• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photochemical Reaction of Benzoin Caged Compound:Time-Resolved Fourier Transform Infrared Spectroscopy Study?

    2016-04-08 06:35:55XiojunDiYouqingYuKunhuiLiuHongmeiSuBeijingNtionlLortoryforMoleculrSciencesInstituteofChemistryChineseAcdemyofSciencesBeijing100190ChinCollegeofChemistryBeijingNormlUniversityBeijing100875ChinDtedReceivedonDecemer23
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Xio-jun Di,You-qing Yu,Kun-hui Liu?,Hong-mei Su,?.Beijing Ntionl Lortory for Moleculr Sciences,Institute of Chemistry,Chinese Acdemy of Sciences,Beijing 100190,Chin.College of Chemistry,Beijing Norml University,Beijing 100875,Chin(Dted:Received on Decemer 23,2015;Accepted on Jnury 25,2016)

    ?

    ARTICLE Photochemical Reaction of Benzoin Caged Compound:Time-Resolved Fourier Transform Infrared Spectroscopy Study?

    Xiao-juan Daia,You-qing Yua,Kun-hui Liub?,Hong-mei Sua,b?
    a.Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    b.College of Chemistry,Beijing Normal University,Beijing 100875,China
    (Dated:Received on December 23,2015;Accepted on January 25,2016)

    The benzoin group caged compound has received strong interests due to its excellent photodeprotection properties and wide use in chemical and biological studies.We used timeresolved infrared spectroscopy to investigate the photochemical reaction of the benzoin caged compound,o-(2-methylbenzoyl)-DL-benzoin under 266 nm laser irradiation.Taking advantage of the speci fi c vibrational marker bands and the IR discerning capability,we have detected and identi fi ed the uncaging product 2-methylbenzoic acid,and two intermediate radicals of benzoyl and 2-methylbenzoate benzyl in the transient infrared spectra.Our results provide spectral evidence to support the homolytic cleavage reaction of C?C=O bond in competition with the deprotection reaction.Moreover,the product yields of 2-methylbenzoic acid and benzoyl radical were observed to be a ff ected by solvents and a largely water containing solvent can be in favor of the deprotection reaction.

    Key words:Benzoin,Caged compound,Photo-deprotection,Time-resolved infrared spectroscopy

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: kunhui@bnu.edu.cn,hongmei@iccas.ac.cn

    I.INTRODUCTION

    Photosensitive protecting groups,also called caged compounds,have wide applications in the spatially and temporally controlled release of biologically active compounds by exposure to light alone[1?6].Among the various protecting groups,aromatic α-keto groups have attracted great interests owing to their potential use as phototriggers for the fast and e ffi cient liberation of various biologically active stimulants[1,7?14].Especially,benzoin caged compounds have received increasing attention in this regard for their attractive photo-deprotection properties such as rapid liberation rate,relatively high quantum yield for release of leaving group and the generation of a highly fl uorescent but biologically compatible benzofuran byproduct[8, 15?17].The practical features of these compounds have led to their extensive development as photoremovable protecting groups(PRPGs)for inorganic phosphates, nucleotides and amino acid neurotransmitters,etc.[15, 18].

    For the benzoin caged compounds,two di ff erent photo-deprotection reaction pathways dependent on the solvent were proposed via detecting the byproducts and intermediate species by the transient absorption spectroscopy(Scheme 1)[19,20].In CH3CN,the deprotection reaction of benzoin diethyl phosphate was found to be a rapid unimolecular process leading to elimination of the caged molecule diethyl phosphoric acid,which is concurrent with the cyclization to yield the benzofuran product.In mixed solvent with high ionizing ability,such as water or tri fl uoroethanol,the reaction leads to not only the deprotection-cyclization,but also a heterolytic triplet cleavage of the keto α-C?O bond to release the caged molecule through a branching and competing reaction.Additionally,it has been reported that the photolysis of benzoin caged compounds can also lead to homolytic cleavage of the C?C=O bond [15,16,21,22].However,although numerous studies on the photochemical reaction have been documented in the literature,knowledge is rather limited concerning the intermediate processes of homolysis reaction accompanying the deprotection reaction due to the limit of detection techniques.Thus,although the uncaging products appear to be well-determined,the underlying details of the reaction mechanisms involving the homolysis side reactions as well as the associated solvent dependence have remained unclear.

    In these regards,we are motivated to investigate the photochemical processes of the benzoin caged compound,o-(2-methylbenzoyl)-DL-benzoin(MBBZ),and explore the in fl uence of water on the reaction processes under 266 nm laser irradiation by time-resolved infrared (TRIR)spectroscopy.Due to the speci fi c vibrational

    Scheme 1 Photo-deprotection reaction pathways of benzoin caged compounds. marker bands and the IR discerning capability,timeresolved infrared(TRIR)spectroscopy in the nanosecond time domain is a powerful technique,which is performed to directly probe and determine the photochemical reaction[23?25].In the TRIR spectra, we observed the 2-methylbenzoic acid from the main photo-deprotection reaction and the key radical intermediates for the photocleavage of desyl derivatives at C?C=O bond.Furthermore,the dependence of yields of uncaging product 2-methylbenzoic acid and benzoyl radical on water content indicated that the large water content in the CH3CN/D2O mixed solvent may promote the deprotection reaction and inhibit the competing homolysis of C?C=O bond.These study results may shed light on the photochemical mechanisms of the benzoin caged compounds,which can be a significant guidance in the biological applications of benzoin caged compounds.

    II.EXPERIMENTAL AND COMPUTATIONAL METHODS

    A.Materials

    o-(2-Methylbenzoyl)-DL-benzoin(SigmaAldrich) anddeuteroxide(D2O,SigmaAldrich,>99.9%), 2-methylbenzoicacid(TCI,>98%),benzil(TCI, >99%)were used without further puri fi cation.HPLC grade acetonitrile(CH3CN)was used as solvent.

