methylene blue [23].From the percentage of undercoordinated surface metal ions point of view,these examples seem consistent with the conventional criterion.In fact,researchers have tried to explain the enhanced photocatalytic activity of rutile(011)based on the electronic structures[25].In this work,Tao and coworkers compared the valence electronic structure of TiO2(011)-(2×1)and TiO2(110)-(1×1)using ultraviolet photoelectron spectroscopy(UPS).Finding the binding energy of the band gap state on the(011)surface is 0.34 eV higher than that on(110),they expect the electron trapping and therefore the electro-hole separation of the former surface is more e ffi cient than the latter.

    Most recently,we have reassessed the photoactivity of TiO2(011)-(2×1)and TiO2(110)-(1×1)making use of the photocatalyzed oxidation of methanol[26].Temperature programmed desorption measurements showed the photocatalytic chemical reactions on these two surfaces are the same under identical experimental condition.Methanol molecules adsorbed on Ti5csites are converted into formaldehyde under ultraviolet(UV) irradiation;released hydroxyl and methyl hydrogen atoms,which transfer to the neighboring Obsites,generating bridging hydroxyls which experience recombinative desorption as water by abstracting lattice oxygen above 400 K;cross coupling of methoxy and formaldehyde produces methyl formate.Despite the same photocatalyzed oxidation reaction of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1),the reaction rate of the latter is 2.4 times of that of the former.The result suggests the reactivity of TiO2(011)-(2×1)is lower than TiO2(110)-(1×1)towards photoxidation reaction, in contrast with previous studies[20,23].The controdiction likely comes from the structure of the TiO2surface.In Refs.[20,23],the reactions took place in aqueous,while in our study,the measurements were carried out in ultrahigh vacuum(UHV)environment.

    As an extension of our previous study[26],we have studied the photochemistry of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)using twophoton photoemission spectroscopy(2PPE).An excited state at 2.5 eV above the Fermi level(EF)of clean and methanol/TiO2interfaces,which serves as an indicator of surface reduction,has been detected.The properties of this state,for example,the energy level, angular distribution,lifetime and transition dipole moment,have been characterized.The excited resonance signal on both methanol/TiO2interfaces increase with UV light exposure,which corresponds to the reduction of the TiO2interface by depositing hydrogen atoms onto the surface during the photooxidation of methanol. Though the photocatalyzed reactions of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are the same,the reaction rate on the latter surface is 11.4 times of that on the former.This work implies the role of surface structure in the photoreactivity of photocatalysts.

    II.EXPERIMENTS

    All experiments were conducted in a UHV chamber(base pressure better than 5×10?11mbar),which has been described in detail previously[27].Brie fl y,a preparation and characterization together with an electron spectroscopy measurement chamber are included in the UHV system.Ar+ion source,home-made resistive heater,low energy electron di ff raction(LEED)and X-ray photoelectron spectroscopy(XPS)detectors are equipped for sample preparation and characterization respectively.The whole probing chamber is shieldedfrom the earth magnetism byμ-metal.The key element of this apparatus is the hemispherical electron energy analyzer(PHOIBOS 100,SPECS)for photoelectron detection.The energy and angular distribution of photoelectrons are recorded by a two-dimension(2D) CCD camera which facilitates the measurement of the whole photoelectrons within the energy range of interest simultaneously.Therefore,study of the kinetics of the surface reaction becomes feasible.The fundamental output of a tunable oscillator(MaiTai eHP,Spectra-Physics)is adjusted at about 800 nm with a pulse width of about 70 fs.It is converted to the second harmonic (around 400 nm,FWHM=4 nm)and then focused onto the sample(diameter≈100μm).The pulse width and average power of the 400 nm laser beam at the sample surface is about 90 fs and 150 mW,respectively.Polarization of the excitation light is rotated through a λ/2 plate before the lens.The experimental geometry is shown in Fig.2.For p-polarization(s-polarization),the electric fi eld of the laser lies in the horizontal(vertical) plane.In the case of the two-photon(ca.400 nm)excitation from the TiO2interface[28],the fi rst photon excites an electron from below the EFto above it,and the second photon excites the electron to the vacuum.The energy and angular distribution of the photoelectrons give rise to the 2PPE spectra.Both time-resolved 2PPE (TR-2PPE)and time-dependent 2PPE(TD-2PPE)experiments can be carried out on this instrument.In the TR-2PPE experiment,one can study the ultrafast dynamics of excited electronic states,while TD-2PPE can measure the photochemical kinetics of molecularly adsorbed surfaces.

    FIG.2(a)Unit cell of rutile TiO2.The(110)and(011) surfaces are outlined by the blue and green rectangles,respectively.(b)Schematic overview of the experimental geometry.The electric fi eld of the laser can be varied by a half waveplate.For p-polarization(s-polarization),the electric fi eld of the laser lies in the XZ(Y Z)plane.

    FIG.3 LEED pattern of rutile TiO2(011)-(2×1)(top)and TiO2(110)-(1×1)(bottom)surfaces.Azimuth directions are labeled by arrows.In the 2PPE measurements,the incident planes are the horizontal planes along the[01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and TiO2(110)-(1×1),respectively.

    TiO2samples(PrincetonScienti fi cCorp., 10 mm×10 mm×1 mm)are mounted on a manipulator with four freedoms(translation along X,Y, Z axes and rotation around the polar axis)and are heated through resistive heating method and cooled by liquid nitrogen.K type thermocouples are glued directly to the TiO2surfaces using a ceramic adhesive (Ceramabond 503,Aremco Products,INC)to provide accurate temperature reading.The as received TiO2samples are polished on both sides to ensure maximum thermal contact.The samples were cleaned by cycles of Ar+sputtering(1 keV,15 min)and UHV annealing at 850 K(30 min).After this preparation procedure, no contamination could be detected in XPS,and sharp (2×1)and(1×1)LEED patterns were observed for (011)and(110)surface respectively(Fig.3).The preparation history of these two surface studied in the present work was similar.

