• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes?

    2016-04-08 06:35:40JiayeJinGuanjunWangMingfeiZhouCollaborativeInnovationCenterofChemistryforEnergyMaterialsDepartmentofChemistryShanghaiKeyLaboratoryofMolecularCatalystsandInnovativeMaterialsFudanUniversityShanghai200433ChinaDatedReceived
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Jia-ye Jin,Guan-jun Wang,Ming-fei Zhou?Collaborative Innovation Center of Chemistry for Energy Materials,Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Fudan University,Shanghai 200433, China(Dated:Received on November 25,2015;Accepted on December 8,2015)

    ?

    ARTICLE Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes?

    Jia-ye Jin,Guan-jun Wang,Ming-fei Zhou?
    Collaborative Innovation Center of Chemistry for Energy Materials,Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Fudan University,Shanghai 200433, China
    (Dated:Received on November 25,2015;Accepted on December 8,2015)

    The boron carbonyl cation complexes B(CO)3+,B(CO)4+and B2(CO)4+are studied by infrared photodissociation spectroscopy and theoretical calculations.The B(CO)4+ions are characterized to be very weakly bound complexes involving a B(CO)3+core ion,which is predicted to have a planar D3hstructure with the central boron retaining the most favorable 8-electron con fi guration.The B2(CO)4+cation is determined to have a planar D2hstructure involving a B?B one and half bond.The analysis of the B-CO interactions with the EDANOCV method indicates that the OC→B σ donation is stronger than the B→CO π back donation in both ions.

    Key words:Boron carbonyl,Donor-acceptor bonding,Infrared photodissociation spectroscopy,Theoretical calculations

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: mfzhou@fudan.edu.cn

    I.INTRODUCTION

    Carbon monoxide is one of the most important ligand in inorganic and organometallic chemistry[1].It can bind to a host of neutral and charged transition metal centers in forming diverse metal carbonyl complexes,in which carbon monoxide serves either as a two-electron donor in an end-on coordinated fashion or as a four-electron or even six-electron donor in the bridge bonded modes[2?11].Carbon monoxide can also coordinate with some main-group elements in forming main group carbonyl complexes[12,13].Homoleptic mono-and dicarbonyl complexes of main group elements with end-on bonded carbonyl ligands have been prepared and spectroscopically characterized either in low-temperature noble gas matrices or in the gas phase[12?38].These carbonyl complexes are usually not stable at ambient conditions with the exception of[C(CO)2]and[N(CO)2]+which have been crystallographically characterized[36?38].

    In the case of boron,the electron de fi cient boron species are able to coordinate one CO ligand in forming the closed-shell carbonyl borane H3BCO and related derivatives,which are well-known stable carbonyl compounds[39?43].Boron carbonyl species such as BCO,B(CO)2,B(CO)2?,OCBBCO,BBCO and B4(CO)2were identi fi ed as products from the reactions of thermal-or laser-evaporated boron atoms with CO in solid argon[44?50].The OCBBCO molecule was characterized to be a boron-boron triple bonded species[48].Both BBCO and B4(CO)2are σ-π diradicals[49,50].Bonding analysis suggests that the linear closed-shell B(CO)2?anion should be considered as a donor-acceptor bonding complex rather than a cumulene O=C=B(?)=C=O molecule with electron sharing bonding[47].Very recently,a rare example of a boron dicarbonyl complex[(RB)(CO)2](R being a bulky aryl group)with two terminal carbonyl ligands which is stable under ambient conditions has been reported[51].The chemical behavior shows typical features of carbonyl complexes which are known from transition metal carbonyls.Boron carbonyl cation complexes are not known so far.Here we report a combined infrared photodissociation spectroscopy and theoretical study on boron carbonyl cation complexes B(CO)3+and B2(CO)4+in the gas phase.

    II.EXPERIMENTAL AND THEORETICAL METHODS

    The boron carbonyl cation complexes are generated in the gas phase using a pulsed laser vaporization/supersonic expansion ion source as described previously[52,53].Bulk targets compressed from isotopically-enriched10B and11B powders were used. The ions are produced from the laser vaporization process in expansions of helium seeded with 2%?5% CO using a pulsed valve(General Valve,Series 9)at 0.5?1.0 MPa backing pressure.After free expansion and cooling,the cations are skimmed into a second chamber where they are pulse-extracted into a Wiley-McLaren type time-of- fl ight mass spectrometer.The cations of interest are mass selected and decelerated into the extraction region of a second collinear timeof- fl ight mass spectrometer,where they are dissociated by a tunable IR laser.The tunable IR laser used is generated by a KTP/KTA//AgGaSe2optical parametric oscillator/ampli fi er system(OPO/OPA,Laser Vision)pumped by a Continuum Surelite EX Nd:YAG laser,producing about 1.0?2.5 mJ/pulse in the range of 1800?2400 cm?1.The ion density is too low for infrared absorption spectroscopy,thus,the infrared photodissociation spectroscopy is employed to record the vibrational spectra.Resonant absorption leads to fragmentation of the ion complex.The infrared photodissociation spectrum is obtained by monitoring the yield of the fragment ion as a function of the dissociation IR laser wavelength and normalizing to parent ion signal.

