• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photochemical Reaction of Benzoin Caged Compound:Time-Resolved Fourier Transform Infrared Spectroscopy Study?

    2016-04-08 06:35:55XiojunDiYouqingYuKunhuiLiuHongmeiSuBeijingNtionlLortoryforMoleculrSciencesInstituteofChemistryChineseAcdemyofSciencesBeijing100190ChinCollegeofChemistryBeijingNormlUniversityBeijing100875ChinDtedReceivedonDecemer23
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Xio-jun Di,You-qing Yu,Kun-hui Liu?,Hong-mei Su,?.Beijing Ntionl Lortory for Moleculr Sciences,Institute of Chemistry,Chinese Acdemy of Sciences,Beijing 100190,Chin.College of Chemistry,Beijing Norml University,Beijing 100875,Chin(Dted:Received on Decemer 23,2015;Accepted on Jnury 25,2016)

    ?

    ARTICLE Photochemical Reaction of Benzoin Caged Compound:Time-Resolved Fourier Transform Infrared Spectroscopy Study?

    Xiao-juan Daia,You-qing Yua,Kun-hui Liub?,Hong-mei Sua,b?
    a.Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    b.College of Chemistry,Beijing Normal University,Beijing 100875,China
    (Dated:Received on December 23,2015;Accepted on January 25,2016)

    The benzoin group caged compound has received strong interests due to its excellent photodeprotection properties and wide use in chemical and biological studies.We used timeresolved infrared spectroscopy to investigate the photochemical reaction of the benzoin caged compound,o-(2-methylbenzoyl)-DL-benzoin under 266 nm laser irradiation.Taking advantage of the speci fi c vibrational marker bands and the IR discerning capability,we have detected and identi fi ed the uncaging product 2-methylbenzoic acid,and two intermediate radicals of benzoyl and 2-methylbenzoate benzyl in the transient infrared spectra.Our results provide spectral evidence to support the homolytic cleavage reaction of C?C=O bond in competition with the deprotection reaction.Moreover,the product yields of 2-methylbenzoic acid and benzoyl radical were observed to be a ff ected by solvents and a largely water containing solvent can be in favor of the deprotection reaction.

    Key words:Benzoin,Caged compound,Photo-deprotection,Time-resolved infrared spectroscopy

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: kunhui@bnu.edu.cn,hongmei@iccas.ac.cn

    I.INTRODUCTION

    Photosensitive protecting groups,also called caged compounds,have wide applications in the spatially and temporally controlled release of biologically active compounds by exposure to light alone[1?6].Among the various protecting groups,aromatic α-keto groups have attracted great interests owing to their potential use as phototriggers for the fast and e ffi cient liberation of various biologically active stimulants[1,7?14].Especially,benzoin caged compounds have received increasing attention in this regard for their attractive photo-deprotection properties such as rapid liberation rate,relatively high quantum yield for release of leaving group and the generation of a highly fl uorescent but biologically compatible benzofuran byproduct[8, 15?17].The practical features of these compounds have led to their extensive development as photoremovable protecting groups(PRPGs)for inorganic phosphates, nucleotides and amino acid neurotransmitters,etc.[15, 18].

    For the benzoin caged compounds,two di ff erent photo-deprotection reaction pathways dependent on the solvent were proposed via detecting the byproducts and intermediate species by the transient absorption spectroscopy(Scheme 1)[19,20].In CH3CN,the deprotection reaction of benzoin diethyl phosphate was found to be a rapid unimolecular process leading to elimination of the caged molecule diethyl phosphoric acid,which is concurrent with the cyclization to yield the benzofuran product.In mixed solvent with high ionizing ability,such as water or tri fl uoroethanol,the reaction leads to not only the deprotection-cyclization,but also a heterolytic triplet cleavage of the keto α-C?O bond to release the caged molecule through a branching and competing reaction.Additionally,it has been reported that the photolysis of benzoin caged compounds can also lead to homolytic cleavage of the C?C=O bond [15,16,21,22].However,although numerous studies on the photochemical reaction have been documented in the literature,knowledge is rather limited concerning the intermediate processes of homolysis reaction accompanying the deprotection reaction due to the limit of detection techniques.Thus,although the uncaging products appear to be well-determined,the underlying details of the reaction mechanisms involving the homolysis side reactions as well as the associated solvent dependence have remained unclear.

    In these regards,we are motivated to investigate the photochemical processes of the benzoin caged compound,o-(2-methylbenzoyl)-DL-benzoin(MBBZ),and explore the in fl uence of water on the reaction processes under 266 nm laser irradiation by time-resolved infrared (TRIR)spectroscopy.Due to the speci fi c vibrational

    Scheme 1 Photo-deprotection reaction pathways of benzoin caged compounds. marker bands and the IR discerning capability,timeresolved infrared(TRIR)spectroscopy in the nanosecond time domain is a powerful technique,which is performed to directly probe and determine the photochemical reaction[23?25].In the TRIR spectra, we observed the 2-methylbenzoic acid from the main photo-deprotection reaction and the key radical intermediates for the photocleavage of desyl derivatives at C?C=O bond.Furthermore,the dependence of yields of uncaging product 2-methylbenzoic acid and benzoyl radical on water content indicated that the large water content in the CH3CN/D2O mixed solvent may promote the deprotection reaction and inhibit the competing homolysis of C?C=O bond.These study results may shed light on the photochemical mechanisms of the benzoin caged compounds,which can be a significant guidance in the biological applications of benzoin caged compounds.

    II.EXPERIMENTAL AND COMPUTATIONAL METHODS

    A.Materials

    o-(2-Methylbenzoyl)-DL-benzoin(SigmaAldrich) anddeuteroxide(D2O,SigmaAldrich,>99.9%), 2-methylbenzoicacid(TCI,>98%),benzil(TCI, >99%)were used without further puri fi cation.HPLC grade acetonitrile(CH3CN)was used as solvent.