    Methanol(Sigma-Aldridge)was puri fi ed by freezepump-thaw cycles and introduced onto the TiO2surfaces through a home-built,calibrated e ff usive molecular beam doser at 120 K.A mass spectrometer (SRS,RGA 200)which was shielded by a glass enclosure and di ff erentially pumped was chosen to measure the relative coverage of methanol via TPD method [29].Temperature was ramped at 2 K/s during all the TPD experiments.Methanol coverage was measured with respect to the corresponding density of Ti5csites.Here,monolayer(ML)corresponds to 5.2×1014molecules/cm2on(110)-(1×1)while,this value is 4.0×1014molecules/cm2on(011)-(2×1)[30].

    III.RESULTS AND DISCUSSION

    Beforetheadsorptionofmethanol,theelectronic structures of both clean TiO2(011)-(2×1)and TiO2(110)-(1×1)are characterized and compared by 2PPE(Fig.4).In the present work,the incident planes are the horizontal planes along the[01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and(110)-(1×1),respectively(Fig.2 and Fig.3).In accord with our previous studies[31], the work function(de fi ned as the half intensity point of the secondary electron edge)of the clean TiO2(110)-(1×1)is 5.1 eV,and an excited state at 2.5 eV above the EFis detected by the 2PPE spectra acquired by p-polarized(p-2PPE)rather than s-polarized light(s-2PPE).The net excited state signal was obtained by subtracting the normalized s-2PPE from the p-2PPE (P-NS in Fig.4(b)).Whereas the 2PPE measurements on TiO2(011)-(2×1)show some di ff erences compared with(110)-(1×1).First of all,the work function is about 0.1 eV higher,although the preparation history of these two surfaces is similar.As the work function re fl ect the reduction of the surfaces,this result indicates the(110)is easier to reduce than(011),which is consistent with the stronger band gap state signal on the former surface measured by UPS[25].The most prominent di ff erence comes from the polarization dependence of the excited state.For TiO2(110)-(1×1), when the incident plane is along[1ˉ10]azimuth,the excited state can only be detected by p-polarized,while the s-polarized light is totally“blind”to this state. However,on TiO2(011)-(2×1)(Fig.4(a)),when the incident plane is along[01ˉ1]azimuth,s-2PPE is much more pronounced at 5.6 eV( fi nal state energy)than p-2PPE.We have proven the resonance at 5.6 eV is from an excited state in both s-2PPE and p-2PPE.The varied polarization dependence of the excited state on TiO2(011)-(2×1)and TiO2(110)-(1×1)suggests di ff erent transition dipole moment relative to the distinct surface.The excited states on both surfaces show little angular dependence,suggesting the localized character. In addition,the lifetime of the excited states are too short to measure according to the TR-2PPE using 90 fs width pulse.

    The photochemistry of alcohol on TiO2(110)-(1×1) investigated by 2PPE has been reported by our group in the last several years[28,32?35].Figure 5 shows the 2PPE measurements of the 0.5 ML methanol covered TiO2(011)-(2×1)(a)and TiO2(110)-(1×1)(b),after the methanol/TiO2interfaces have been exposed to the 2PPE probe light for more than 200 and 2000 s in the case of(011)and(110)surface respectively.Compared with the bare surfaces,the 2PPE spectra on both methanol covered TiO2interfaces showed similar angular distribution,lifetime,decrease of work function and increase of the overall intensity[36].The excited states become much more pronounced,and moreover, no change in the light polarization dependence of the 2PPE has been detected.

    FIG.4 Typical 2PPE spectra for the clean(a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)surfaces respectively.The spectra were measured with both p-polarized(P)and spolarized(S)light with a photon energy of 3.10 eV.For comparison,S was normalized to P at the secondary electron signal edge.NS-P or P-NS denotes the di ff erence spectra.The signal was integrated from?5?to+5?.Energies are measured with respect to EF;those in the bottom axis represent fi nal state,after absorption of two photons,while those in the top X-axis refer to the intermediate state,before absorption of the second photon.Work function(WF)is labeled by the arrow at the middle of the secondary electron edge.The incident planes are the horizontal planes along the [01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and TiO2(110)-(1×1), respectively.

    TD-2PPEshowedtheevolutionoftheelectronicstructureasafunctionoflightirradiation on both methanol covered TiO2(011)-(2×1)and TiO2TiO2(110)-(1×1)(Fig.6).During the TD-2PPE measurements,the probe light was directed to the methanol/TiO2interface without any interruption,and the 2PPE spectra were collected every second.The irradiation dependence of the excited resonance signal suggests the occurrence of photoinduced chemistry on the methanol/TiO2interfaces.The excited resonance signal on methanol/TiO2(110)-(1×1)(Fig.6(b))increased by 68%when the light exposure time was increased from zero to 200 s.While on methanol/TiO2(011)-(2×1) (Fig.6(a)),this signal was doubled when the irradiation time reached 2000 s.It should be noted in Fig.6, the 2PPE spectra were acquired by p-polarized and s-polarized light on TiO2(110)-(1×1)and TiO2(011)-(2×1)interface respectively to maximize the excited resonance signal.

    FIG.5 Typical 2PPE spectra for the 0.5 ML methanol covered(a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)surfaces respectively.The signal was integrated from?5?to +5?.Energies are measured with respect to EF.Before the acquisition of these spectra,the TiO2(011)-(2×1)and TiO2(110)-(1×1)interfaces has been exposed to the 2PPE light for more than 2000 and 200 s respectively.