    B.Time-resolved TRIR

    The photochemical reaction is monitored by stepscan TRIR absorption spectroscopy[26,27].Detailed experimental procedures for TRIR absorption spectroscopy have been described in our previous work[25]. Brie fl y,the TRIR instrument(setup shown in Fig.1) comprises a Nicolet Nexus 870 step-scan FTIR spectrometer,a Continuum Surelite II Nd:YAG laser,a pulse generator(Stanford Research DG535)to initiate

    FIG.1 Schematic representation of the TRIR experimental setup.

    the laser pulse and achieve synchronization of the laser with data collection,two digitizers(internal 100 kHz 16-bit digitizer and external 100 MHz 14-bit GAGE 14100 digitizer)which o ff er fast time resolution and a wide dynamic range as needed,and a personal computer to control the whole experiment.The detector used in this work is the photovoltaic MCT(0.5 mm)equipped with a fast internal preampli fi er(50 MHz).There are two outputs from the detector:output DC,corresponding to the value of the static interferogram;and output AC,corresponding to the time-resolved change of the interferogram.The AC signal is then ampli fi ed by an external preampli fi er(Stanford Research,SR560).The di ff erential absorbance spectra are calculated based on the following equation:where IDCand?IACare the single-beam intensity spectra corresponding to static(DC)and dynamic(AC) channels.?IACis calibrated before being used in equation because di ff erent gain is applied to the AC channel[26,27].The fourth harmonic of Nd:YAG laser (266 nm)operating at 10 Hz repetition rate was used in the experiments.The laser excitation beam was directed through an iris aperture(3 mm in diameter)and then overlapped with the infrared beam in the sample cell within the sample compartment of the FTIR spectrometer.The laser beam energy after the aperture was 2 mJ/pulse.The IR spectra were collected with a spectral resolution of 8 cm?1.A Harrick fl owing solution cell with 2 mm thick CaF2windows(pathlength,200μm)was used for the measurements.The closed fl owing system is driven by a peristaltic pump (ColeParmer Master fl ex)to refresh the sample before every laser pulse.

    C.Computational methods

    Theoretically,the geometries of the ground state MBBZ,possible intermediates and stable products are optimized using the hybrid density functional theory, i.e.,Becke’s three-parameter nonlocal exchange functional with the nonlocal correlation functional of Lee, Yang,Parr(B3LYP)with the 6-311+G(d,p)basis sets [28,29].Harmonic vibrational frequencies and relative intensities are therefore calculated at the same level with the optimized geometries in solvents under the polarized continuum model(PCM)[30].All of the theoretical calculations are performed with the Gaussian 09 program package[31].

    III.RESULTS AND DISCUSSION

    A.Identi fi cation of the reaction intermediates/products from TRIR spectra

    TRIR measurements were performed to obtain the detailed(spectral and kinetic)information for photochemical reaction of MBBZ.Figure 2(b)displays the TRIR di ff erence spectra of MBBZ in CH3CN at typical delay times following 266 nm photolysis.The di ff erence spectra represent the di ff erence between the spectra obtained after photolysis and the spectrum before photolysis.The depletion of reactant gives rise to negative signals,and the formation of transient intermediates or products leads to positive bands.As shown in Fig.2(b), immediately after UV excitation,two intense bleaching bands at 1697 and 1722 cm?1were observed,which is ascribed to the depletion of ground state molecules MBBZ,as further con fi rmed by the steady-state IR absorption spectrum of MBBZ(Fig.2(a)).To aid with spectral assignment,IR frequencies and IR intensities were calculated at the B3LYP/6-311+G(d,p)level for the possible relevant species involved in the photochemical reaction,with the solvation e ff ect(CH3CN)simulated by PCM model(Table I).The calculated IR frequencies of 1714 and 1727 cm?1for MBBZ are in good agreement with the experimentally observed peak wavelength at 1697 and 1722 cm?1in the steady-state IR absorption spectrum(Fig.2(a)),which indicates that the current level of calculations can provide reliable IR frequencies for spectral assignment purpose.

    FIG.2(a)Steady-state IR spectrum of 5 mmol/L MBBZ in acetonitrile.(b)Transient IR spectra of 5 mmol/L MBBZ in acetonitrile at selected time delays saturated with N2following 266 nm laser irradiation.Inset:kinetic traces curves for 1820 and 1675 cm?1.(c)Steady-state di ff erence spectrum of 5 mmol/L MBBZ in acetonitrile saturated with N2after 1 min of 266 nm laser irradiation.Inset:the longtime kinetic trace for 1735 cm?1.

    In accompany with the reactant bleaching bands at1697 and 1722 cm?1,two prominent positive bands at 1735 and 1820 cm?1are formed immediately within the fi rst 0.6μs.Additionally,another positive band at 1675 cm?1is gradually formed after 0.6μs.According to the calculated vibrational frequencies(Table I), the 1820 cm?1band can be ascribed to the benzoyl radical(A1)from the homolytic cleavage of C?C=O bond,which is the only species with the vibrational frequency close to 1820 cm?1.The recombination of benzoyl radicals lead to the stable product benzil,which should correspond to the gradually formed band at 1675 cm?1in Fig.2(b).The predicted vibrational frequencies for benzil(Table I)is quite close to the observed wide peak positions of 1675 cm?1both in the transient spectra(Fig.2(b))and in the steady-state IR absorption di ff erence spectrum of N2-saturated MBBZ solution recorded after 266 nm irradiation(Fig.2(c)). Thus,the 1675 cm?1band can be ascribed to the benzil formed by the recombination of two benzoyl radicals (A1).To con fi rm this assignment,the IR spectrum of the authentic sample of benzil in CH3CN was recorded (Table I)and found to show a strong wide absorption at 1678 cm?1attributed to the antisymmetric stretching vibration and symmetrical stretching vibration of two C=O.The spectral positions of benzil match well with the observed IR di ff erence spectra(Fig.2(c))after UV irradiation which exhibits a strong wide positive band at 1675 cm?1.The small peak shift of 3 cm?1 in the IR di ff erence spectra after UV irradiation results from the partial overlapping of the positive benzil band with the negative band of MBBZ,as well as the slight ground state recovery for 1696 cm?1in the transient absorption spectra.Additionally,as shown in the inset of Fig.2(b),the decay kinetics of 1820 cm?1for benzoyl radical(A1)and the formation kinetics of 1675 cm?1 for the recombination product benzil follow almost the same time scale,providing a supplementary evidence to con fi rm the spectral assignment.