    B.Time-resolved TRIR

    The photochemical reaction is monitored by stepscan TRIR absorption spectroscopy[26,27].Detailed experimental procedures for TRIR absorption spectroscopy have been described in our previous work[25]. Brie fl y,the TRIR instrument(setup shown in Fig.1) comprises a Nicolet Nexus 870 step-scan FTIR spectrometer,a Continuum Surelite II Nd:YAG laser,a pulse generator(Stanford Research DG535)to initiate

    FIG.1 Schematic representation of the TRIR experimental setup.

    the laser pulse and achieve synchronization of the laser with data collection,two digitizers(internal 100 kHz 16-bit digitizer and external 100 MHz 14-bit GAGE 14100 digitizer)which o ff er fast time resolution and a wide dynamic range as needed,and a personal computer to control the whole experiment.The detector used in this work is the photovoltaic MCT(0.5 mm)equipped with a fast internal preampli fi er(50 MHz).There are two outputs from the detector:output DC,corresponding to the value of the static interferogram;and output AC,corresponding to the time-resolved change of the interferogram.The AC signal is then ampli fi ed by an external preampli fi er(Stanford Research,SR560).The di ff erential absorbance spectra are calculated based on the following equation:where IDCand?IACare the single-beam intensity spectra corresponding to static(DC)and dynamic(AC) channels.?IACis calibrated before being used in equation because di ff erent gain is applied to the AC channel[26,27].The fourth harmonic of Nd:YAG laser (266 nm)operating at 10 Hz repetition rate was used in the experiments.The laser excitation beam was directed through an iris aperture(3 mm in diameter)and then overlapped with the infrared beam in the sample cell within the sample compartment of the FTIR spectrometer.The laser beam energy after the aperture was 2 mJ/pulse.The IR spectra were collected with a spectral resolution of 8 cm?1.A Harrick fl owing solution cell with 2 mm thick CaF2windows(pathlength,200μm)was used for the measurements.The closed fl owing system is driven by a peristaltic pump (ColeParmer Master fl ex)to refresh the sample before every laser pulse.

    C.Computational methods

    Theoretically,the geometries of the ground state MBBZ,possible intermediates and stable products are optimized using the hybrid density functional theory, i.e.,Becke’s three-parameter nonlocal exchange functional with the nonlocal correlation functional of Lee, Yang,Parr(B3LYP)with the 6-311+G(d,p)basis sets [28,29].Harmonic vibrational frequencies and relative intensities are therefore calculated at the same level with the optimized geometries in solvents under the polarized continuum model(PCM)[30].All of the theoretical calculations are performed with the Gaussian 09 program package[31].

    III.RESULTS AND DISCUSSION

    A.Identi fi cation of the reaction intermediates/products from TRIR spectra

    TRIR measurements were performed to obtain the detailed(spectral and kinetic)information for photochemical reaction of MBBZ.Figure 2(b)displays the TRIR di ff erence spectra of MBBZ in CH3CN at typical delay times following 266 nm photolysis.The di ff erence spectra represent the di ff erence between the spectra obtained after photolysis and the spectrum before photolysis.The depletion of reactant gives rise to negative signals,and the formation of transient intermediates or products leads to positive bands.As shown in Fig.2(b), immediately after UV excitation,two intense bleaching bands at 1697 and 1722 cm?1were observed,which is ascribed to the depletion of ground state molecules MBBZ,as further con fi rmed by the steady-state IR absorption spectrum of MBBZ(Fig.2(a)).To aid with spectral assignment,IR frequencies and IR intensities were calculated at the B3LYP/6-311+G(d,p)level for the possible relevant species involved in the photochemical reaction,with the solvation e ff ect(CH3CN)simulated by PCM model(Table I).The calculated IR frequencies of 1714 and 1727 cm?1for MBBZ are in good agreement with the experimentally observed peak wavelength at 1697 and 1722 cm?1in the steady-state IR absorption spectrum(Fig.2(a)),which indicates that the current level of calculations can provide reliable IR frequencies for spectral assignment purpose.

    FIG.2(a)Steady-state IR spectrum of 5 mmol/L MBBZ in acetonitrile.(b)Transient IR spectra of 5 mmol/L MBBZ in acetonitrile at selected time delays saturated with N2following 266 nm laser irradiation.Inset:kinetic traces curves for 1820 and 1675 cm?1.(c)Steady-state di ff erence spectrum of 5 mmol/L MBBZ in acetonitrile saturated with N2after 1 min of 266 nm laser irradiation.Inset:the longtime kinetic trace for 1735 cm?1.

    In accompany with the reactant bleaching bands at1697 and 1722 cm?1,two prominent positive bands at 1735 and 1820 cm?1are formed immediately within the fi rst 0.6μs.Additionally,another positive band at 1675 cm?1is gradually formed after 0.6μs.According to the calculated vibrational frequencies(Table I), the 1820 cm?1band can be ascribed to the benzoyl radical(A1)from the homolytic cleavage of C?C=O bond,which is the only species with the vibrational frequency close to 1820 cm?1.The recombination of benzoyl radicals lead to the stable product benzil,which should correspond to the gradually formed band at 1675 cm?1in Fig.2(b).The predicted vibrational frequencies for benzil(Table I)is quite close to the observed wide peak positions of 1675 cm?1both in the transient spectra(Fig.2(b))and in the steady-state IR absorption di ff erence spectrum of N2-saturated MBBZ solution recorded after 266 nm irradiation(Fig.2(c)). Thus,the 1675 cm?1band can be ascribed to the benzil formed by the recombination of two benzoyl radicals (A1).To con fi rm this assignment,the IR spectrum of the authentic sample of benzil in CH3CN was recorded (Table I)and found to show a strong wide absorption at 1678 cm?1attributed to the antisymmetric stretching vibration and symmetrical stretching vibration of two C=O.The spectral positions of benzil match well with the observed IR di ff erence spectra(Fig.2(c))after UV irradiation which exhibits a strong wide positive band at 1675 cm?1.The small peak shift of 3 cm?1 in the IR di ff erence spectra after UV irradiation results from the partial overlapping of the positive benzil band with the negative band of MBBZ,as well as the slight ground state recovery for 1696 cm?1in the transient absorption spectra.Additionally,as shown in the inset of Fig.2(b),the decay kinetics of 1820 cm?1for benzoyl radical(A1)and the formation kinetics of 1675 cm?1 for the recombination product benzil follow almost the same time scale,providing a supplementary evidence to con fi rm the spectral assignment.