    Since the energy level,angular distribution,lifetime and the light polarization dependence of the excited state are similar,it is natural for one to think the origins of the excited states on both clean and adsorbated covered TiO2are the same.In our most recently combined 2PPE and density functions theory(DFT)calculations study[31],we have demonstrated the band gap state and the excited state at about 2.5 eV above the EFof TiO2(110)-(1×1)result from the splitting of the d orbitals of Ti3+in the distorted octahedral fi eld.This means both the band gap state and the excited state we discuss here are indicators for reduction of TiO2surface.And on TiO2(011)-(2×1),we have proven this conclusion is still correct(data are not shown).The irradiation dependence of the electronic structure on methanol/TiO2interfaces is consistent with our interpretation to the excited state on clean TiO2surfaces.As revealed by TPD studies,methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)experienced photocatalyzed oxidation under UV exposure, releasing hydrogen atoms onto the surface bridge oxygen atoms to produce hydroxyls.Similar to the creation of surface Ovand subsurface Ti interstitials,hydroxylation is another way to reduce the TiO2surface[29].Therefore,as methanol molecules are split by UV light,more and more hydrogen atoms are deposited onto the TiO2interface where more and more Ti3+ions are generated.Consequently,the density of states(DOS)of both the band gap state and the excited state become intensi fi ed.As demonstrated,the 2PPE measured excited resonance signal scales linearly with the coverage of surface hydroxyls on clean TiO2surface [31].Furthermore,on adsorbate(methanol or water) covered TiO2,the excited resonance signal is also proportional to the density of coadsorbed hydroxyls(data not shown).Therefore,the increase of the excited resonance signal during the photochemistry of methanol in fact re fl ects the accumulation of surface hydroxyls on TiO2interface.

    FIG.6 2PPE spectra for the 0.5 ML methanol covered (a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)as a function of the probe laser irradiation time.Most of the laser parameters(center wavelength,band width and power)in the two experimental measurements were exactly the same except the polarization.On TiO2(110)-(1×1)and TiO2(011)-(2×1) interfaces,2PPE spectra were acquired by p-polarized and s-polarized light respectively to maximize the excited resonance signal.The signal in these spectra was integrated from?5?to+5?.The energies were measured with respect to the Fermi level.

    Since the 2PPE measured excited resonance signal is an indicator of the density of hydroxyls on TiO2interface,it provides a fi ngerprint to trace the kinetics of the photocatalyzed oxidation of methanol on TiO2. Figure 7 displays the time-dependent excited resonance together with the fi tting by a fractal-like model[28, 32,33].On TiO2(011)-(2×1),the signal was integrated between 5.25 and 6.20 eV from s-2PPE(Fig.6(a)), whereas on TiO2(110)-(1×1),the excited resonance was accumulated in a span of 5.00?6.25 eV from p-2PPE(Fig.6(b)).Although the photocatalytic chemical reactions of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are similar,the reaction rate,however,di ff ers dramatically from each other.From Fig.7,one can see that it takes 61.3 s for the excited resonance signal on TiO2(110)-(1×1)to rise to 90%of the maximum signal level,while on TiO2(011)-(2×1),it costs 698.3 s,showing a 11.4 times di ff erence from the reaction rate.The photocatalyzed oxidation of methanol on TiO2(011)-(2×1)is less e ffi cient than on TiO2(110)-(1×1),in accord with our previous TPD investigation [26].In the same work,our DFT calculations provided some interpretation to the di ff erence of the photocatalyzed oxidation of methanol on these two TiO2surfaces.Methanol molecules are converted into methoxy before further photoxidation to formaldehyde,and the cleavage of C?H bond on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are the rate determining step during the photoxidation of methanol.Nevertheless,due to the corrugated structure,the distance between the nearest surface oxygen atoms and the methyl hydrogen of methoxy intermediate on TiO2(011)-(2×1)is 0.3?A larger than that on TiO2(110)-(1×1),leading to the 0.2 eV higher reaction barrier of break of the C?H bond.Anisotropic bulk charge transportation along different directions might also be a factor which a ff ects the surface dependence of photochemistry[24].

    TABLE I Comparison of the light source parameters in the 2PPE and TPD studies.

    FIG.7 Normalized time dependent signal of the excited resonance feature of 0.5 ML methanol covered TiO2(011)-(2×1)(blue circle)and TiO2(110)-(1×1)(olive circle)and the fractal-like kinetics model fi tting(red line). On TiO2(011)-(2×1),the signal was integrated between 5.25 and 6.20 eV from s-2PPE(Fig.6(a)),whereas on TiO2(110)-(1×1),the excited resonance was accumulated in a span of 5.00?6.25 eV from p-2PPE(Fig.6(b)).

    Thoughbothour2PPEandTPD[26]measurements suggest TiO2(011)-(2×1)is less e ffi cient than TiO2(110)-(1×1)towards the photooxidation of methanol,the relative photoreactivity obtained in these two studies are di ff erent.In the present 2PPE work,the reaction rate on TiO2(110)-(1×1)is 11.4 times faster, while the TPD results show a 2.4 times of di ff erence. The discrepancy possibly originates from the di ff erent light source chosen in these two studies(Table I).The fl ux(number of photons per unit area per second)in the TPD experiments is about 60 times of that in the 2PPE measurements.It is well known the light fl ux a ff ects the dynamics of the charge carriers signi fi cantly [37].It has also been proven the charge carrier transportation in TiO2is anisotropic[38].Therefore,it is possible the dependence of the charge carrier kinetics and dynamics on the light fl ux along[110]and[011] direction are di ff erent,which might lead to the discrepancy in the relative photoreactivity under di ff erent light irradiation condition.However,in both studies,we have found TiO2(011)-(2×1)is inferior to TiO2(110)-(1×1) towards the photooxidation of methanol.