    The geometry optimizations have been carried out without symmetry constraints at the B3LYP level using the aug-cc-pVTZ basis sets[54?56].The harmonic vibrational frequencies were calculated with analytic second derivatives.These calculations were performed using the Gaussian 09 program[57].The gradient corrected BP86 functional in conjunction with uncontracted Slater-type orbitals(STOs)as basis functions was used for the bonding analyses[58?60].The latter basis sets for all elements have triple-ξ quality augmented by one set of polarization functions(ADF-basis set TZP).An auxiliary set of s,p,d,f,and g STOs was used to fi t the molecular densities and to represent the Coulomb and exchange potentials accurately in each SCF cycle.The BP86/TZP calculations were performed using the B3LYP/aug-cc-pVTZ optimized geometries with the program package ADF2014.10[61].

    III.RESULTS AND DISCUSSION

    The mass spectrum of boron carbonyl cation complexes in the m/z range of 60?150 from the laser evaporation of a10B-enriched target in expansions of helium gas seeded with 5%CO is shown in Fig.1(a).Although the mass spectra depend strongly on the parameters of the ion source such as vaporization laser power,He and CO stagnation pressures and timing,the peaks corresponding to10B(CO)3+(m/z=94)and10B2(CO)4+(m/z=132)are always the most intense peaks,suggesting that these cations are formed preferentially with high stability.The mass spectrum from the experiments with the11B-enriched target is shown in Fig.1(b).The most intense peaks shifted to m/z=95 and 134,corresponding to the11B(CO)3+and11B2(CO)4+ions,respectively.

    FIG.1 Mass spectra of the boron carbonyl cation complexes formed by pulsed laser vaporization of a target in an expansion of helium doped with carbon monoxide.(a)10B and (b)11B.

    The B(CO)3+cations are mass-selected and subjected to infrared photodissociation.It is found that the B(CO)3+cations dissociate via losing a CO ligand when excited with infrared light in the 2140?2150 cm?1frequency region but the dissociation e ffi ciency(less than 0.5%)is too low to achieve an e ff ective spectrum. This suggests that the B(CO)3+cations are very stable species with quite high CO binding energy as expected,as it satis fi es the octet rule.In contrast to B(CO)3+,the B(CO)4+cation complexes are able to dissociate via loss of a CO ligand with very high effi ciency(>50%),indicating that B(CO)4+is a very weakly bound complex.This con fi rms our expectation that B(CO)3+is a fully coordinated ion and the fourth CO in B(CO)4+is a weakly bound external carbonyl ligand.Therefore,the B(CO)4+cation can be regarded as a CO“tagged”cation complex involving a B(CO)3+core ion.The infrared photodissociation spectrum of B(CO)4+represents the spectrum of the B(CO)3+core ion that is weakly perturbed by the tagged CO ligand. The tagging e ff ect is expected to change the position of the B(CO)3+band only slightly as discussed previously[62?64].The infrared photodissociation spectra of11B(CO)4+and10B(CO)4+in the C?O stretching frequency region are shown in Fig.2.The spectrum of10B(CO)4+(Fig.2(a))exhibits a very strong band centered at 2145 cm?1along with a weak band at 2178 cm?1.The 2145 cm?1band is just 2 cm?1blueshifted from the frequency of gas phase carbon monoxide(2143 cm?1).This band can be attributed to the antisymmetric CO stretching vibrations of the10B(CO)3+core ion.The much weak band at 2178 cm?1is assigned to the CO stretching vibration of the weakly tagged CO ligand,consistent with previous observations for other weakly bound metal ion carbonyls[64?66].The same bands were also observed in the spectrum of11B(CO)4+as shown in Fig.2(b).The band positions are essentially the same indicating that the corresponding vibrational modes are pure CO stretching vibrations with negligible boron involvement.Besides 2145 and 2178 cm?1bands, additional weak bands at 2214 and 2259 cm?1were observed in the spectrum of11B(CO)4+.Both bands are located in the frequency range suitable for the symmet-ric CO stretching vibrations.We tentatively assign the 2259 cm?1band to the symmetric stretching vibration of thecore ion and the 2214 cm?1band to a combination or an overtone level that is in Fermi resonance with the symmetric CO stretching fundamental.When11B is substituted by10B,the two levels are no long close enough to show Fermi resonance,therefore,both bands were not observed in the spectrum ofcation is able to dissociate via loss of a CO ligand under focused IR laser irradiation.The parent ions can be depleted by about 5%at the laser pulse energy of 1.4 mJ/pulse at 2108 cm?1.The infrared photodissociation spectrum ois shown in Fig.3.The spectrum exhibits two bands centered at 2108 and 2152 cm?1.

    FIG.2 The experimental infrared photodissociation spectra of the(a)10B(CO)4+and(b)11B(CO)4+cation complexes in the CO stretching frequency region.

    We carried out high-level calculations in order to validate the identify of the cations and to analyze their electronic structures.The theoretically predicted geometries of Bare shown in Fig.4.The B(CO)3+cation has a1A′1ground state with planar D3hsymmetry.The calculations indicate that the CO bond distances in)is slightly shorter th?anthat of free CO calculated at the same level(1.128A).