    TABLE I B3LYP/6-311+G(d,p)calculated IR frequencies (in cm?1)and IR intensities(km/mol)for carbonyl stretching modes of MBBZ and relevant species in CH3CN,with the solvent e ff ect simulated by PCM model,as well as the observed IR frequencies for these species.

    For the positive band at 1735 cm?1,its spectrum intensity decays to a plateau,as the kinetic trace shown in the inset of Fig.2(c),which indicates that this band should consist of two components,a transient species and a stable photoproduct respectively.In fact,the excellent agreement between the TRIR spectra and the steady-state IR di ff erence spectrum for 1732 cm?1further con fi rms that stable photoproduct contributes to the positive band at 1735 cm?1.For the transient species,as shown in the Table I,the predicted vibrational frequencies for 2-methylbenzoate benzyl radical(A2)and triplet state of MBBZ are both close to 1735 cm?1in the transient spectra.The transient 1735 cm?1band is ascribed to the A2 radical but not the triplet state because the short lifetime of 10?25 ns for triplet state,according to the previous reports[19,20],is out of the current instrument response range(100 ns).For the stable product peaked at 1732 cm?1,both 2A2 and the uncaging product 2-methylbenzoic acid can contribute to this positive band and it is hard to distinguish.To assist the assignment of the stable product at 1732 cm?1,di ff erent mixed solvents are used to measure the steadystate spectra.As shown in Fig.3,the IR characteristic marker band of the 2-methylbenzoic acid can shift from 1727 cm?1to 1700 cm?1with the increase of water concentration to 25%in D2O/CH3CN mixed solvents,while the absorption spectrum of MBBZ is almost una ff ected by the D2O.In the steady-state infrared di ff erence absorption spectra shown in Fig.3(b), the positive band of 1732 cm?1in the CH3CN solution is shifted to 1711 cm?1after the addition of 4%D2O,which is in agreement with the shift observed for 2-methylbenzoic acid,indicating that the stable species peaked at 1732 cm?1can be ascribed to the uncaging product 2-methylbenzoic acid.Additionally, the contribution of 2A2 to the 1732 cm?1can be excluded through evaluating the solvent in fl uence as detailedly discussed in the following.

    B.Determination of the photochemical processes of MBBZ

    FIG.3IR spectra in 4%D2O:96%CH3CN(red line), CH3CN(black line),and 25%D2O:75%CH3CN(blue line). (a)Steady-state IR spectra of 2 mmol/L 2-methylbenzoic acid.(b)Steady-state di ff erence spectra of 5 mmol/L MBBZ saturated with N2after 1 min of 266 nm laser irradiation. (c)Steady-state IR spectra of 5 mmol/L MBBZ.

    From TRIR spectra,two intermediate radicals and two stable products were observed and two di ff erent channels can be elucidated.First,the observed stable product 2-methylbenzoic acid should result from the deprotection channel of MBBZ,which is the primary channel to give rise to the uncaging product.For the other stable product benzil,it may arise from the homolysis of MBBZ as postulated in the previous studies.In the current experiment,we have observed the intermediate benzoyl radical A1 and the other intermediate of the homolysis,the 2-methylbenzoate benzyl radical A2 in our TRIR spectra.In addition,the benzoyl radical recombination product benzil was observed.The direct detection of these two intermediate radicals provides explicit evidence for the existence of the homolysis of MBBZ in competition with the uncaging process of benzoin caged compounds.Nevertheless,there is no ground state recovery for the negative peak 1722 cm?1in the transient absorption spectra indicating that the recombination of A1 and A2 to form the precursor molecule can be ruled out.Moreover,upon addition of pentadiene,an e ffi cient triplet quencher,all of the transient features disappear in the TRIR spectra(spectra not shown).This means that both the above two reaction channels are associated with the triplet state of MBBZ,which is consistent with the previous reports on other benzoin caged compounds[19,20,32,33].The photochemical reaction mechanisms of MBBZ in CH3CN after 266 nm irradiation can be summarized in Scheme 2.

    FIG.4 Transient IR spectra of 5 mmol/L MBBZ at selected time delays saturated with N2following 266 nm laserirradiation:(a)in4%D2O:96%CH3CN;(b)in 25%D2O:75%CH3CN.Inset:kinetic traces for 1735 cm?1 respectively.