    TABLE I B3LYP/6-311+G(d,p)calculated IR frequencies (in cm?1)and IR intensities(km/mol)for carbonyl stretching modes of MBBZ and relevant species in CH3CN,with the solvent e ff ect simulated by PCM model,as well as the observed IR frequencies for these species.

    For the positive band at 1735 cm?1,its spectrum intensity decays to a plateau,as the kinetic trace shown in the inset of Fig.2(c),which indicates that this band should consist of two components,a transient species and a stable photoproduct respectively.In fact,the excellent agreement between the TRIR spectra and the steady-state IR di ff erence spectrum for 1732 cm?1further con fi rms that stable photoproduct contributes to the positive band at 1735 cm?1.For the transient species,as shown in the Table I,the predicted vibrational frequencies for 2-methylbenzoate benzyl radical(A2)and triplet state of MBBZ are both close to 1735 cm?1in the transient spectra.The transient 1735 cm?1band is ascribed to the A2 radical but not the triplet state because the short lifetime of 10?25 ns for triplet state,according to the previous reports[19,20],is out of the current instrument response range(100 ns).For the stable product peaked at 1732 cm?1,both 2A2 and the uncaging product 2-methylbenzoic acid can contribute to this positive band and it is hard to distinguish.To assist the assignment of the stable product at 1732 cm?1,di ff erent mixed solvents are used to measure the steadystate spectra.As shown in Fig.3,the IR characteristic marker band of the 2-methylbenzoic acid can shift from 1727 cm?1to 1700 cm?1with the increase of water concentration to 25%in D2O/CH3CN mixed solvents,while the absorption spectrum of MBBZ is almost una ff ected by the D2O.In the steady-state infrared di ff erence absorption spectra shown in Fig.3(b), the positive band of 1732 cm?1in the CH3CN solution is shifted to 1711 cm?1after the addition of 4%D2O,which is in agreement with the shift observed for 2-methylbenzoic acid,indicating that the stable species peaked at 1732 cm?1can be ascribed to the uncaging product 2-methylbenzoic acid.Additionally, the contribution of 2A2 to the 1732 cm?1can be excluded through evaluating the solvent in fl uence as detailedly discussed in the following.

    B.Determination of the photochemical processes of MBBZ

    FIG.3IR spectra in 4%D2O:96%CH3CN(red line), CH3CN(black line),and 25%D2O:75%CH3CN(blue line). (a)Steady-state IR spectra of 2 mmol/L 2-methylbenzoic acid.(b)Steady-state di ff erence spectra of 5 mmol/L MBBZ saturated with N2after 1 min of 266 nm laser irradiation. (c)Steady-state IR spectra of 5 mmol/L MBBZ.

    From TRIR spectra,two intermediate radicals and two stable products were observed and two di ff erent channels can be elucidated.First,the observed stable product 2-methylbenzoic acid should result from the deprotection channel of MBBZ,which is the primary channel to give rise to the uncaging product.For the other stable product benzil,it may arise from the homolysis of MBBZ as postulated in the previous studies.In the current experiment,we have observed the intermediate benzoyl radical A1 and the other intermediate of the homolysis,the 2-methylbenzoate benzyl radical A2 in our TRIR spectra.In addition,the benzoyl radical recombination product benzil was observed.The direct detection of these two intermediate radicals provides explicit evidence for the existence of the homolysis of MBBZ in competition with the uncaging process of benzoin caged compounds.Nevertheless,there is no ground state recovery for the negative peak 1722 cm?1in the transient absorption spectra indicating that the recombination of A1 and A2 to form the precursor molecule can be ruled out.Moreover,upon addition of pentadiene,an e ffi cient triplet quencher,all of the transient features disappear in the TRIR spectra(spectra not shown).This means that both the above two reaction channels are associated with the triplet state of MBBZ,which is consistent with the previous reports on other benzoin caged compounds[19,20,32,33].The photochemical reaction mechanisms of MBBZ in CH3CN after 266 nm irradiation can be summarized in Scheme 2.

    FIG.4 Transient IR spectra of 5 mmol/L MBBZ at selected time delays saturated with N2following 266 nm laserirradiation:(a)in4%D2O:96%CH3CN;(b)in 25%D2O:75%CH3CN.Inset:kinetic traces for 1735 cm?1 respectively.