    As shown in Fig.5,the highest doubly occupied molecular orbital(HOMO,a′2′)is primarily a central B2p orbital,which comprises signi fi cant B2p to CO 2π?back bonding.Therefore,the1A′1ground statecation correlates to an electronic excited singlet state B+with the associated valence electronic con fi guration of 2s0,2p(σ)0,2p(π)2,2p(π′)0.The11B(CO)3+cation with D3hsymmetry has only one IR active antisymmetric CO stretching mode calculated at 2223 cm?1,which is doubly degenerate.This mode foris predicted at 2224 cm?1.The symmetric stretching mode is predicted at 2317 cm?1which is IR inactive.Consistent with the experimental observations,the Bcation was predicted to be a weakly bound complex as the predicted B?CO distance of the fourth CO is quite large with the geometry of the B(CO)3+core ion being essentially the same as the free cation.Due to symmetry reduction by CO coordination,the double degeneracy of the antisymmetric CO stretching mode of B(CO)3+is lifted,and the E mode splits into two distinct modes.Calculations at the B3LYP level show very small mode split of 6 cm?1,which cannot be wellresolved experimentally.

    FIG.3ExperimentalandsimulatedIRspectraof

    TABLE I Observed and calculated(harmonic,unscaled) CO stretching frequencies(cm?1)of the10B(CO)4+and10B2(CO)4+ions.

    aThe intensities are listed in parentheses in km/mol.molecular orbital pictures shown in Fig.5 clearly indicate that the singly occupied(SOMO)b2gMO is a B?B π antibonding orbital.The highest doubly occupied b3uorbital(HOMO)is a B?B π bonding orbital.Both the b2gand b3uorbitals comprise substantial B2+to CO π?back-donation.Both orbitals are highly delocalized involving two B and four C centers.The doubly occupied agmolecular orbital(HOMO-1)is a B?B σ bonding orbital.The ground statecation complex can thus be viewed as the interaction of aexcited-state B2+and four CO’s,which involves one B?B σ bond and a half B?B π bond.

    FIG.5 Molecular orbital pictures of the highest doubly occupied(HOMO)of B(CO)3+and the singly occupied(SOMO) and highest doubly occupied orbitals(HOMO and HOMO-1)of B2(CO)4+.

    Thebonddissociationenergiesof,andare calculated.At the B3LYP level,the BDE ofis 79.5 kcal/mol with respect to the dissociation limit+CO or 60.7 kcal/mol with respect to the ground state reactants:.The dissociation energy of the tagged CO inis calculated to be only 2.9 kcal/mol.The binding energy of B2(CO)4+is 60.4 kcal/mol with respect to the dissociation limit B2+CO or 39.2 kcal/mol for the dissociation into the ground stateand CO.

    We analyze the nature of the donor-acceptor interactions in Bwith the EDA(energy decomposition analysis)in conjunction with the NOCV(natural orbitals for chemical valence)method [68],which gives a detailed insight into the bonding situation.The numerical results of the OC?B interactions in B(CO)at the BP86/TZP level are listed in Table II.The data show that both species havevery similar orbital interaction energy(?Eorb).Further inspection of the orbital components of?Eorbreveals that both species have very similar CO→B σ donation interaction,which is much stronger than the B→CO π back donation interactions.There is a large di ff erence in the strength of the B→CO π back donation between the two complexes.The π contribution of?Eorb(π⊥)+ ? Eorb(π‖)in B2(CO)4+is much larger than that in B(CO)3+.Figure 6 displays the deformation densities ?ρ(σ)and?ρ(π)which are connected to the σ donation and π backdonation in B(CO)The direction of the charge fl ow is indicated by the colors red→blue.The shape of?ρ(σ)clearly indicates that the charge fl ow comes mainly from the lone-pairelectrons at carbon to the boron atom.While the π backdonation leads to charge accumulation mainly at the carbon atom of CO.

    TABLE II EDA-NOCV results of the chemical bonding in OC-B(CO)2+and OC-B2(CO)3+at BP86/TZP.Energy values are given in kcal/mol.

    FIG.6 Plot of deformation densities?ρ of the pairwise orbital interactions and the associated interaction energies?Eorb(in kcal/mol)between CO and B

    IV.CONCLUSION

    Boron carbonyl cation complexes are produced via a laser vaporization supersonic ion source in the gas phase.The cations of interest are each mass-selected and their infrared spectra are measured via infrared photodissociation spectroscopy in the carbonyl stretching frequency region.Density functional calculations have been performed and the calculated vibrational spectra are compared to the experimental data to identify the gas-phase structures of the ions.The B(CO)3+and B2(CO)4+cations are the most intense peaks in the mass spectrum.The B(CO)3+ion is too strongly bound to achieve an e ff ective IR spectrum.In contrast, the B(CO)4+ion dissociates very e ffi ciently under IR irradiation.It is characterized to be a very weakly bound complex involving a B(CO)3+core ion,which is predicted to have a planar D3hstructure with the central boron retaining the most favorable 8-electron con fi guration.The B2(CO)4+cation is determined to have a planar D2hstructure involving a B?B bond.Both the B(CO)3+and B2(CO)4+ions have slightly red-or blue-shifted CO stretching frequencies with respect to free CO.The analysis of the B-CO interactions with the EDA-NOCV method indicates that the OC→B σ donation is stronger than the B→CO π back donation.

    V.ACKNOWLEDGMENTS

    The work was supported by the Ministry of Science and Technology of China(No.2013CB834603)and the National Natural Science Foundation of China (No.21173053 and No.21433005).

    [1]F.A.Cotton,G.Wilkinson,C.A.Murillo,and M. Bochmann,Advanced Inorganic Chemistry,6th Edn., New York:John Wiley,(1999).