    Our previous[26]and present investigations of the photooxidation of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)show inconsistency with others’work which suggest TiO2(011)is more e ffi cient towards photooxidation reactions than TiO2(110)[20,23].The discrepancy likely originates from the structure of the TiO2photocatalyst.It is worth noting the photoreactivity tested in Ref.[20,23]is in aqueous environment which often alters the surface structure dramatically,causing it di ffi cult to establish the correlation between activity and surface structure from an atomic level[39].To avoid such complexity,photocatalysis studied in UHV condition is necessary.Since the surface structure in vacuum can be well characterized,and submonolayer adsorbates usually change the surface structure slightly [40].

    IV.CONCLUSION

    We have investigated the electronic structure of clean and methanol covered TiO2(011)-(2×1)and TiO2(110)-(1×1).An excited state at 2.5 eV above the EFon all the four TiO2interfaces(clean and methanol covered (011)and(110))studied here has been detected.The energy level,angular distribution and lifetime of this excited state are similar on both(110)and(011)interfaces.However,the transition dipole moment shows di ff erent con fi guration relative to the interfaces.The excited state is an indicator of reduction of TiO2interface.Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)is attributed to the reduction of the interfaces by depositing hydrogenatoms.The reaction rate of photooxidation of methanol on TiO2(110)-(1×1)is about 11.4 times faster than that on TiO2(011)-(2×1),which is tentatively explained by the di ff erence in the surface atomic con fi guration.

    This work not only provides a detailed characterization of the electronic structure of methanol/TiO2interface by 2PPE,but also shows the importance of the surface structure in the photoreactivity on TiO2. Anisotropy of the surface properties are attracting more and more attention.For example,charge separation in photocatalysis has been successfully realized by constructing heterostructures with di ff erent facets[41]. Therefore,studying the properties of individual surface and the dependence on the surfaces are desirable.

    V.ACKNOWLEDGMENTS

    ThisworkwassupportedtheNaturalScience Foundation of Liaoning Province(No.2015020242), the National Natural Science Foundation of China (No.21203189 and No.21573225),and the State Key Laboratory of Molecular Reaction Dynamics(No.ZZ-2014-02).

    [1]A.L.Linsebigler,G.Q.Lu,and J.T.Yates,Chem. Rev.95,735(1995).

    [2]U.Diebold,Surf.Sci.Rep.48,53(2003).

    [3]Q.Guo,C.Zhou,Z.Ma,Z.Ren,H.Fan,and X.Yang, Chem.Soc.Rev.DOI:10.1039/c5cs00448,(2015).

    [4]C.Xu,W.Yang,Q.Guo,D.Dai,M.Chen,and X. Yang,J.Am.Chem.Soc.135,10206(2013).

    [5]C.Xu,W.Yang,Q.Guo,D.Dai,M.Chen,and X. Yang,J.Am.Chem.Soc.136,602(2014).

    [6]A.Vittadini,A.Selloni,F.P.Rotzinger,and M. Gratzel,Phys.Rev.Lett.81,2954(1998).

    [7]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [8]G.Liu,H.G.Yang,J.Pan,Y.Q.Yang,G.Q.Lu,and H.M.Cheng,Chem.Rev.114,9559(2014).

    [9]V.E.Henrich,G.Dresselhaus,and H.J.Zeiger,Phys. Rev.Lett.36,1335(1976).

    [10]S.Wendt,P.T.Sprunger,E.Lira,G.K.H.Madsen, Z.S.Li,J.O.Hansen,J.Matthiesen,A.Blekinge-Rasmussen,E.Laegsgaard,B.Hammer,and F.Besenbacher,Science 320,1755(2008).

    [11]T.J.Beck,A.Klust,M.Batzill,U.Diebold,C.Di Valentin,and A.Selloni,Phys.Rev.Lett.93,036104 (2004).

    [12]X.Torrelles,G.Cabailh,R.Lindsay,O.Bikondoa,J. Roy,J.Zegenhagen,G.Teobaldi,W.A.Hofer,and G. Thornton,Phys.Rev.Lett.101,185501(2008).

    [13]S.E.Chamberlin,C.J.Hirschmugl,H.C.Poon,and D.K.Saldin,Surf.Sci.603,3367(2009).

    [14]X.Q.Gong,N.Khorshidi,A.Stierle,V.Vonk,C. Ellinger,H.Dosch,H.Z.Cheng,A.Selloni,Y.B.He, O.Dulub,and U.Diebold,Surface Science 603,138 (2009).

    [15]T.Woolcot,G.Teobaldi,C.L.Pang,N.S.Beglitis,A. J.Fisher,W.A.Hofer,and G.Thornton,Phys.Rev. Lett.109,156105(2012).

    [16]P.A.M.Hotsenpiller,J.D.Bolt,W.E.Farneth,J.B. Lowekamp,and G.S.Rohrer,J.Phys.Chem.B 102, 3216(1998).

    [17]J.B.Lowekamp,G.S.Rohrer,P.A.M.Hotsenpiller, J.D.Bolt,and W.E.Farneth,J.Phys.Chem.B 102, 7323(1998).

    [18]T.Sugiura,S.Itoh,T.Ooi,T.Yoshida,K.Kuroda,and H.Minoura,J.Electroanal.Chem.473,204(1999).

    [19]A.Tsujiko,T.Kisumi,Y.Magari,K.Murakoshi,and Y.Nakato,J Phys.Chem.B 104,4873(2000).

    [20]T.Ohno,K.Sarukawa,and M.Matsumura,New J. Chem.26,1167(2002).

    [21]A.Y.Ahmed,T.A.Kandiel,T.Oekermann,and D. Bahnemann,J.Phys.Chem.Lett.2,2461(2011).