    C.Evaluation of the solvent in fl uence

    The key transient intermediates identi fi ed in the TRIR spectra by their characteristic vibrational marker bands,provide direct spectral evidence to establish the side reaction of photocleavage of desyl derivatives at C?C=O bond,which is in competition with the main uncaging reaction to release 2-methylbenzoic acid.How to restrain the side reaction and promote the main reaction?We testi fi ed the solvent e ff ect and evaluated the e ff ect of water on the uncaging reaction and the homolysis reaction of C?C=O bond.TRIR absorption spectra were measured in the 4%D2O:96%CH3CN and 25%D2O:75%CH3CN respectively,as shown in Fig.4.Compared with the pure CH3CN solution,the 1735 cm?1band decays to the baseline as shown in

    Scheme 2 Photochemical reaction mechanism of MBBZ in CH3CN after 266 nm irradiation. the insets of the Fig.4,indicating that this band is totally ascribed to the A2 radical intermediate and no stable product 2A2 is detected in the spectra.In the presence of 4%D2O,the stable uncaging product 2-methylbenzoic acid that was mixed in the 1735 cm?1 band should be shifted to lower frequency of 1711 cm?1, as suggested in the steady-state spectra(Fig.3).In this case,the 2-methylbenzoic acid band is buried between the two ground state bleaching bands,which makes the band intensity at 1711 cm?1increase and approach to positive(Fig.4),which is unlike the deep dips in pure CH3CN solution(Fig.3).

    One advantage of the TRIR absorption spectra is that it measures simultaneously the depletion of reactant molecules with the formation of photoproducts.Thus,both the amount of photoproduct formed and reactant consumed can be quanti fi ed by normalizing the peak area of the IR absorption band with the absorption coe ffi cient.Therefore,we can investigate the in fl uence of water on the branching ratios of the deprotection reaction and homolytic cleavage of C?C=O by estimating the yields of 2-methylbenzoic acid and benzoyl radical or A2.The extinction coeffi cients of the reactant and 2-methylbenzoic acid were obtained from its steady-state FTIR spectra based on the Beer-Lambert law.By comparing the B3LYP/6-311+G(d,p)calculated IR intensities,which are proportional to their corresponding extinction coe ffi cients, the extinction coe ffi cients of benzoyl radical and A2 can be determined.The IR extinction coe ffi cients of the relevant species are listed in Table II.Because 2-methylbenzoic acid,benzoyl radical,A2,and the reactant all reach their maximum spectral intensities at 0.6μs simultaneously,both the amount of the photochemical product formation and the reactant consumption are quanti fi ed by normalizing the peak area of the IR absorption band at their maximum spectral in-

    TABLE II ν(C=O)(in cm?1)and their extinction coeffi cients ε(in(mol/L)?1cm?1)of MBBZ,2-methylbenzoic acid,benzoyl radical,and A2.

    aThese values are estimated according to the measured steady state IR absorption spectra.bThe extinction coe ffi cients of benzoyl radical and A2 are estimated by comparing its calculated IR intensity with that of reactant(MBBZ),based on the fact that the IR intensities are proportional to the corresponding extinction coe fi cients.

    tensities(obtained by Lorentzian fi tting as shown in Fig.5)with the absorption coe ffi cient listed in Table II. Furthermore,dividing the amount of photoproduct formation by reactant consumption gives the absolute yields.The yields for the two photochemical products 2-methylbenzoic acid and benzoyl radical are 46.7%and 38.5%in the pure CH3CN and 47.2%and 37.6%in the 4%D2O:96%CH3CN.The similar yields indicate that little amount of water has almost no e ff ect on the photochemical processes.Moreover,it is con fi rmed that there is neither contribution of 2A2 for the 1732 cm?1 in the pure CH3CN nor that in the 4%D2O:96%CH3CN. However,in the 25%D2O:75%CH3CN,the yield of the uncaging 2-methylbenzoic acid grows to 55.0%and the yield of benzoyl radical reduces to 31.9%.It is demonstrated that large amount of water can promote thephoto-deprotection reaction.This is probably due to the good ionizing and dissociating capability makes water an ideal solvent for the e ffi ciently heterolytic triplet cleavage of the keto α-C=O bond to occur and thus facilitates the uncaging reaction.Additionally,according to the fi tting results shown in Fig.5,the yields of A1 and A2 are 38.5%and 39.2%in the pure CH3CN, 37.6%and 41.2%in the 4%D2O:96%CH3CN,31.9%and 33.9%in the 25%D2O:75%CH3CN,respectively,which demonstrates that the yields of A1 and A2 are almost identical considering the error range in the di ff erent solvent system,further con fi rming the spectral assignment of A1 and A2 from the homolysis of MBBZ.

    FIG.5 Experimental TRIR di ff erence spectra(black dots) of 5 mmol/L MBBZ in(a)pure CH3CN solution,(b)D2O and CH3CN mixed solution(4%D2O:96%CH3CN),(c)D2O and CH3CN mixed solution(25%D2O:75%CH3CN)at 0.6μs after 266 nm excitation with the fi tted spectrum(red line), composed of individual Lorentzian bands shown with green lines(the ground-state MBBZ bleaching bands),dark yellow lines(homolysis radical positive bands),and blue lines(the 2-methylbenzoic acid positive band).

    Overall,our experiments provide direct spectral evidence to the homolytic cleavage reaction of C?C=O bond,which is in competition with the release of 2-methylbenzoic acid after 266 nm laser irradiation MBBZ in CH3CN solution.Moreover,the product yields of 2-methylbenzoic acid and benzoyl radical were observed to be a ff ected by the presence of large amount of water,indicating that deprotection reaction is favorable in the water containing solvent.

    IV.CONCLUSION

    In this work,we have performed time-resolved infrared spectroscopy studies of the photochemical reaction of benzoin caged compound o-(2-methylbenzoyl)-DL-benzoin.By taking advantage of the speci fi c vibrational marker bands and the IR discerning capability, we have identi fi ed and distinguished the uncaging product 2-methylbenzoic acid and two key intermediate radicals of C?C=O bond homolytic cleavage in the transient infrared spectra.Two photochemical channels, deprotection channel to form 2-methylbenzoic acid and the homolysis of MBBZ to generate benzil,are therefore determined.The key transient intermediates identi fi ed in the TRIR spectra provide direct spectral evidence to establish the side reaction of photocleavage of desyl derivatives at C?C=O bond.Moreover,the dependence of the product yields on the water content shows that very small amount of water has no e ff ect on the reaction processes,while a largely water containing solvent can be in favor of the deprotection reaction.These results provide mechanistic insights to guide the biological applications of benzoin caged compounds,especially in reducing the side reactions of caged compounds.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21333012 and No.21425313)and the National Basic Research Program of China(No.2013CB834602).