    [2]G.Frenking and N.Fr¨ohlich,Chem.Rev.100,717 (2000).

    [3]M.F.Zhou,L.Andrews,and C.W.Bauschlicher Jr., Chem.Rev.101,1931(2001).

    [4]F.A.Cotton,B.A.Frenz,and L.Kruczynski,J.Am. Chem.Soc.95,951(1973).

    [5]M.Manassero,M.Sansoni,and G.Longoni,J.Chem. Soc.Chem.Commun.919(1976).

    [6]R.Colton and M.J.McCormick,Coord.Chem.Rev. 31,1(1980).

    [7]L.Jiang and Q.Xu,J.Am.Chem.Soc.127,42(2005).

    [8]X.J.Zhou,J.M.Cui,Z.H.Li,G.J.Wang,Z.P.Liu, and M.F.Zhou,J.Phys.Chem.A 117,1514(2013).

    [9]J.H.Osborne,A.L.Rheingold,and W.C.Trogler,J. Am.Chem.Soc.107,6292(1985).

    [10]X.J.Zhou,J.M.Cui,Z.H.Li,G.J.Wang,and M.F. Zhou,J.Phys.Chem.A 116,12349(2012).

    [11]W.A.Herrmann,H.Biersack,M.L.Ziegler,K.Weidenhammer,R.Siegel,and D.Rehder,J.Am.Chem. Soc.103,1692(1981).

    [12]A.J.Bridgeman,Inorg.Chim.Acta.321,27(2001).

    [13]H.J.Himmel,A.J.Downs,and T.M.Greene,Chem. Rev.102,4191(2002).

    [14]L.Andrews,T.J.Tague,and G.P.Kushto,Inorg. Chem.34,2952(1995).

    [15]P.H.Kasai and P.M.Jones,J.Am.Chem.Soc.106, 8018(1984).

    [16]J.H.B.Chenier,C.A.Hampson,J.A.Howard,B. Mile,and R.Sutcli ff e,J.Phys.Chem.90,1524(1986).

    [17]C.Xu,L.Manceron,and J.P.Perchard,J.Chem.Soc., Faraday Trans.89,1291(1993).

    [18]Q.Y.Kong,M.H.Chen,J.Dong,Z.H.Li,K.N.Fan, and M.F.Zhou,J.Phys.Chem.A 106,11709(2002). [19]L.N.Zhang,J.Dong,M.F.Zhou,and Q.Z.Qin,J. Chem.Phys.113,10169(2000).

    [20]P.H.Kasai and P.M.Jones,J.Phys.Chem.89,2019 (1985).

    [21]J.A.Howard,R.Sutcli ff e,C.A.Hampson,and B.Mile, J.Phys.Chem.90,4268(1986).

    [22]H.J.Himmel,A.J.Downs,J.C.Greene,and T.M. Greene,J.Phys.Chem.A 104,3642(2000).

    [23]W.G.Hatton,N.P.Hacker,and P.H.Kasai,J.Phys. Chem.93,1328(1989).

    [24]R.R.Lembke,R.F.Ferrante,and W.Weltner,J.Am. Chem.Soc.99,416(1977).

    [25]M.F.Zhou,L.Jiang,and Q.Xu,J.Chem.Phys.121, 10474(2004).

    [26]A.Feltrin,S.N.Cesaro,and F.Ramondo,Vib.Spectrosc.10,139(1996).

    [27]M.F.Zhou,L.Jiang,and Q.Xu,J.Phys.Chem.A 109,3325(2005).

    [28]A.Bos,J.Chem.Soc.Chem.Commun.1,26(1972).

    [29]L.N.Zhang,J.Dong,and M.F.Zhou,J.Chem.Phys. 113,8700(2000).

    [30]L.Jiang and Q.Xu,Bull.J.Chem.Soc.Jpn.79,857 (2006).

    [31]L.Jiang and Q.Xu,J.Chem.Phys.122,034505(2005). [32]L.N.Zhang,J.Dong,and M.F.Zhou,Chem.Phys. Lett.335,334(2001).

    [33]A.J.Bridgeman,N.Harris,and N.A.Young,Chem. Commun.14,1241(2000).

    [34]T.Liang,S.D.Flynn,A.M.Morrison,and G.E.Douberly,J.Phys.Chem.A 115,7437(2011).

    [35]A.D.Brathwaite and M.A.Duncan,J.Phys.Chem. A 116,1375(2012).

    [36]A.Ellern,T.Drews,and L.Seppelt,Z.Anorg.Allg. Chem.627,73(2001).

    [37]R.Tonner and G.Frenking,Chem.Eur.J.14,3260 (2008).

    [38]I.Bernhardi,T.Drews,and K.Seppelt,Angew.Chem. Int.Ed.38,2232(1999).

    [39]A.B.Burg and H.I.Schlesinger,J.Am.Chem.Soc. 59,780(1937).

    [40]A.Terheiden,E.Bernhardt,H.Willner,and F.Aubke, Angew.Chem.Int.Ed.41,799(2002).

    [41]M.Finze,E.Bernhardt,A.Terheiden,M.Berkei,H. Willner,D.Christen,H.Oberhammer,and F.Aubke, J.Am.Chem.Soc.124,15385(2002).

    [42]M.Gerken,G.Pawelke,E.Bernhardt,and H.Willner, Chem.Eur.J.16,7527(2010).