    C.Evaluation of the solvent in fl uence

    The key transient intermediates identi fi ed in the TRIR spectra by their characteristic vibrational marker bands,provide direct spectral evidence to establish the side reaction of photocleavage of desyl derivatives at C?C=O bond,which is in competition with the main uncaging reaction to release 2-methylbenzoic acid.How to restrain the side reaction and promote the main reaction?We testi fi ed the solvent e ff ect and evaluated the e ff ect of water on the uncaging reaction and the homolysis reaction of C?C=O bond.TRIR absorption spectra were measured in the 4%D2O:96%CH3CN and 25%D2O:75%CH3CN respectively,as shown in Fig.4.Compared with the pure CH3CN solution,the 1735 cm?1band decays to the baseline as shown in

    Scheme 2 Photochemical reaction mechanism of MBBZ in CH3CN after 266 nm irradiation. the insets of the Fig.4,indicating that this band is totally ascribed to the A2 radical intermediate and no stable product 2A2 is detected in the spectra.In the presence of 4%D2O,the stable uncaging product 2-methylbenzoic acid that was mixed in the 1735 cm?1 band should be shifted to lower frequency of 1711 cm?1, as suggested in the steady-state spectra(Fig.3).In this case,the 2-methylbenzoic acid band is buried between the two ground state bleaching bands,which makes the band intensity at 1711 cm?1increase and approach to positive(Fig.4),which is unlike the deep dips in pure CH3CN solution(Fig.3).

    One advantage of the TRIR absorption spectra is that it measures simultaneously the depletion of reactant molecules with the formation of photoproducts.Thus,both the amount of photoproduct formed and reactant consumed can be quanti fi ed by normalizing the peak area of the IR absorption band with the absorption coe ffi cient.Therefore,we can investigate the in fl uence of water on the branching ratios of the deprotection reaction and homolytic cleavage of C?C=O by estimating the yields of 2-methylbenzoic acid and benzoyl radical or A2.The extinction coeffi cients of the reactant and 2-methylbenzoic acid were obtained from its steady-state FTIR spectra based on the Beer-Lambert law.By comparing the B3LYP/6-311+G(d,p)calculated IR intensities,which are proportional to their corresponding extinction coe ffi cients, the extinction coe ffi cients of benzoyl radical and A2 can be determined.The IR extinction coe ffi cients of the relevant species are listed in Table II.Because 2-methylbenzoic acid,benzoyl radical,A2,and the reactant all reach their maximum spectral intensities at 0.6μs simultaneously,both the amount of the photochemical product formation and the reactant consumption are quanti fi ed by normalizing the peak area of the IR absorption band at their maximum spectral in-

    TABLE II ν(C=O)(in cm?1)and their extinction coeffi cients ε(in(mol/L)?1cm?1)of MBBZ,2-methylbenzoic acid,benzoyl radical,and A2.

    aThese values are estimated according to the measured steady state IR absorption spectra.bThe extinction coe ffi cients of benzoyl radical and A2 are estimated by comparing its calculated IR intensity with that of reactant(MBBZ),based on the fact that the IR intensities are proportional to the corresponding extinction coe fi cients.

    tensities(obtained by Lorentzian fi tting as shown in Fig.5)with the absorption coe ffi cient listed in Table II. Furthermore,dividing the amount of photoproduct formation by reactant consumption gives the absolute yields.The yields for the two photochemical products 2-methylbenzoic acid and benzoyl radical are 46.7%and 38.5%in the pure CH3CN and 47.2%and 37.6%in the 4%D2O:96%CH3CN.The similar yields indicate that little amount of water has almost no e ff ect on the photochemical processes.Moreover,it is con fi rmed that there is neither contribution of 2A2 for the 1732 cm?1 in the pure CH3CN nor that in the 4%D2O:96%CH3CN. However,in the 25%D2O:75%CH3CN,the yield of the uncaging 2-methylbenzoic acid grows to 55.0%and the yield of benzoyl radical reduces to 31.9%.It is demonstrated that large amount of water can promote thephoto-deprotection reaction.This is probably due to the good ionizing and dissociating capability makes water an ideal solvent for the e ffi ciently heterolytic triplet cleavage of the keto α-C=O bond to occur and thus facilitates the uncaging reaction.Additionally,according to the fi tting results shown in Fig.5,the yields of A1 and A2 are 38.5%and 39.2%in the pure CH3CN, 37.6%and 41.2%in the 4%D2O:96%CH3CN,31.9%and 33.9%in the 25%D2O:75%CH3CN,respectively,which demonstrates that the yields of A1 and A2 are almost identical considering the error range in the di ff erent solvent system,further con fi rming the spectral assignment of A1 and A2 from the homolysis of MBBZ.

    FIG.5 Experimental TRIR di ff erence spectra(black dots) of 5 mmol/L MBBZ in(a)pure CH3CN solution,(b)D2O and CH3CN mixed solution(4%D2O:96%CH3CN),(c)D2O and CH3CN mixed solution(25%D2O:75%CH3CN)at 0.6μs after 266 nm excitation with the fi tted spectrum(red line), composed of individual Lorentzian bands shown with green lines(the ground-state MBBZ bleaching bands),dark yellow lines(homolysis radical positive bands),and blue lines(the 2-methylbenzoic acid positive band).

    Overall,our experiments provide direct spectral evidence to the homolytic cleavage reaction of C?C=O bond,which is in competition with the release of 2-methylbenzoic acid after 266 nm laser irradiation MBBZ in CH3CN solution.Moreover,the product yields of 2-methylbenzoic acid and benzoyl radical were observed to be a ff ected by the presence of large amount of water,indicating that deprotection reaction is favorable in the water containing solvent.

    IV.CONCLUSION

    In this work,we have performed time-resolved infrared spectroscopy studies of the photochemical reaction of benzoin caged compound o-(2-methylbenzoyl)-DL-benzoin.By taking advantage of the speci fi c vibrational marker bands and the IR discerning capability, we have identi fi ed and distinguished the uncaging product 2-methylbenzoic acid and two key intermediate radicals of C?C=O bond homolytic cleavage in the transient infrared spectra.Two photochemical channels, deprotection channel to form 2-methylbenzoic acid and the homolysis of MBBZ to generate benzil,are therefore determined.The key transient intermediates identi fi ed in the TRIR spectra provide direct spectral evidence to establish the side reaction of photocleavage of desyl derivatives at C?C=O bond.Moreover,the dependence of the product yields on the water content shows that very small amount of water has no e ff ect on the reaction processes,while a largely water containing solvent can be in favor of the deprotection reaction.These results provide mechanistic insights to guide the biological applications of benzoin caged compounds,especially in reducing the side reactions of caged compounds.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21333012 and No.21425313)and the National Basic Research Program of China(No.2013CB834602).