    [22]Y.Nakabayashi and Y.Nosaka,J.Phys.Chem.C 117, 23832(2013).

    [23]H.Takahashi,R.Watanabe,Y.Miyauchi,and G.Mizutani,J.Chem.Phys.134,154704(2011).

    [24]T.Luttrell,S.Halpegamage,J.Tao,A.Kramer,E. Sutter,and M.Batzill,Sci.Rep.4,4043(2014).

    [25]J.G.Tao and M.Batzill,J.Phys.Chem.Lett.1,3200 (2010).

    [26]X.Mao,Z.Wang,X.Lang,Q.Hao,B.Wen,D.Dai,C. Zhou,L.M.Liu,and X.Yang,J.Phys.Chem.C 119, 6121(2015).

    [27]Z.F.Ren,C.Y.Zhou,Z.B.Ma,C.L.Xiao,X.C. Mao,D.X.Dai,J.LaRue,R.Cooper,A.M.Wodtke, and X.M.Yang,Chin.J.Chem.Phys.23,255(2010). [28]C.Zhou,Z.Ma,Z.Ren,A.M.Wodtke,and X.Yang, Energy Environ.Sci.5,6833(2012).

    [29]X.C.Mao,X.F.Lang,Z.Q.Wang,Q.Q.Hao,B. Wen,Z.F.Ren,D.X.Dai,C.Y.Zhou,L.M.Liu,and X.M.Yang,J.Phys.Chem.Lett.4,3839(2013).

    [30]J.Tao,Q.Cuan,X.Q.Gong,and M.Batzill,J.Phys. Chem.C 116,20438(2012).

    [31]Z.Wang,B.Wen,Q.Hao,L.M.Liu,C.Zhou,X.Mao, X.Lang,W.J.Yin,D.Dai,A.Selloni,and X.Yang, J.Am.Chem.Soc.137,9146(2015).

    [32]C.Y.Zhou,Z.F.Ren,S.J.Tan,Z.B.Ma,X.C.Mao, D.X.Dai,H.J.Fan,X.M.Yang,J.LaRue,R.Cooper, A.M.Wodtke,Z.Wang,Z.Y.Li,B.Wang,J.L.Yang, and J.G.Hou,Chem.Sci.1,575(2010).

    [33]C.Zhou,Z.Ma,Z.Ren,X.Mao,D.Dai,and X.Yang, Chem.Sci.2,1980(2011).

    [34]Z.Ma,Q.Guo,X.Mao,Z.Ren,X.Wang,C.Xu,W. Yang,D.Dai,C.Zhou,H.Fan,and X.Yang,J.Phys. Chem.C 117,10336(2013).

    [35]Z.B.Ma,C.Y.Zhou,X.C.Mao,Z.F.Ren,D.X.Dai, and X.M.Yang,Chin.J.Chem.Phys.26,1(2013).

    [36]Z.Wang,Q.Hao,X.Mao,C.Zhou,Z.Ma,Z.Ren,D. Dai,and X.Yang,Chin.J.Chem.Phys.28,123(2015). [37]Y.Tamaki,A.Furube,M.Murai,K.Hara,R.Katoh, and M.Tachiya,Phys.Chem.Chem.Phys.9,1453 (2007).

    [38]L.Thulin and J.Guerra,Phys.Rev.B 77,195112 (2008).

    [39]U.Aschauer and A.Selloni,Phys.Rev.Lett.106, 166102(2011).

    [40]R.S.de Armas,J.Oviedo,M.A.San Miguel,and J. F.Sanz,J.Phys.Chem.C 111,10023(2007).

    [41]R.Li,F.Zhang,D.Wang,J.Yang,M.Li,J.Zhu,X. Zhou,H.Han,and C.Li,Nat.Commun.4,1432(2013).