    [1]R.S.Givens and L.W.Kueper,Chem.Rev.93,55 (1993).

    [2]G.P.Hess,Biochemistry 32,989(1993).

    [3]G.M.Staub,J.B.Gloer,D.T.Wicklow,and P.F. Dowd,J.Am.Chem.Soc.114,1015(1992).

    [4]G.C.R.Ellis-Davies,Nat.Methods 4,619(2007).

    [5]G.Mayer and A.Heckel,Angew.Chem.Int.Ed.45, 4900(2006).

    [6]M.Lukeman and J.C.Scaiano,J.Am.Chem.Soc.127, 7698(2005).

    [7]Y.Q.Yu,L.D.Wu,X.R.Zou,X.J.Dai,K.H.Liu, and H.M.Su,J.Phys.Chem.A 117,7767(2013).

    [8]A.P.Pelliccioli and J.Wirz,Photochem.Photobiol. Sci.1,441(2002).

    [9]K.Curley and D.S.Lawrence,J.Am.Chem.Soc.120, 8573(1998).

    [10]C.Ma,W.M.Kwok,W.S.Chan,P.Zuo,J.T.Wai Kan,P.H.Toy,and D.L.Phillips,J.Am.Chem.Soc. 127,1463(2005).

    [11]M.Zabadal,A.P.Pelliccioli,P.Kl′an,and J.Wirz,J. Phys.Chem.A 105,10329(2001).

    [12]C.S.Ma,W.M.Kwok,W.S.Chan,Y.Du,J.T.W. Kan,P.H.Toy,and D.L.Phillips,J.Am.Chem.Soc. 128,2558(2006).

    [13]R.S.Givens,J.F.W.Weber,P.G.Conrad,G.Orosz, S.L.Donahue,and S.A.Thayer,J.Am.Chem.Soc. 122,2687(2000).

    [14]M.A.Hangarter,A.H¨ormann,Y.Kamdzhilov,and J. Wirz,Photochem.Photobiol.Sci.2,524(2003).

    [15]K.R.Gee,L.W.Kueper,J.Barnes,G.Dudley,and R. S.Givens,J.Org.Chem.61,1228(1996).

    [16]J.C.Sheehan and R.M.Wilson,J.Am.Chem.Soc. 86,5277(1964).

    [17]R.S.Givens and B.Matuszewski,J.Am.Chem.Soc. 106,6860(1984).

    [18]R.S.Givens,P.S.Athey,L.W.Kueper,B.Matuszewski,and J.Y.Xue,J.Am.Chem.Soc.114,8708 (1992).

    [19]C.Ma,Y.Du,W.M.Kwok,and D.L.Phillips,Chem. Eur.J.13,2290(2007).

    [20]C.S.Rajesh,R.S.Givens,and J.Wirz,J.Am.Chem. Soc.122,611(2000).

    [21]J.F.Cameron,C.G.Willson,and J.M.J.Fr′echet,J. Am.Chem.Soc.118,12925(1996).

    [22]R.Kaliappan,L.S.Kaanumalle,and V.Ramamurthy, Chem.Commun.4056(2005).

    [23]X.R.Zou,X.J.Dai,K.H.Liu,H.M.Zhao,D.Song, and H.M.Su,J.Phys.Chem.B 118,5864(2014).

    [24]C.F.Yang,Y.Q.Yu,K.H.Liu,D.Song,L.D.Wu, and H.M.Su,J.Phys.Chem.A 115,5335(2011).

    [25]W.Q.Wu,K.H.Liu,C.F.Yang,H.M.Zhao,H. Wang,Y.Q.Yu,and H.M.Su,J.Phys.Chem.A 113, 13892(2009).

    [26]W.Uhmann,A.Becker,C.Taran,and F.Siebert,Appl. Spectrosc.45,390(1991).

    [27]D.L.Drapcho,R.Curbelo,E.Y.Jiang,R.A.Crocombe,and W.J.McCarthy,Appl.Spectrosc.51,453 (1997).

    [28]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [29]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [30]B.Mennucci and J.Tomasi,J.Chem.Phys.106,5151 (1997).

    [31]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1, Wallingford CT:Gaussian,Inc.,(2009).

    [32]M.Lipson and N.J.Turro,J.Photochem.Photobiol. A 99,93(1996).

    [33]F.D.Lewis,R.T.Lauterbach,H.G.Heine,W.Hartmann,and H.Rudolph,J.Am.Chem.Soc.97,1519 (1975).