    [1]R.S.Givens and L.W.Kueper,Chem.Rev.93,55 (1993).

    [2]G.P.Hess,Biochemistry 32,989(1993).

    [3]G.M.Staub,J.B.Gloer,D.T.Wicklow,and P.F. Dowd,J.Am.Chem.Soc.114,1015(1992).

    [4]G.C.R.Ellis-Davies,Nat.Methods 4,619(2007).

    [5]G.Mayer and A.Heckel,Angew.Chem.Int.Ed.45, 4900(2006).

    [6]M.Lukeman and J.C.Scaiano,J.Am.Chem.Soc.127, 7698(2005).

    [7]Y.Q.Yu,L.D.Wu,X.R.Zou,X.J.Dai,K.H.Liu, and H.M.Su,J.Phys.Chem.A 117,7767(2013).

    [8]A.P.Pelliccioli and J.Wirz,Photochem.Photobiol. Sci.1,441(2002).

    [9]K.Curley and D.S.Lawrence,J.Am.Chem.Soc.120, 8573(1998).

    [10]C.Ma,W.M.Kwok,W.S.Chan,P.Zuo,J.T.Wai Kan,P.H.Toy,and D.L.Phillips,J.Am.Chem.Soc. 127,1463(2005).

    [11]M.Zabadal,A.P.Pelliccioli,P.Kl′an,and J.Wirz,J. Phys.Chem.A 105,10329(2001).

    [12]C.S.Ma,W.M.Kwok,W.S.Chan,Y.Du,J.T.W. Kan,P.H.Toy,and D.L.Phillips,J.Am.Chem.Soc. 128,2558(2006).

    [13]R.S.Givens,J.F.W.Weber,P.G.Conrad,G.Orosz, S.L.Donahue,and S.A.Thayer,J.Am.Chem.Soc. 122,2687(2000).

    [14]M.A.Hangarter,A.H¨ormann,Y.Kamdzhilov,and J. Wirz,Photochem.Photobiol.Sci.2,524(2003).

    [15]K.R.Gee,L.W.Kueper,J.Barnes,G.Dudley,and R. S.Givens,J.Org.Chem.61,1228(1996).

    [16]J.C.Sheehan and R.M.Wilson,J.Am.Chem.Soc. 86,5277(1964).

    [17]R.S.Givens and B.Matuszewski,J.Am.Chem.Soc. 106,6860(1984).

    [18]R.S.Givens,P.S.Athey,L.W.Kueper,B.Matuszewski,and J.Y.Xue,J.Am.Chem.Soc.114,8708 (1992).

    [19]C.Ma,Y.Du,W.M.Kwok,and D.L.Phillips,Chem. Eur.J.13,2290(2007).

    [20]C.S.Rajesh,R.S.Givens,and J.Wirz,J.Am.Chem. Soc.122,611(2000).

    [21]J.F.Cameron,C.G.Willson,and J.M.J.Fr′echet,J. Am.Chem.Soc.118,12925(1996).

    [22]R.Kaliappan,L.S.Kaanumalle,and V.Ramamurthy, Chem.Commun.4056(2005).

    [23]X.R.Zou,X.J.Dai,K.H.Liu,H.M.Zhao,D.Song, and H.M.Su,J.Phys.Chem.B 118,5864(2014).

    [24]C.F.Yang,Y.Q.Yu,K.H.Liu,D.Song,L.D.Wu, and H.M.Su,J.Phys.Chem.A 115,5335(2011).

    [25]W.Q.Wu,K.H.Liu,C.F.Yang,H.M.Zhao,H. Wang,Y.Q.Yu,and H.M.Su,J.Phys.Chem.A 113, 13892(2009).

    [26]W.Uhmann,A.Becker,C.Taran,and F.Siebert,Appl. Spectrosc.45,390(1991).

    [27]D.L.Drapcho,R.Curbelo,E.Y.Jiang,R.A.Crocombe,and W.J.McCarthy,Appl.Spectrosc.51,453 (1997).

    [28]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [29]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [30]B.Mennucci and J.Tomasi,J.Chem.Phys.106,5151 (1997).

    [31]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1, Wallingford CT:Gaussian,Inc.,(2009).

    [32]M.Lipson and N.J.Turro,J.Photochem.Photobiol. A 99,93(1996).

    [33]F.D.Lewis,R.T.Lauterbach,H.G.Heine,W.Hartmann,and H.Rudolph,J.Am.Chem.Soc.97,1519 (1975).