    [43]A.Fukazawa,J.L.Dutton,C.Fan,L.G.Mercier,A.Y. Houghton,Q.Wu,W.E.Piers,and M.Parvez,Chem. Sci.3,1814(2012).

    [44]Y.M.Hamrick,R.J.V.Zee,J.T.Godbout,W.Weltner,W.J.Lauderdale,J.F.Stanton,and R.J.Bartlett, J.Phys.Chem.95,2840(1991).

    [45]T.R.Burkholder and L.Andrews,J.Phys.Chem.96, 10195(1992).

    [46]M.F.Zhou,N.Tsumori,L.Andrews,and Q.Xu,J. Phys.Chem.A 107,2458(2003).

    [47]Q.N.Zhang,W.L.Li,C.Xu,M.H.Chen,M.F.Zhou, J.Li,D.M.Andrada,and G.Frenking,Angew.Chem. Int.Ed.54,11078(2015).

    [48]M.F.Zhou,N.Tsumori,Z.H.Li,K.N.Fan.L.Andrews,and Q.Xu,J.Am.Chem.Soc.124,12936 (2002).

    [49]M.F.Zhou,Z.X.Wang,P.R.Schleyer,and Q.Xu, Chem.Phys.Chem.4,763(2003).

    [50]M.F.Zhou,Q.Xu,Z.X.Wang,and P.R.Schleyer,J. Am.Chem.Soc.124,14854(2002).

    [51]H.Braunschweig,R.D.Dewhurst,F.Hupp,M.Nutz, K.Radacki,C.W.Tate,A.Vargas,and Y.Ye,Nature 522,327(2015).

    [52]G.J.Wang,C.X.Chi,X.P.Xing,C.J.Ding,and M. F.Zhou,Sci.China Chem.57,172(2014).

    [53]G.J.Wang,C.X.Chi,J.M.Cui,X.P.Xing,and M. F.Zhou,J.Phys.Chem.A 116,2484(2012).

    [54]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [55]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [56]D.E.Woon and T.H.Dunning Jr.,J.Chem.Phys. 100,2975(1994).

    [57]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V. Barone,B.Mennucci,G.A.Petersson,H.Nakat-suji, M.Caricato,X.Li,H.P.Hratchian,A.F.Iz-maylov, J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada, M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M. Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,N.J.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochter-ski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A02, Pittsburgh,PA:Gaussian,Inc.,(2009).

    [58]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [59]J.P.Perdew,Phys.Rev.B 33,8822(1986).

    [60]J.G.Snijders,E.J.Baerends,and P.Vernoojs,At. Data Nucl.Data Tables 26,483(1981).

    [61]G.Te Velde,F.M.Bickelhaupt,E.J.Baerends,C. Fonseca Guerra,S.J.A.Van Gisbergen,J.G.Snijders, and T.Ziegler,J.Comput.Chem.22,931(2001).

    [62]M.Okumura,L.I.Yeh,J.D.Myers,and Y.T.Lee,J. Chem.Phys.85,2328(1986).

    [63]W.H.Robertson and M.A.Johnson,Annu.Rev.Phys. Chem.54,173(2003).

    [64]A.M.Ricks,Z.E.Reed,and M.A.Duncan,J.Mol. Spectrosc.266,63(2011).

    [65]G.J.Wang,J.M.Cui,C.X.Chi,X.J.Zhou,Z.H.Li, X.P.Xing,and M.F.Zhou,Chem.Sci.3,3272(2012).

    [66]J.M.Cui,G.J.Wang,X.J.Zhou,C.X.Chi,Z.H.Li, Z.P.Liu,and M.F.Zhou,Phys.Chem.Chem.Phys 15,10224(2013).

    [67]P.Pyykko and M.Atsumi,Chem.Eur.J.15,12770 (2009).

    [68]M.P.Mitoraj,A.Michalak,and T.Ziegler,J.Chem. Theory Comput.5,962(2009).