    黑丝袜美女国产一区| 国产精品国产高清国产av| 波多野结衣高清作品| 国产欧美日韩一区二区精品| 可以免费在线观看a视频的电影网站| 日本黄色视频三级网站网址| 欧美激情极品国产一区二区三区| 看免费av毛片| 亚洲国产高清在线一区二区三 | 免费观看人在逋| 亚洲一区高清亚洲精品| 少妇熟女aⅴ在线视频| 亚洲中文字幕一区二区三区有码在线看 | АⅤ资源中文在线天堂| 久久久久国内视频| 国产亚洲精品一区二区www| 男女床上黄色一级片免费看| 欧美黑人精品巨大| 在线观看日韩欧美| 午夜激情av网站| 波多野结衣av一区二区av| 国产精华一区二区三区| 国产精品免费视频内射| 久久中文字幕人妻熟女| 伦理电影免费视频| 动漫黄色视频在线观看| 91国产中文字幕| 欧美精品啪啪一区二区三区| 伦理电影免费视频| 亚洲av美国av| 免费人成视频x8x8入口观看| 午夜福利高清视频| 琪琪午夜伦伦电影理论片6080| 国产成人精品久久二区二区免费| 国产高清激情床上av| 久久这里只有精品19| 一级作爱视频免费观看| 精品久久久久久久末码| 中文字幕精品免费在线观看视频| 国产精品香港三级国产av潘金莲| 欧美国产日韩亚洲一区| 欧美午夜高清在线| 波多野结衣巨乳人妻| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品合色在线| 波多野结衣av一区二区av| 欧美中文综合在线视频| 男女下面进入的视频免费午夜 | 一进一出抽搐动态| 国产伦在线观看视频一区| av有码第一页| 精品久久久久久久久久免费视频| 岛国在线观看网站| 午夜福利视频1000在线观看| 亚洲专区字幕在线| 大型av网站在线播放| 国产亚洲精品av在线| 午夜亚洲福利在线播放| 久久久久久久久免费视频了| av免费在线观看网站| 国产精品综合久久久久久久免费| 丝袜人妻中文字幕| 亚洲三区欧美一区| 亚洲男人天堂网一区| 可以在线观看的亚洲视频| 亚洲熟女毛片儿| 成人国语在线视频| 亚洲熟女毛片儿| 性欧美人与动物交配| 日韩三级视频一区二区三区| 精品久久久久久久久久久久久 | av在线播放免费不卡| 99精品在免费线老司机午夜| 男女之事视频高清在线观看| av天堂在线播放| 午夜老司机福利片| 久久精品人妻少妇| 午夜福利成人在线免费观看| 国产午夜精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机靠b影院| 久久久国产成人免费| 国产伦在线观看视频一区| 国产麻豆成人av免费视频| 一边摸一边做爽爽视频免费| 波多野结衣高清作品| 一区二区三区国产精品乱码| 欧美一区二区精品小视频在线| 狂野欧美激情性xxxx| 国产精品久久久久久精品电影 | 久久久久九九精品影院| 欧美在线黄色| 亚洲精品国产一区二区精华液| 中文字幕人成人乱码亚洲影| 亚洲av电影在线进入| 欧美绝顶高潮抽搐喷水| 国产成人av教育| 欧美日本亚洲视频在线播放| 国产熟女xx| 午夜老司机福利片| 波多野结衣高清无吗| 亚洲中文日韩欧美视频| 免费看日本二区| 久久中文看片网| 精品福利观看| 亚洲男人的天堂狠狠| 国产av不卡久久| 亚洲av片天天在线观看| 91国产中文字幕| 午夜免费观看网址| 国产亚洲精品综合一区在线观看 | 免费在线观看完整版高清| 国产亚洲精品一区二区www| 成在线人永久免费视频| 91九色精品人成在线观看| 此物有八面人人有两片| 他把我摸到了高潮在线观看| 动漫黄色视频在线观看| 一级毛片精品| 啦啦啦 在线观看视频| 国产精品98久久久久久宅男小说| 可以免费在线观看a视频的电影网站| 丝袜在线中文字幕| 国产国语露脸激情在线看| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 美女大奶头视频| 午夜免费激情av| 国产精品香港三级国产av潘金莲| 久久精品国产99精品国产亚洲性色| 亚洲男人天堂网一区| 亚洲一区二区三区色噜噜| 久久久久久久久中文| 欧美中文综合在线视频| 男人操女人黄网站| 亚洲精品中文字幕一二三四区| 一级a爱片免费观看的视频| 国产高清videossex| 好男人在线观看高清免费视频 | 久久国产精品影院| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成年人精品一区二区| 日本免费一区二区三区高清不卡| 国内久久婷婷六月综合欲色啪| 99国产综合亚洲精品| 亚洲国产精品合色在线| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 欧美国产精品va在线观看不卡| 午夜久久久在线观看| 淫秽高清视频在线观看| 在线观看免费视频日本深夜| 日韩欧美国产在线观看| 免费看美女性在线毛片视频| 亚洲自偷自拍图片 自拍| 男女视频在线观看网站免费 | 亚洲精品av麻豆狂野| 两个人视频免费观看高清| 国产av不卡久久| 一级毛片精品| 在线观看免费日韩欧美大片| 亚洲激情在线av| 亚洲三区欧美一区| 操出白浆在线播放| 国产精品日韩av在线免费观看| 成人一区二区视频在线观看| 99久久国产精品久久久| av中文乱码字幕在线| 女人爽到高潮嗷嗷叫在线视频| 男女之事视频高清在线观看| 午夜福利欧美成人| 脱女人内裤的视频| 欧美另类亚洲清纯唯美| 啦啦啦 在线观看视频| 国产野战对白在线观看| 欧美成人午夜精品| 亚洲va日本ⅴa欧美va伊人久久| 国产人伦9x9x在线观看| 一本一本综合久久| 久久亚洲真实| 午夜福利免费观看在线| 国产精品一区二区三区四区久久 | 欧美国产日韩亚洲一区| 国内精品久久久久久久电影| 国产成人av教育| 日本 欧美在线| 男人舔奶头视频| 99精品在免费线老司机午夜| 麻豆国产av国片精品| 深夜精品福利| 男男h啪啪无遮挡| 色尼玛亚洲综合影院| 亚洲国产欧洲综合997久久, | tocl精华| 亚洲精品久久成人aⅴ小说| 人人妻人人澡欧美一区二区| 欧美+亚洲+日韩+国产| 一本综合久久免费| 国产激情偷乱视频一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲性夜色夜夜综合| 美女高潮喷水抽搐中文字幕| 757午夜福利合集在线观看| 国产成人av激情在线播放| 日本一区二区免费在线视频| 亚洲精华国产精华精| 