    精品久久久久久久末码| 午夜免费激情av| 国产亚洲精品综合一区在线观看| 色播亚洲综合网| 国产高清激情床上av| 99久久99久久久精品蜜桃| 免费在线观看亚洲国产| 波野结衣二区三区在线 | 美女高潮的动态| 亚洲av免费在线观看| 亚洲成人免费电影在线观看| 一本精品99久久精品77| 精品欧美国产一区二区三| 一a级毛片在线观看| 99国产精品一区二区三区| 精品一区二区三区视频在线 | 日韩免费av在线播放| 亚洲人成网站高清观看| 一本一本综合久久| 欧美一区二区亚洲| 午夜福利高清视频| 成人18禁在线播放| 亚洲五月天丁香| 中文字幕人妻丝袜一区二区| 12—13女人毛片做爰片一| 制服人妻中文乱码| 麻豆成人午夜福利视频| 成人特级av手机在线观看| 午夜福利在线在线| 一个人看视频在线观看www免费 | 99国产精品一区二区三区| 在线观看日韩欧美| 久久精品综合一区二区三区| 日韩欧美国产一区二区入口| 成年女人毛片免费观看观看9| 我要搜黄色片| 欧美日本亚洲视频在线播放| 亚洲av五月六月丁香网| 精品人妻一区二区三区麻豆 | 中亚洲国语对白在线视频| 亚洲乱码一区二区免费版| 久久精品亚洲精品国产色婷小说| 在线播放国产精品三级| 精品久久久久久久末码| 久久中文看片网| 精品一区二区三区人妻视频| 九色国产91popny在线| 亚洲国产色片| 亚洲欧美日韩卡通动漫| 日本精品一区二区三区蜜桃| 此物有八面人人有两片| 婷婷亚洲欧美| 亚洲精品456在线播放app | 亚洲精品色激情综合| 国产免费一级a男人的天堂| 午夜日韩欧美国产| 国产成人啪精品午夜网站| 久久性视频一级片| 18禁黄网站禁片免费观看直播| 一区二区三区高清视频在线| 久久久久久久久中文| 法律面前人人平等表现在哪些方面| 中国美女看黄片| 人人妻,人人澡人人爽秒播| 一本综合久久免费| xxx96com| 国产日本99.免费观看| 桃红色精品国产亚洲av| 亚洲精品国产精品久久久不卡| 男女午夜视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品456在线播放app | 亚洲成人精品中文字幕电影| 美女被艹到高潮喷水动态| 一本久久中文字幕| 级片在线观看| 久久婷婷人人爽人人干人人爱| 精品免费久久久久久久清纯| 嫩草影院精品99| 国产极品精品免费视频能看的| 波多野结衣巨乳人妻| 亚洲久久久久久中文字幕| 狠狠狠狠99中文字幕| 变态另类丝袜制服| 亚洲美女视频黄频| 黄色成人免费大全| 国产伦精品一区二区三区四那| 桃色一区二区三区在线观看| 久久精品91无色码中文字幕| 欧美一区二区亚洲| 免费高清视频大片| 国产精品香港三级国产av潘金莲| 9191精品国产免费久久| 亚洲男人的天堂狠狠| 成年人黄色毛片网站| 露出奶头的视频| 91麻豆精品激情在线观看国产| 午夜免费成人在线视频| 一个人看的www免费观看视频| 成人18禁在线播放| 欧美成人一区二区免费高清观看| 欧美日韩中文字幕国产精品一区二区三区| eeuss影院久久| 国产三级中文精品| 内射极品少妇av片p| 国产久久久一区二区三区| 欧美色欧美亚洲另类二区| 欧美激情在线99| 久久久久久久久久黄片| 男女午夜视频在线观看| 欧美区成人在线视频| 一级毛片高清免费大全| 国产精品永久免费网站| 99热6这里只有精品| 18美女黄网站色大片免费观看| 天美传媒精品一区二区| 一二三四社区在线视频社区8| 免费在线观看影片大全网站| 欧美高清成人免费视频www| www.熟女人妻精品国产| 国产美女午夜福利| 亚洲七黄色美女视频| 亚洲熟妇中文字幕五十中出| av天堂在线播放| 熟女电影av网| 欧美乱码精品一区二区三区| 欧美中文综合在线视频| 国产成人aa在线观看| 男女视频在线观看网站免费| 嫩草影院精品99| 亚洲激情在线av| 色在线成人网| 中文亚洲av片在线观看爽| 99热精品在线国产| 欧美大码av| 黄色丝袜av网址大全| 99热6这里只有精品| 99精品久久久久人妻精品| 欧美成人性av电影在线观看| 国产三级黄色录像| 国产91精品成人一区二区三区| 亚洲自拍偷在线| 三级国产精品欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 国产精品国产高清国产av| 小蜜桃在线观看免费完整版高清| 国产精品一区二区免费欧美| 亚洲欧美精品综合久久99| 久久久国产成人免费| 日韩高清综合在线| 欧美zozozo另类| 少妇的逼好多水| 一进一出好大好爽视频| 12—13女人毛片做爰片一| 又紧又爽又黄一区二区| 中文字幕人妻熟人妻熟丝袜美 | 国产精品久久久久久人妻精品电影| 19禁男女啪啪无遮挡网站| av欧美777| 人人妻,人人澡人人爽秒播| 亚洲成人免费电影在线观看| 国产黄片美女视频| 亚洲午夜理论影院| 两个人看的免费小视频| 欧美黄色淫秽网站| x7x7x7水蜜桃| 别揉我奶头~嗯~啊~动态视频| 亚洲精品影视一区二区三区av| 精品久久久久久久毛片微露脸| 午夜免费观看网址| 国产精品综合久久久久久久免费| 亚洲国产日韩欧美精品在线观看 | 国产高清三级在线| 免费看日本二区| 久9热在线精品视频| 国产精品自产拍在线观看55亚洲| 99久久精品热视频| 国产伦精品一区二区三区视频9 | 国产三级在线视频| h日本视频在线播放| 欧美日韩国产亚洲二区| 一级毛片女人18水好多| 欧美日韩亚洲国产一区二区在线观看| 久久九九热精品免费| 亚洲熟妇中文字幕五十中出| 国产精品香港三级国产av潘金莲| 嫩草影视91久久| 91久久精品电影网| 九九在线视频观看精品| 手机成人av网站| 不卡一级毛片| 在线观看av片永久免费下载| 欧美在线黄色| 九色成人免费人妻av| 精品免费久久久久久久清纯| 高清毛片免费观看视频网站| 久久草成人影院| 窝窝影院91人妻| 亚洲色图av天堂| 国产三级在线视频| 精品国产美女av久久久久小说| 丰满乱子伦码专区| 久久6这里有精品| 国产精品久久久久久精品电影| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩无卡精品| 国内少妇人妻偷人精品xxx网站| 我的老师免费观看完整版| 亚洲专区国产一区二区| 又黄又爽又免费观看的视频| 国产亚洲精品一区二区www| 国产亚洲欧美98| 亚洲五月婷婷丁香| 两个人视频免费观看高清| 欧美一区二区亚洲| 色播亚洲综合网| 午夜福利在线观看吧| 99久久无色码亚洲精品果冻| 日本免费a在线| 