    免费看日本二区| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品94久久精品| 青春草亚洲视频在线观看| 日本免费a在线| 成人无遮挡网站| 人妻久久中文字幕网| 久久久久久久亚洲中文字幕| 欧美激情久久久久久爽电影| 日日摸夜夜添夜夜添av毛片| 色哟哟哟哟哟哟| 免费观看a级毛片全部| 深夜精品福利| 久久午夜福利片| 国产中年淑女户外野战色| 日本在线视频免费播放| 亚洲成人av在线免费| 欧美日本亚洲视频在线播放| www.色视频.com| 午夜亚洲福利在线播放| 一本久久精品| 久久精品国产99精品国产亚洲性色| 久久这里有精品视频免费| 白带黄色成豆腐渣| av天堂在线播放| 麻豆国产97在线/欧美| 色播亚洲综合网| 卡戴珊不雅视频在线播放| 男插女下体视频免费在线播放| 在现免费观看毛片| 99热6这里只有精品| 高清在线视频一区二区三区 | 国产人妻一区二区三区在| 成人二区视频| 国产激情偷乱视频一区二区| 成年版毛片免费区| 99热网站在线观看| 亚洲国产精品成人综合色| 成年免费大片在线观看| a级一级毛片免费在线观看| 搞女人的毛片| 亚洲成人精品中文字幕电影| 国产精品爽爽va在线观看网站| 简卡轻食公司| 久久精品国产鲁丝片午夜精品| 在线播放无遮挡| 亚洲精品亚洲一区二区| 久久人人爽人人爽人人片va| 欧美激情在线99| 特大巨黑吊av在线直播| 麻豆成人av视频| 欧美精品一区二区大全| 国产成人福利小说| 男人和女人高潮做爰伦理| 特大巨黑吊av在线直播| 免费av不卡在线播放| 蜜臀久久99精品久久宅男| 欧美日本亚洲视频在线播放| 国产精品久久久久久av不卡| 秋霞在线观看毛片| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 又粗又硬又长又爽又黄的视频 | 国产 一区 欧美 日韩| 亚洲欧美成人精品一区二区| 久久欧美精品欧美久久欧美| or卡值多少钱| 最近2019中文字幕mv第一页| 国产av麻豆久久久久久久| 在线观看免费视频日本深夜| 亚洲欧美日韩无卡精品| 日日摸夜夜添夜夜爱| 国产视频内射| 成人综合一区亚洲| 老师上课跳d突然被开到最大视频| 国产伦一二天堂av在线观看| 日本与韩国留学比较| 国产精品免费一区二区三区在线| 午夜免费激情av| 在线免费十八禁| 色尼玛亚洲综合影院| 免费av不卡在线播放| 五月伊人婷婷丁香| 偷拍熟女少妇极品色| 啦啦啦啦在线视频资源| 成人永久免费在线观看视频| 亚洲中文字幕日韩| 亚洲av免费在线观看| 免费搜索国产男女视频| 日本黄色片子视频| 成年版毛片免费区| 久久婷婷人人爽人人干人人爱| 女人十人毛片免费观看3o分钟| 久久99热6这里只有精品| 国产日韩欧美在线精品| 国产三级中文精品| 嫩草影院精品99| 成人性生交大片免费视频hd| 成人午夜精彩视频在线观看| 天堂中文最新版在线下载 | 两个人视频免费观看高清| 亚洲人与动物交配视频| 老女人水多毛片| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 给我免费播放毛片高清在线观看| 级片在线观看| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 久久精品国产亚洲av天美| 尾随美女入室| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 一进一出抽搐动态| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 国产精品人妻久久久影院| 午夜老司机福利剧场| 久久久a久久爽久久v久久| 老熟妇乱子伦视频在线观看| 久久久久久伊人网av| 六月丁香七月| 亚洲人成网站在线播| av福利片在线观看| 久久久久久久久大av| 岛国在线免费视频观看| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 国产一区二区在线观看日韩| 亚洲精品久久国产高清桃花| 中文字幕制服av| 亚洲在久久综合| 3wmmmm亚洲av在线观看| 一级毛片我不卡| 别揉我奶头 嗯啊视频| 成年女人看的毛片在线观看| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 日韩大尺度精品在线看网址| 亚洲一区二区三区色噜噜| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人| 变态另类成人亚洲欧美熟女| www.色视频.com| 午夜老司机福利剧场| 欧美另类亚洲清纯唯美| 人人妻人人澡人人爽人人夜夜 | 国产91av在线免费观看| 夫妻性生交免费视频一级片| 久久中文看片网| 日本一二三区视频观看| 天堂影院成人在线观看| 日本黄大片高清| 免费不卡的大黄色大毛片视频在线观看 | а√天堂www在线а√下载| 久久99热6这里只有精品| 伦理电影大哥的女人| 色噜噜av男人的天堂激情| 色播亚洲综合网| 精品久久久噜噜| 国产黄片美女视频| 日韩一本色道免费dvd| 国产精品人妻久久久久久| 欧美日韩国产亚洲二区| 色吧在线观看| 国产片特级美女逼逼视频| 午夜精品一区二区三区免费看| 国产乱人视频| 日日干狠狠操夜夜爽| 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 少妇被粗大猛烈的视频| 99riav亚洲国产免费| 美女被艹到高潮喷水动态| 国产精品综合久久久久久久免费| 国产精品日韩av在线免费观看| 国产精品久久久久久久久免| 亚洲国产精品合色在线| 日日撸夜夜添| 韩国av在线不卡| 欧美人与善性xxx| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 国产精品伦人一区二区| 人体艺术视频欧美日本| 哪里可以看免费的av片| 久久草成人影院| 日本黄色视频三级网站网址| 国产一区亚洲一区在线观看| 国产精品嫩草影院av在线观看| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 天天躁夜夜躁狠狠久久av| 97在线视频观看| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 久久99热这里只有精品18| 一级毛片我不卡| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 嫩草影院新地址| 中文字幕免费在线视频6| 