    久久99一区二区三区| 中文字幕av电影在线播放| 男女免费视频国产| 国产亚洲av片在线观看秒播厂| 亚洲自偷自拍图片 自拍| 在线 av 中文字幕| 在线观看国产h片| 久久精品久久精品一区二区三区| 国产一区二区在线观看av| 超色免费av| 欧美精品一区二区免费开放| 99精品久久久久人妻精品| 午夜日本视频在线| 99久久综合免费| 又黄又粗又硬又大视频| 亚洲精品第二区| 悠悠久久av| 亚洲av在线观看美女高潮| 青春草视频在线免费观看| 黄片小视频在线播放| 免费高清在线观看日韩| 国产精品无大码| 国产高清国产精品国产三级| 狂野欧美激情性bbbbbb| 亚洲第一青青草原| 午夜免费鲁丝| 王馨瑶露胸无遮挡在线观看| 免费黄色在线免费观看| 午夜福利,免费看| 色精品久久人妻99蜜桃| 国产成人啪精品午夜网站| av不卡在线播放| 亚洲成人免费av在线播放| 波野结衣二区三区在线| 亚洲成国产人片在线观看| 丰满少妇做爰视频| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 一级毛片 在线播放| 久久97久久精品| 国产无遮挡羞羞视频在线观看| 国产不卡av网站在线观看| 日韩人妻精品一区2区三区| 欧美97在线视频| 99国产综合亚洲精品| 亚洲伊人久久精品综合| 国产精品三级大全| 国产精品免费视频内射| 一本一本久久a久久精品综合妖精| 亚洲激情五月婷婷啪啪| 人人妻人人添人人爽欧美一区卜| 久久久久久人人人人人| 成人亚洲欧美一区二区av| 日本vs欧美在线观看视频| 99久久综合免费| 亚洲av在线观看美女高潮| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 日韩欧美精品免费久久| 日韩精品免费视频一区二区三区| 国产极品天堂在线| xxxhd国产人妻xxx| av线在线观看网站| 夫妻性生交免费视频一级片| 亚洲免费av在线视频| 男男h啪啪无遮挡| www.自偷自拍.com| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦在线观看免费高清www| 不卡av一区二区三区| 在线观看一区二区三区激情| 久久天躁狠狠躁夜夜2o2o | 中国国产av一级| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| 男女边摸边吃奶| 丰满乱子伦码专区| 亚洲三区欧美一区| 99国产精品免费福利视频| 国产 一区精品| 亚洲色图综合在线观看| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| 欧美中文综合在线视频| 婷婷色av中文字幕| 国产高清不卡午夜福利| 中国三级夫妇交换| 欧美国产精品va在线观看不卡| 欧美97在线视频| 男的添女的下面高潮视频| 丰满乱子伦码专区| 18禁观看日本| 人体艺术视频欧美日本| 国产精品 欧美亚洲| 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 99精品久久久久人妻精品| 毛片一级片免费看久久久久| 国产xxxxx性猛交| 国产女主播在线喷水免费视频网站| 国产亚洲午夜精品一区二区久久| 亚洲精品中文字幕在线视频| 成年人免费黄色播放视频| 精品国产一区二区久久| www日本在线高清视频| 男女无遮挡免费网站观看| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 国产精品国产三级国产专区5o| 欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 最新的欧美精品一区二区| 综合色丁香网| 国产乱人偷精品视频| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 久久久久精品性色| 日本黄色日本黄色录像| 久久这里只有精品19| 无限看片的www在线观看| 日韩视频在线欧美| 国产成人精品久久久久久| bbb黄色大片| 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 国产免费现黄频在线看| 久久99精品国语久久久| 国产成人欧美在线观看 | 免费高清在线观看日韩| 制服诱惑二区| 制服人妻中文乱码| 成年人午夜在线观看视频| 老熟女久久久| 女性生殖器流出的白浆| 国产精品一国产av| av网站在线播放免费| 久久 成人 亚洲| 国产黄色视频一区二区在线观看| 如何舔出高潮| 亚洲精品一二三| 国产精品av久久久久免费| 免费在线观看黄色视频的| 久久久国产一区二区| 亚洲综合精品二区| 欧美 亚洲 国产 日韩一| 成年av动漫网址| 国产精品二区激情视频| 亚洲av中文av极速乱| 久久久久国产一级毛片高清牌| 精品久久久精品久久久| 天天躁夜夜躁狠狠躁躁| 岛国毛片在线播放| 欧美日韩视频精品一区| 中国国产av一级| av女优亚洲男人天堂| av在线app专区| 国产成人精品福利久久| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 免费黄网站久久成人精品| 国产男女超爽视频在线观看| 日韩精品有码人妻一区| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩视频精品一区| 亚洲欧美中文字幕日韩二区| videosex国产| 国产成人啪精品午夜网站| 午夜福利,免费看| 日韩制服骚丝袜av| 激情视频va一区二区三区| 日本黄色日本黄色录像| 叶爱在线成人免费视频播放| 精品国产一区二区三区四区第35| 在线天堂中文资源库| 天堂中文最新版在线下载| 99久久精品国产亚洲精品| 欧美 亚洲 国产 日韩一| avwww免费| 亚洲av日韩在线播放| 亚洲伊人久久精品综合| 卡戴珊不雅视频在线播放| 久久久久久人人人人人| 欧美日本中文国产一区发布| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 日韩中文字幕欧美一区二区 | 少妇被粗大的猛进出69影院| 电影成人av| 亚洲欧洲日产国产| 久久久久精品性色| 久热这里只有精品99| 男的添女的下面高潮视频| 熟女少妇亚洲综合色aaa.