波多野结衣高清作品| 久久精品国产亚洲av香蕉五月| 五月伊人婷婷丁香| 色噜噜av男人的天堂激情| 亚洲国产精品sss在线观看| eeuss影院久久| 久久99热这里只有精品18| 一a级毛片在线观看| 少妇丰满av| 午夜a级毛片| 免费看a级黄色片| 国产真实伦视频高清在线观看 | 一级作爱视频免费观看| x7x7x7水蜜桃| 国产精品亚洲av一区麻豆| 黄色丝袜av网址大全| 国产综合懂色| 可以在线观看毛片的网站| 亚洲国产日韩欧美精品在线观看 | 少妇高潮的动态图| 91九色精品人成在线观看| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 白带黄色成豆腐渣| 国产精品亚洲一级av第二区| av天堂中文字幕网| av专区在线播放| 日本一本二区三区精品| 中文在线观看免费www的网站| 国产在视频线在精品| 免费人成在线观看视频色| 国产 一区 欧美 日韩| 国产久久久一区二区三区| 两个人看的免费小视频| 少妇的逼水好多| 搡老熟女国产l中国老女人| 岛国在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美+日韩+精品| 免费看光身美女| 国产免费一级a男人的天堂| 91久久精品电影网| 国产午夜精品久久久久久一区二区三区 | 欧美午夜高清在线| 宅男免费午夜| 成人特级av手机在线观看| 制服丝袜大香蕉在线| 久久6这里有精品| 51午夜福利影视在线观看| 亚洲五月天丁香| 黄片大片在线免费观看| 黄色片一级片一级黄色片| 精品久久久久久成人av| 91在线观看av| 在线播放无遮挡| 少妇高潮的动态图| 999久久久精品免费观看国产| 精品电影一区二区在线| 一a级毛片在线观看| 神马国产精品三级电影在线观看| av欧美777| 国产国拍精品亚洲av在线观看 | 国产真人三级小视频在线观看| av欧美777| 亚洲av成人av| 亚洲18禁久久av| 欧美一区二区国产精品久久精品| 亚洲性夜色夜夜综合| 中文字幕人妻丝袜一区二区| 国产一区在线观看成人免费| 天堂√8在线中文| 69人妻影院| 最近最新免费中文字幕在线| 一区二区三区免费毛片| 国产成人aa在线观看| 人妻久久中文字幕网| 九色国产91popny在线| 最新美女视频免费是黄的| 少妇的逼水好多| 熟妇人妻久久中文字幕3abv| 一本综合久久免费| 免费在线观看影片大全网站| 成人三级黄色视频| 高清日韩中文字幕在线| 国产精品女同一区二区软件 | 一级黄色大片毛片| 亚洲中文字幕一区二区三区有码在线看| 欧美在线黄色| 亚洲aⅴ乱码一区二区在线播放| 久久久国产成人精品二区| 国产午夜精品论理片| 97人妻精品一区二区三区麻豆| 欧美性感艳星| 亚洲人成电影免费在线| 波多野结衣巨乳人妻| 男女午夜视频在线观看| 日本免费a在线| 两人在一起打扑克的视频| 久久6这里有精品| 一级黄片播放器| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 午夜亚洲福利在线播放| 亚洲avbb在线观看| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 欧美性感艳星| 亚洲av不卡在线观看| 欧美绝顶高潮抽搐喷水| 午夜福利欧美成人| 亚洲av美国av| 午夜免费激情av| 久久国产精品人妻蜜桃| 免费av不卡在线播放| 亚洲精品美女久久久久99蜜臀| 日本一二三区视频观看| 日韩大尺度精品在线看网址| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 美女 人体艺术 gogo| 亚洲无线观看免费| 无遮挡黄片免费观看| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 在线观看66精品国产| 日本精品一区二区三区蜜桃| 国产中年淑女户外野战色| 搞女人的毛片| 精品国产美女av久久久久小说| 最近在线观看免费完整版| 免费av观看视频| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| 久久伊人香网站| 我的老师免费观看完整版| 亚洲av一区综合| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 99久久精品热视频| 毛片女人毛片| 看黄色毛片网站| 欧美在线黄色| 日韩高清综合在线| 免费人成在线观看视频色| 亚洲av成人不卡在线观看播放网| 搡老妇女老女人老熟妇| 法律面前人人平等表现在哪些方面| 成年女人看的毛片在线观看| 久久久久久大精品| 国产69精品久久久久777片| 成人国产综合亚洲| 久久国产乱子伦精品免费另类| 在线观看美女被高潮喷水网站 | 欧美日韩中文字幕国产精品一区二区三区| 性色avwww在线观看| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 69人妻影院| 最近最新中文字幕大全电影3| 午夜福利高清视频| 免费看美女性在线毛片视频| 日韩欧美在线二视频| 亚洲国产高清在线一区二区三| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 成年版毛片免费区| 88av欧美| 亚洲人成伊人成综合网2020| 国产伦在线观看视频一区| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 亚洲不卡免费看| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 国产黄色小视频在线观看| 蜜桃亚洲精品一区二区三区| 午夜精品一区二区三区免费看| 又紧又爽又黄一区二区| 久久久久久久久久黄片| 国产精品 国内视频| 男女那种视频在线观看| 九九在线视频观看精品| 午夜福利免费观看在线| 精品一区二区三区视频在线 | 伊人久久精品亚洲午夜| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 午夜免费成人在线视频| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 毛片女人毛片| 欧美+日韩+精品| 丰满人妻一区二区三区视频av | 亚洲第一电影网av| 91久久精品电影网| 99国产综合亚洲精品| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩无卡精品| 中国美女看黄片| 一本精品99久久精品77| 少妇高潮的动态图| www日本在线高清视频| 全区人妻精品视频| 丰满乱子伦码专区| 午夜精品久久久久久毛片777| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 俺也久久电影网| 国产av一区在线观看免费| 人妻夜夜爽99麻豆av| 丰满乱子伦码专区| 国产高清videossex| 日本黄色视频三级网站网址| 国产亚洲欧美在线一区二区| 美女 人体艺术 gogo| 国产精品98久久久久久宅男小说| 日韩成人在线观看一区二区三区| 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 国产黄片美女视频| 美女黄网站色视频| 国产日本99.