内射极品少妇av片p| 99热只有精品国产| 美女cb高潮喷水在线观看| 免费观看精品视频网站| 此物有八面人人有两片| 六月丁香七月| 久久这里有精品视频免费| 2021天堂中文幕一二区在线观| 一级毛片久久久久久久久女| 国产大屁股一区二区在线视频| 日本-黄色视频高清免费观看| 变态另类丝袜制服| 国产一级毛片在线| 高清午夜精品一区二区三区 | 亚洲国产日韩欧美精品在线观看| 免费看a级黄色片| 丰满人妻一区二区三区视频av| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 天堂√8在线中文| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 欧美色欧美亚洲另类二区| 高清午夜精品一区二区三区 | 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9| 久久九九热精品免费| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费| 性插视频无遮挡在线免费观看| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 亚洲五月天丁香| 亚洲av成人精品一区久久| 日韩一本色道免费dvd| 欧美性感艳星| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 午夜福利高清视频| 亚洲欧美清纯卡通| 尾随美女入室| 亚洲综合色惰| 久久精品久久久久久久性| 国产免费男女视频| 久久精品国产亚洲av香蕉五月| 欧美色欧美亚洲另类二区| 网址你懂的国产日韩在线| 日韩欧美三级三区| 美女 人体艺术 gogo| 在线观看免费视频日本深夜| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 天堂中文最新版在线下载 | 欧美在线一区亚洲| 免费看日本二区| 小说图片视频综合网站| 一级二级三级毛片免费看| 精品99又大又爽又粗少妇毛片| 在线a可以看的网站| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 熟女电影av网| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片| 国产成人精品久久久久久| 久久6这里有精品| 免费人成在线观看视频色| 日本五十路高清| 日韩成人av中文字幕在线观看| 啦啦啦韩国在线观看视频| 久久国产乱子免费精品| 成人av在线播放网站| 欧美区成人在线视频| 国国产精品蜜臀av免费| av黄色大香蕉| 99久久精品热视频| 麻豆av噜噜一区二区三区| 精品不卡国产一区二区三区| 观看美女的网站| 日韩欧美国产在线观看| 国产精品福利在线免费观看| 久久久久网色| 波野结衣二区三区在线| av在线天堂中文字幕| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 久久精品夜色国产| 女同久久另类99精品国产91| 亚洲最大成人av| 免费观看精品视频网站| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看美女被高潮喷水网站| 欧美潮喷喷水| 日韩欧美一区二区三区在线观看| 国产视频内射| 不卡一级毛片| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看| 国产成人精品婷婷| 亚洲欧美精品综合久久99| 99国产极品粉嫩在线观看| 97热精品久久久久久| 少妇的逼水好多| 亚洲18禁久久av| 国产美女午夜福利| 日韩一区二区视频免费看| 日本免费一区二区三区高清不卡| 啦啦啦韩国在线观看视频| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| av专区在线播放| 少妇高潮的动态图| eeuss影院久久| 国产高清有码在线观看视频| 最近的中文字幕免费完整| 国产伦精品一区二区三区四那| 全区人妻精品视频| avwww免费| 国产午夜精品论理片| 欧美最黄视频在线播放免费| 国产黄片美女视频| 91午夜精品亚洲一区二区三区| 国产伦精品一区二区三区视频9| 狂野欧美激情性xxxx在线观看| 在现免费观看毛片| 麻豆精品久久久久久蜜桃| 联通29元200g的流量卡| 蜜臀久久99精品久久宅男| 超碰av人人做人人爽久久| a级毛色黄片| 国产成人一区二区在线| 91av网一区二区| 久久国内精品自在自线图片| 久久久欧美国产精品| 久久精品国产亚洲av香蕉五月| 成人性生交大片免费视频hd| 日本熟妇午夜| 久久中文看片网| 精品一区二区三区视频在线| 欧美一级a爱片免费观看看| 欧美不卡视频在线免费观看| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 女同久久另类99精品国产91| 欧美日韩乱码在线| 中文字幕av在线有码专区| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 一区二区三区四区激情视频 | 午夜福利在线在线| 热99re8久久精品国产| 精品不卡国产一区二区三区| 午夜亚洲福利在线播放| 搞女人的毛片| 黄色视频,在线免费观看| 国产亚洲精品av在线| 中文精品一卡2卡3卡4更新| 国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| av女优亚洲男人天堂| 亚洲成人av在线免费| 欧美成人一区二区免费高清观看| 91精品国产九色| 99久久久亚洲精品蜜臀av| 欧美xxxx黑人xx丫x性爽| 亚洲色图av天堂| 最近视频中文字幕2019在线8| 国产色婷婷99| 又粗又硬又长又爽又黄的视频 | 美女脱内裤让男人舔精品视频 | 干丝袜人妻中文字幕| 国内精品美女久久久久久| 中国美女看黄片| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 最近的中文字幕免费完整| 亚洲av中文av极速乱| 老司机影院成人| 亚洲中文字幕日韩| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 狠狠狠狠99中文字幕| 欧美日本视频| 亚洲国产欧美在线一区| 亚洲av中文字字幕乱码综合| 亚洲国产欧美在线一区| 成人欧美大片| 国产国拍精品亚洲av在线观看| 精品久久久噜噜| 亚洲av.av天堂| 