| 男人爽女人下面视频在线观看| 亚洲第一av免费看| 男女边摸边吃奶| 欧美国产精品一级二级三级| 夜夜骑夜夜射夜夜干| 九九爱精品视频在线观看| 九草在线视频观看| 一级,二级,三级黄色视频| 免费久久久久久久精品成人欧美视频| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品无人区| 99精品久久久久人妻精品| 天堂8中文在线网| 亚洲三区欧美一区| 亚洲,欧美精品.| 免费观看av网站的网址| 十分钟在线观看高清视频www| 国产成人a∨麻豆精品| 久久人人97超碰香蕉20202| 亚洲av电影在线进入| 国产精品亚洲av一区麻豆 | 99久久精品国产亚洲精品| 99热全是精品| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 十八禁网站网址无遮挡| 亚洲欧洲精品一区二区精品久久久 | 日本黄色日本黄色录像| 国产亚洲最大av| 日韩制服丝袜自拍偷拍| 成人手机av| 在现免费观看毛片| 精品国产一区二区三区久久久樱花| 搡老乐熟女国产| 精品人妻一区二区三区麻豆| 美女主播在线视频| 亚洲欧美激情在线| 日韩av不卡免费在线播放| 午夜91福利影院| 欧美激情 高清一区二区三区| 国产精品亚洲av一区麻豆 | 少妇的丰满在线观看| 一级a爱视频在线免费观看| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 久久婷婷青草| 亚洲国产欧美在线一区| 精品亚洲成国产av| 午夜老司机福利片| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 国产精品成人在线| 美女福利国产在线| 亚洲国产成人一精品久久久| 国产日韩欧美视频二区| 欧美成人精品欧美一级黄| 欧美日韩亚洲综合一区二区三区_| 中文精品一卡2卡3卡4更新| 国产精品嫩草影院av在线观看| 久久久精品免费免费高清| av免费观看日本| 女人爽到高潮嗷嗷叫在线视频| 搡老岳熟女国产| 亚洲精品久久久久久婷婷小说| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| 欧美激情 高清一区二区三区| 国产国语露脸激情在线看| 中文字幕精品免费在线观看视频| 日韩视频在线欧美| 男女下面插进去视频免费观看| 免费久久久久久久精品成人欧美视频| 亚洲精品日本国产第一区| 九九爱精品视频在线观看| 99国产综合亚洲精品| 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频| 少妇精品久久久久久久| 夫妻性生交免费视频一级片| 色吧在线观看| 久久韩国三级中文字幕| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| av福利片在线| 嫩草影院入口| 亚洲少妇的诱惑av| 亚洲人成77777在线视频| 美女主播在线视频| 啦啦啦在线观看免费高清www| 夜夜骑夜夜射夜夜干| 国产97色在线日韩免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲成av片中文字幕在线观看| av网站在线播放免费| 亚洲专区中文字幕在线 | 国产在视频线精品| 午夜福利在线免费观看网站| 久久97久久精品| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| 亚洲欧美精品综合一区二区三区| 男女下面插进去视频免费观看| 熟妇人妻不卡中文字幕| 一区二区三区精品91| 在线 av 中文字幕| 久久人妻熟女aⅴ| 黄色毛片三级朝国网站| 中文字幕人妻丝袜一区二区 | 深夜精品福利| 国产视频首页在线观看| 国产xxxxx性猛交| 日韩不卡一区二区三区视频在线| 亚洲国产欧美日韩在线播放| 中文欧美无线码| 欧美日韩精品网址| 成人毛片60女人毛片免费| 精品国产国语对白av| 捣出白浆h1v1| 观看美女的网站| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 嫩草影院入口| 亚洲av日韩精品久久久久久密 | 男女高潮啪啪啪动态图| 一区福利在线观看| 久久久国产一区二区| 丁香六月天网| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 香蕉国产在线看| 亚洲精品第二区| 男女下面插进去视频免费观看| 欧美日韩国产mv在线观看视频| www.av在线官网国产| 丰满迷人的少妇在线观看| 久久婷婷青草| 一级毛片电影观看| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 人妻 亚洲 视频| 午夜激情久久久久久久| 天天影视国产精品| 亚洲一级一片aⅴ在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲人成77777在线视频| 国产99久久九九免费精品| a级片在线免费高清观看视频| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲 | 天堂8中文在线网| 久久久欧美国产精品| 午夜久久久在线观看| 日本欧美视频一区| 久久久久视频综合| 丁香六月天网| 性少妇av在线| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| www.自偷自拍.com| 99久久精品国产亚洲精品| 亚洲美女搞黄在线观看| 少妇人妻 视频| 欧美日韩亚洲高清精品| 又大又黄又爽视频免费| 国产日韩欧美亚洲二区| 日韩中文字幕视频在线看片| 日韩电影二区| 国产高清国产精品国产三级| 欧美人与善性xxx| 午夜免费鲁丝| 久久久久久久久久久免费av| 中文字幕高清在线视频| 精品国产乱码久久久久久男人| 夜夜骑夜夜射夜夜干| 黄频高清免费视频| 美女国产高潮福利片在线看| 国产成人精品久久二区二区91 | 在线天堂最新版资源| 午夜福利影视在线免费观看| 国产熟女欧美一区二区| 国产免费视频播放在线视频| 国产不卡av网站在线观看| 狂野欧美激情性xxxx| 精品免费久久久久久久清纯 | 看免费成人av毛片| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃| 欧美精品人与动牲交sv欧美| 精品国产国语对白av| 欧美黄色片欧美黄色片| 国产97色在线日韩免费| 国产精品国产三级国产专区5o| 欧美日韩综合久久久久久| 久久久久人妻精品一区果冻| 男女午夜视频在线观看| 一级片免费观看大全| 王馨瑶露胸无遮挡在线观看| kizo精华| 国产成人免费观看mmmm| 久久久精品区二区三区| 男女边摸边吃奶| 中文字幕精品免费在线观看视频| 老汉色av国产亚洲站长工具| 欧美黑人精品巨大| 亚洲美女视频黄频| 在线观看www视频免费| 又大又爽又粗| 亚洲欧美中文字幕日韩二区| 精品国产露脸久久av麻豆| 丝袜美足系列| 国产在线视频一区二区| 成人影院久久| 国产一卡二卡三卡精品 | 99热全是精品| 电影成人av| 亚洲精品国产av成人精品| 亚洲在久久综合| 制服人妻中文乱码| h视频一区二区三区| 精品国产一区二区久久| 麻豆乱淫一区二区| 国产成人精品久久二区二区91 | 久久国产精品男人的天堂亚洲| 婷婷色综合大香蕉| 97精品久久久久久久久久精品| 51午夜福利影视在线观看| 少妇猛男粗大的猛烈进出视频| 欧美人与善性xxx| www.