免费观看| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久| 亚洲成人久久爱视频| 久久国产精品影院| 99热只有精品国产| 久久草成人影院| 中文亚洲av片在线观看爽| 亚洲av电影在线进入| 亚洲精品456在线播放app | 久久久久亚洲av毛片大全| 久久久精品大字幕| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| 久久性视频一级片| 亚洲成av人片在线播放无| 色综合亚洲欧美另类图片| 99精品久久久久人妻精品| 伊人久久精品亚洲午夜| 一进一出好大好爽视频| e午夜精品久久久久久久| 天天一区二区日本电影三级| 变态另类丝袜制服| 午夜激情福利司机影院| 99热这里只有是精品50| 五月伊人婷婷丁香| 91久久精品国产一区二区成人 | 精品久久久久久久久久免费视频| 国产真实伦视频高清在线观看 | 日本免费a在线| 99精品久久久久人妻精品| 亚洲人成网站在线播| www.www免费av| 国产成人福利小说| 波多野结衣高清作品| 国产精品久久久久久亚洲av鲁大| 十八禁网站免费在线| 久99久视频精品免费| 国产欧美日韩精品一区二区| 在线观看免费视频日本深夜| 在线观看美女被高潮喷水网站 | 变态另类成人亚洲欧美熟女| 国产男靠女视频免费网站| 高清毛片免费观看视频网站| 国产激情欧美一区二区| 99久久精品热视频| 日本一二三区视频观看| 婷婷亚洲欧美| 深夜精品福利| 人妻久久中文字幕网| 国产av麻豆久久久久久久| 中文字幕人妻丝袜一区二区| 国产亚洲av嫩草精品影院| 国语自产精品视频在线第100页| 国产私拍福利视频在线观看| 免费看十八禁软件| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品日韩av片在线观看 | 国产精品 国内视频| 欧洲精品卡2卡3卡4卡5卡区| 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 久久久久久久久中文| 精品人妻1区二区| 成人性生交大片免费视频hd| 国产免费男女视频| 国产av不卡久久| 两人在一起打扑克的视频| 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| 午夜免费成人在线视频| 国产美女午夜福利| 757午夜福利合集在线观看| 乱人视频在线观看| 国产综合懂色| 久久99热这里只有精品18| 操出白浆在线播放| 国产视频一区二区在线看| 色综合站精品国产| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| 成人性生交大片免费视频hd| 免费无遮挡裸体视频| 日韩欧美免费精品| 日本三级黄在线观看| 日本与韩国留学比较| 国产成人影院久久av| 欧美最新免费一区二区三区 | 欧美一级a爱片免费观看看| 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 国产精品自产拍在线观看55亚洲| 国产探花在线观看一区二区| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 九九在线视频观看精品| 69av精品久久久久久| 国产欧美日韩精品一区二区| 天堂动漫精品| 美女高潮的动态| 国产精品久久久久久亚洲av鲁大| 国产精品久久视频播放| 成年版毛片免费区| 午夜福利免费观看在线| 国产av麻豆久久久久久久| avwww免费| 亚洲avbb在线观看| 亚洲精品亚洲一区二区| 少妇人妻精品综合一区二区 | 亚洲,欧美精品.| 在线观看日韩欧美| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 国产午夜精品论理片| 色综合亚洲欧美另类图片| 国产在视频线在精品| 日本五十路高清| 午夜激情福利司机影院| www日本在线高清视频| 岛国在线免费视频观看| 欧美大码av| 18禁国产床啪视频网站| 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 欧美成人a在线观看| 亚洲成人免费电影在线观看| a在线观看视频网站| 色老头精品视频在线观看| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 日韩欧美免费精品| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| 精品久久久久久,| 禁无遮挡网站| 国内精品美女久久久久久| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 亚洲,欧美精品.| 精品久久久久久成人av| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 亚洲黑人精品在线| 欧美日本视频| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 国产蜜桃级精品一区二区三区| 日韩欧美国产在线观看| 美女大奶头视频| 亚洲久久久久久中文字幕| 无遮挡黄片免费观看| 婷婷丁香在线五月| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 亚洲欧美日韩高清专用| 久久精品国产亚洲av涩爱 | 久久午夜亚洲精品久久| 搞女人的毛片| 夜夜爽天天搞| 特级一级黄色大片| 亚洲国产精品成人综合色| 亚洲成av人片在线播放无| 午夜亚洲福利在线播放| 久久久久精品国产欧美久久久| 天堂动漫精品| 一区二区三区国产精品乱码|