午夜精品国产一区二区电影 | 亚洲最大成人av| 黄色欧美视频在线观看| 国产一区亚洲一区在线观看| 成人综合一区亚洲| 中文精品一卡2卡3卡4更新| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 亚洲第一电影网av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在视频线在精品| 亚洲精品成人久久久久久| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 丝袜美腿在线中文| 久久久久久久久久成人| 免费看美女性在线毛片视频| 天堂影院成人在线观看| 国产av不卡久久| 老师上课跳d突然被开到最大视频| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件| 免费看日本二区| 1000部很黄的大片| 一本久久中文字幕| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 中国美白少妇内射xxxbb| 菩萨蛮人人尽说江南好唐韦庄 | 毛片女人毛片| 少妇高潮的动态图| 亚洲最大成人手机在线| 精品熟女少妇av免费看| 美女 人体艺术 gogo| 日本免费一区二区三区高清不卡| 久久九九热精品免费| 亚洲无线观看免费| 国产精品精品国产色婷婷| 97超碰精品成人国产| 婷婷色综合大香蕉| 亚洲国产精品国产精品| 国产高清激情床上av| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 直男gayav资源| 免费av毛片视频| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看 | eeuss影院久久| 国产单亲对白刺激| 99热网站在线观看| 又爽又黄a免费视频| 国产成人精品婷婷| 精品国内亚洲2022精品成人| 国产精品女同一区二区软件| 色5月婷婷丁香| 青春草亚洲视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| a级毛片免费高清观看在线播放| 欧美最黄视频在线播放免费| 男女边吃奶边做爰视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩成人av中文字幕在线观看| 久久久久久久久中文| 两个人视频免费观看高清| 成人高潮视频无遮挡免费网站| 毛片一级片免费看久久久久| 欧美日韩综合久久久久久| 69av精品久久久久久| 在线天堂最新版资源| 春色校园在线视频观看| 亚洲精品久久久久久婷婷小说 | av女优亚洲男人天堂| 身体一侧抽搐| 精品人妻熟女av久视频| 免费观看a级毛片全部| 亚洲欧美精品综合久久99| 男女做爰动态图高潮gif福利片| 欧美高清性xxxxhd video| 悠悠久久av| 免费看av在线观看网站| 精品人妻视频免费看| 国产在视频线在精品| 美女黄网站色视频| 国产精品久久电影中文字幕| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 嫩草影院新地址| 九草在线视频观看| 一级毛片久久久久久久久女| 熟女电影av网| 国产精华一区二区三区| 日本与韩国留学比较| 又爽又黄无遮挡网站| 我的女老师完整版在线观看| 午夜精品一区二区三区免费看| 欧美性感艳星| 久久鲁丝午夜福利片| 日本欧美国产在线视频| 12—13女人毛片做爰片一| 赤兔流量卡办理| 亚洲精品色激情综合| 国产午夜精品一二区理论片| 亚洲av一区综合| 国内精品一区二区在线观看| 99在线视频只有这里精品首页| 两个人的视频大全免费| 嘟嘟电影网在线观看| av国产免费在线观看| 成熟少妇高潮喷水视频| 九色成人免费人妻av| 日韩,欧美,国产一区二区三区 | 乱人视频在线观看| 一个人看的www免费观看视频| 亚洲欧美日韩高清专用| www日本黄色视频网| 日韩大尺度精品在线看网址| 日本爱情动作片www.在线观看| 日本-黄色视频高清免费观看| 夜夜夜夜夜久久久久| www.色视频.com| 午夜免费男女啪啪视频观看| 免费搜索国产男女视频| 国产乱人视频| 色尼玛亚洲综合影院| 九九热线精品视视频播放| 国产精品1区2区在线观看.| 熟女人妻精品中文字幕| 色噜噜av男人的天堂激情| 亚洲丝袜综合中文字幕| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 老司机福利观看| 有码 亚洲区| 看十八女毛片水多多多| 毛片女人毛片| 亚洲成人中文字幕在线播放| 精品久久久噜噜| 69人妻影院| 国产极品精品免费视频能看的| 一级av片app| 黑人高潮一二区| 免费看光身美女| 久久久色成人| 色噜噜av男人的天堂激情| 99久久精品一区二区三区| 欧美成人a在线观看| 日韩人妻高清精品专区| 久久久久久久久久久丰满| 亚洲无线在线观看| 婷婷精品国产亚洲av| 一级黄片播放器| 色吧在线观看| 亚洲在久久综合| 精品一区二区三区视频在线| 男女下面进入的视频免费午夜| 亚洲av中文字字幕乱码综合| 毛片一级片免费看久久久久| 国产乱人视频| 午夜久久久久精精品| 在线观看美女被高潮喷水网站| 国产成人精品久久久久久| 亚洲av不卡在线观看| 九色成人免费人妻av| 亚洲av二区三区四区| 久久精品夜色国产| 高清日韩中文字幕在线| 国产午夜精品论理片| 日韩亚洲欧美综合| 日韩精品有码人妻一区| 少妇的逼水好多| 高清毛片免费观看视频网站| 成人三级黄色视频| 国产欧美日韩精品一区二区| 亚洲最大成人av| 小说图片视频综合网站| 日本黄色片子视频| www.色视频.com| 特级一级黄色大片| 中国美女看黄片| 亚洲欧美日韩无卡精品| 亚洲图色成人| 18禁在线播放成人免费| 国产成人freesex在线| 国产片特级美女逼逼视频| 国产三级在线视频| 国产色婷婷99| 久久久久久久午夜电影| 中文亚洲av片在线观看爽| 亚洲欧美日韩高清专用| 男女做爰动态图高潮gif福利片| 丝袜喷水一区| 日日摸夜夜添夜夜爱| 插逼视频在线观看| 女的被弄到高潮叫床怎么办| 99热网站在线观看| 免费看光身美女| 一区二区三区免费毛片| 亚洲国产精品sss在线观看| 干丝袜人妻中文字幕| 日韩欧美一区二区三区在线观看| 免费黄网站久久成人精品| 亚州av有码| 国产亚洲欧美98| 日韩精品青青久久久久久| 日韩av在线大香蕉| 夫妻性生交免费视频一级片| 亚洲高清免费不卡视频| 久久热精品热| 性欧美人与动物交配| 亚洲欧洲国产日韩|