熟女人妻精品国产| 涩涩av久久男人的天堂| 日韩大码丰满熟妇| 下体分泌物呈黄色| 色网站视频免费| 国精品久久久久久国模美| 美女中出高潮动态图| 日日撸夜夜添| 悠悠久久av| 亚洲av国产av综合av卡| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 中国国产av一级| 免费看不卡的av| 啦啦啦在线观看免费高清www| 999久久久国产精品视频| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 丝袜喷水一区| 久久ye,这里只有精品| 成年人免费黄色播放视频| 亚洲成国产人片在线观看| 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久影院| 国产精品国产av在线观看| 欧美精品av麻豆av| 女性生殖器流出的白浆| 老司机影院成人| 国产精品国产三级专区第一集| 热re99久久精品国产66热6| 日本一区二区免费在线视频| 午夜福利视频在线观看免费| 亚洲欧洲精品一区二区精品久久久 | 欧美xxⅹ黑人| 丰满饥渴人妻一区二区三| 日本一区二区免费在线视频| 国产xxxxx性猛交| 夫妻午夜视频| 国产探花极品一区二区| av电影中文网址| 男女边摸边吃奶| 女的被弄到高潮叫床怎么办| 成人国语在线视频| 免费看不卡的av| 国产成人免费无遮挡视频| 成年美女黄网站色视频大全免费| 亚洲三区欧美一区| 少妇人妻久久综合中文| 久久精品aⅴ一区二区三区四区| 我的亚洲天堂| 在线天堂最新版资源| 亚洲五月色婷婷综合| 久久性视频一级片| 精品亚洲成a人片在线观看| 黑人猛操日本美女一级片| 在线天堂中文资源库| 2021少妇久久久久久久久久久| 亚洲av国产av综合av卡| 韩国精品一区二区三区| √禁漫天堂资源中文www| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 亚洲国产欧美网| 男的添女的下面高潮视频| 老司机靠b影院| 狂野欧美激情性xxxx| 国产伦理片在线播放av一区| 一级毛片我不卡| 亚洲精品日韩在线中文字幕| 熟妇人妻不卡中文字幕| 亚洲欧洲日产国产| 成人免费观看视频高清| 下体分泌物呈黄色| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| 中国国产av一级| 亚洲成人av在线免费| 免费黄色在线免费观看| 99精品久久久久人妻精品| 日韩制服丝袜自拍偷拍| 精品一区二区三区四区五区乱码 | 如何舔出高潮| 亚洲综合色网址| 亚洲精品美女久久久久99蜜臀 | 男女无遮挡免费网站观看| 日本爱情动作片www.在线观看| 天堂中文最新版在线下载| 久久久久久免费高清国产稀缺| 成人国语在线视频| 亚洲久久久国产精品| 一本大道久久a久久精品| 男女下面插进去视频免费观看| 9热在线视频观看99| 这个男人来自地球电影免费观看 | 久久久国产一区二区| 捣出白浆h1v1| 亚洲综合精品二区| 国产免费福利视频在线观看| 九色亚洲精品在线播放| 在线观看免费午夜福利视频| avwww免费| 久久 成人 亚洲| 老鸭窝网址在线观看| 亚洲美女搞黄在线观看| 精品一区在线观看国产| 亚洲成色77777| 亚洲五月色婷婷综合| 99久久精品国产亚洲精品| a级片在线免费高清观看视频| 一本久久精品| 如日韩欧美国产精品一区二区三区| 波多野结衣av一区二区av| 精品一区二区三区av网在线观看 | av一本久久久久| 国产成人午夜福利电影在线观看| 国产精品女同一区二区软件| 国产淫语在线视频| 亚洲av成人精品一二三区| 亚洲欧洲日产国产| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 日韩视频在线欧美| 一级片'在线观看视频| 成人午夜精彩视频在线观看| 久久午夜综合久久蜜桃| 国产探花极品一区二区| 亚洲成人手机| 精品免费久久久久久久清纯 | 成人三级做爰电影| 蜜桃在线观看..| 看免费av毛片| 美女脱内裤让男人舔精品视频| 日本欧美国产在线视频| 麻豆av在线久日| 老汉色∧v一级毛片| 亚洲国产av新网站| 美女中出高潮动态图| 成人18禁高潮啪啪吃奶动态图| 尾随美女入室| 啦啦啦视频在线资源免费观看| 国产av精品麻豆| 国产精品久久久久久精品电影小说| 一级,二级,三级黄色视频| 热re99久久精品国产66热6| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 99国产精品免费福利视频| 精品久久久精品久久久| 人成视频在线观看免费观看| 建设人人有责人人尽责人人享有的| 国产精品一国产av| 嫩草影视91久久| 久久这里只有精品19| 搡老岳熟女国产| 国产亚洲午夜精品一区二区久久| 黄片小视频在线播放| av国产精品久久久久影院| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美软件| 日韩一本色道免费dvd| 国产精品久久久久久精品古装| 菩萨蛮人人尽说江南好唐韦庄| 国产色婷婷99| 亚洲精品国产色婷婷电影| 亚洲成av片中文字幕在线观看| 精品卡一卡二卡四卡免费| 人成视频在线观看免费观看| 在线观看www视频免费| 久久精品久久久久久噜噜老黄| 搡老岳熟女国产| 亚洲av电影在线观看一区二区三区| 成人亚洲精品一区在线观看| 我要看黄色一级片免费的| 只有这里有精品99| 久久精品国产a三级三级三级| 高清av免费在线|