在线观看免费视频日本深夜| 人人澡人人妻人| 亚洲avbb在线观看| 男人的好看免费观看在线视频 | 在线天堂中文资源库| 老汉色∧v一级毛片| 国产乱人伦免费视频| 国产激情欧美一区二区| 国产亚洲欧美精品永久| 男人操女人黄网站| 久久精品人妻少妇| √禁漫天堂资源中文www| 99国产精品一区二区蜜桃av| 成在线人永久免费视频| 一个人免费在线观看的高清视频| 黑人巨大精品欧美一区二区mp4| 亚洲欧美激情综合另类| 男人的好看免费观看在线视频 | 看片在线看免费视频| 免费在线观看黄色视频的| 国产高清有码在线观看视频 | 日本成人三级电影网站| 精品国内亚洲2022精品成人| 日本 欧美在线| 国语自产精品视频在线第100页| 成人三级做爰电影| 老汉色∧v一级毛片| 国产99白浆流出| 一区二区三区激情视频| 亚洲第一电影网av| 精品久久久久久久人妻蜜臀av| 欧美黑人巨大hd| 人人妻,人人澡人人爽秒播| 日韩中文字幕欧美一区二区| 熟妇人妻久久中文字幕3abv| 99久久精品国产亚洲精品| 哪里可以看免费的av片| 亚洲精品av麻豆狂野| 国产v大片淫在线免费观看| 国产亚洲av嫩草精品影院| av视频在线观看入口| videosex国产| 亚洲av成人一区二区三| 成人国语在线视频| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 国产精品野战在线观看| 一本精品99久久精品77| 色尼玛亚洲综合影院| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 国产精品自产拍在线观看55亚洲| 侵犯人妻中文字幕一二三四区| 久久人妻av系列| 人成视频在线观看免费观看| 亚洲自偷自拍图片 自拍| 校园春色视频在线观看| a在线观看视频网站| 18美女黄网站色大片免费观看| 91字幕亚洲| 国产亚洲精品综合一区在线观看 | 人妻久久中文字幕网| 99在线视频只有这里精品首页| 一区二区日韩欧美中文字幕| 日韩精品青青久久久久久| 国产亚洲av高清不卡| 熟妇人妻久久中文字幕3abv| 99精品在免费线老司机午夜| 搡老妇女老女人老熟妇| 免费一级毛片在线播放高清视频| 搞女人的毛片| 国产一级毛片七仙女欲春2 | 国产一区二区激情短视频| 极品教师在线免费播放| 18禁美女被吸乳视频| 国产精品 国内视频| 最近最新免费中文字幕在线| 97超级碰碰碰精品色视频在线观看| 无限看片的www在线观看| 91字幕亚洲| 国产私拍福利视频在线观看| 久热这里只有精品99| 在线天堂中文资源库| 亚洲黑人精品在线| 国产成人一区二区三区免费视频网站| 首页视频小说图片口味搜索| 午夜成年电影在线免费观看| 黄片播放在线免费| 亚洲最大成人中文| 日韩精品青青久久久久久| av欧美777| 亚洲精品一区av在线观看| 精品国产美女av久久久久小说| 久久香蕉国产精品| 亚洲五月天丁香| 很黄的视频免费| 国产成人av激情在线播放| 色老头精品视频在线观看| 一级黄色大片毛片| 国产高清视频在线播放一区| 男女做爰动态图高潮gif福利片| 国产精品久久久久久精品电影 | 一级作爱视频免费观看| а√天堂www在线а√下载| 亚洲国产欧美一区二区综合| 久9热在线精品视频| 校园春色视频在线观看| 成人欧美大片| 精品不卡国产一区二区三区| 2021天堂中文幕一二区在线观 | 欧美日韩乱码在线| 人成视频在线观看免费观看| www国产在线视频色| 午夜成年电影在线免费观看| 欧美一级a爱片免费观看看 | 后天国语完整版免费观看| 搡老妇女老女人老熟妇| 欧美zozozo另类| 亚洲人成电影免费在线| 免费看日本二区| 久久久久久久久免费视频了| 日日爽夜夜爽网站| 热re99久久国产66热| 国产精品国产高清国产av| 国产高清视频在线播放一区| 亚洲国产看品久久| 一区二区日韩欧美中文字幕| 极品教师在线免费播放| 男人的好看免费观看在线视频 | 国产一卡二卡三卡精品| 亚洲人成77777在线视频| a在线观看视频网站| 成人国语在线视频| 日韩大尺度精品在线看网址| 亚洲自偷自拍图片 自拍| 久久久久久免费高清国产稀缺| 人人妻,人人澡人人爽秒播| 1024香蕉在线观看| 国产伦人伦偷精品视频| 国产精华一区二区三区| 成年女人毛片免费观看观看9| av视频在线观看入口| 久久香蕉精品热| 日本a在线网址| 美女扒开内裤让男人捅视频| 中文字幕人妻丝袜一区二区| 国产免费av片在线观看野外av| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| 精品高清国产在线一区| 午夜福利高清视频| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| 国产私拍福利视频在线观看| 最近最新免费中文字幕在线| 精品久久久久久成人av| 欧美日韩瑟瑟在线播放| 美女午夜性视频免费| 午夜亚洲福利在线播放| 十分钟在线观看高清视频www| 亚洲 欧美一区二区三区| 99久久久亚洲精品蜜臀av| 天堂√8在线中文| av福利片在线| 国产激情欧美一区二区| 黄色 视频免费看| 一二三四社区在线视频社区8| 狠狠狠狠99中文字幕| 在线av久久热| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器 | 亚洲国产精品成人综合色| 精品无人区乱码1区二区| 黄色毛片三级朝国网站| 丝袜在线中文字幕| 天堂√8在线中文| 日韩有码中文字幕| 一级毛片高清免费大全| 国产亚洲精品第一综合不卡| 国产精品精品国产色婷婷| 亚洲国产中文字幕在线视频| www日本在线高清视频| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区mp4| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 国产aⅴ精品一区二区三区波| 熟妇人妻久久中文字幕3abv| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 久久久精品国产亚洲av高清涩受| 中文字幕久久专区| 男人舔女人的私密视频| 91麻豆精品激情在线观看国产| 日本免费a在线| 久久草成人影院| 精品国产国语对白av| 国产又爽黄色视频| 一个人观看的视频www高清免费观看 | 亚洲第一青青草原| 夜夜爽天天搞| 国产v大片淫在线免费观看| 成人国产综合亚洲| 亚洲第一av免费看| av电影中文网址| 欧美日本亚洲视频在线播放| 亚洲九九香蕉| 狂野欧美激情性xxxx| 亚洲一区中文字幕在线| 久久亚洲精品不卡| 91国产中文字幕| 国产精品野战在线观看| 最好的美女福利视频网| 欧美在线一区亚洲| 国产又黄又爽又无遮挡在线| 亚洲成人久久性| 日韩欧美免费精品| 欧美日韩亚洲国产一区二区在线观看| 欧美精品啪啪一区二区三区| 国产精品久久久久久精品电影 | xxx96com| 老司机靠b影院| 亚洲av电影在线进入| www.www免费av| 老司机午夜福利在线观看视频| 国产亚洲精品av在线| 国产又爽黄色视频| 青草久久国产| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三 | 18美女黄网站色大片免费观看| 国产aⅴ精品一区二区三区波| 精品少妇一区二区三区视频日本电影| 中文字幕人成人乱码亚洲影| 免费看十八禁软件| 成人一区二区视频在线观看| 久久久久亚洲av毛片大全| cao死你这个sao货| 久久午夜综合久久蜜桃| ponron亚洲| 国产亚洲精品久久久久5区| 国产久久久一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲片人在线观看| 这个男人来自地球电影免费观看| 欧美一级a爱片免费观看看 | 美女国产高潮福利片在线看| 一进一出好大好爽视频| 国产极品粉嫩免费观看在线| 老熟妇乱子伦视频在线观看| 国产精品,欧美在线| 一本一本综合久久| 亚洲一区二区三区不卡视频| 国产精品香港三级国产av潘金莲| www.www免费av| 黑人操中国人逼视频| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 怎么达到女性高潮| 村上凉子中文字幕在线| 视频在线观看一区二区三区| 亚洲精品av麻豆狂野| 国产真人三级小视频在线观看| 欧美成人一区二区免费高清观看 | 男人舔女人下体高潮全视频| 中亚洲国语对白在线视频| 亚洲在线自拍视频| 神马国产精品三级电影在线观看 | 国产高清激情床上av| 可以在线观看的亚洲视频| 成人永久免费在线观看视频| 亚洲成av片中文字幕在线观看| 一进一出抽搐动态| 国产精品一区二区精品视频观看| 久久久久久久久久黄片| 在线av久久热| 色哟哟哟哟哟哟| 精品国产乱码久久久久久男人| 精品久久久久久久久久久久久 | 亚洲第一av免费看| 这个男人来自地球电影免费观看| 夜夜躁狠狠躁天天躁| av天堂在线播放| 久久久久国内视频| 黑人操中国人逼视频| 婷婷六月久久综合丁香| 午夜老司机福利片| 久久国产精品影院| 岛国视频午夜一区免费看| 色综合欧美亚洲国产小说| 天天躁夜夜躁狠狠躁躁| 亚洲五月天丁香| 久久青草综合色| 2021天堂中文幕一二区在线观 | 精品国内亚洲2022精品成人| 国产不卡一卡二| 后天国语完整版免费观看| 欧美乱色亚洲激情| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 嫩草影视91久久| 久久亚洲真实| 一本精品99久久精品77| 2021天堂中文幕一二区在线观 | 50天的宝宝边吃奶边哭怎么回事| 一区二区三区高清视频在线| 麻豆av在线久日| 又黄又爽又免费观看的视频| 琪琪午夜伦伦电影理论片6080| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网| 麻豆av在线久日| 91九色精品人成在线观看| 国产三级黄色录像| 久久人妻av系列| 亚洲片人在线观看| 国产97色在线日韩免费| 日韩精品青青久久久久久| 青草久久国产| 女性被躁到高潮视频| 午夜福利免费观看在线| 日韩大尺度精品在线看网址| x7x7x7水蜜桃| 妹子高潮喷水视频| 欧美黑人巨大hd| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 亚洲第一电影网av| 18禁黄网站禁片免费观看直播| 一级作爱视频免费观看| 精品不卡国产一区二区三区| av视频在线观看入口| 成人精品一区二区免费| 在线天堂中文资源库| 日韩欧美在线二视频| 在线视频色国产色| 非洲黑人性xxxx精品又粗又长| 色哟哟哟哟哟哟| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 久久精品影院6| 黑人欧美特级aaaaaa片| 91麻豆精品激情在线观看国产| 91麻豆av在线| 亚洲精品一区av在线观看| 亚洲成人久久爱视频| 亚洲电影在线观看av| 国产成人影院久久av| 曰老女人黄片| 日本免费a在线| 亚洲国产欧美网| 亚洲男人天堂网一区| 亚洲第一电影网av| 一a级毛片在线观看| 免费在线观看成人毛片| 国产高清视频在线播放一区| 成人手机av| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 日本熟妇午夜| 日本免费a在线| 搡老熟女国产l中国老女人| av有码第一页| 一级毛片女人18水好多| 日韩欧美三级三区| 免费看日本二区| 免费看a级黄色片| 三级毛片av免费| 悠悠久久av| 一区二区三区精品91| 少妇 在线观看| 久久精品91无色码中文字幕| 天天一区二区日本电影三级| 欧美性猛交╳xxx乱大交人| 精品高清国产在线一区| 国产黄a三级三级三级人| 两个人看的免费小视频| 国产真人三级小视频在线观看| 麻豆国产av国片精品| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 精品久久蜜臀av无| 91成人精品电影| 免费在线观看成人毛片| 成人国产一区最新在线观看| 成人手机av| 亚洲精品在线美女| a在线观看视频网站| 久久精品91蜜桃| 1024视频免费在线观看| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 亚洲专区字幕在线| 极品教师在线免费播放| 黄色毛片三级朝国网站| 91成人精品电影| 后天国语完整版免费观看| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| 黄色毛片三级朝国网站| 久久狼人影院|