• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study?

    2016-04-08 06:35:37BinbinXieChunxiangLiGanglongCuiQiuFangKeyLaboratoryofTheoreticalandComputationalPhotochemistryMinistryofEducationCollegeofChemistryBeijingNormalUniversityBeijing100875ChinaDatedReceivedonDecember2015AcceptedonDecember
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Bin-bin Xie,Chun-xiang Li,Gang-long Cui?,Qiu Fang?Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University,Beijing 100875,China(Dated:Received on December 1,2015;Accepted on December 30,2015)

    ?

    ARTICLE Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study?

    Bin-bin Xie,Chun-xiang Li,Gang-long Cui?,Qiu Fang?
    Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University,Beijing 100875,China
    (Dated:Received on December 1,2015;Accepted on December 30,2015)

    Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2′-hydroxyphenyl)-4-methyloxazole.At the CASSCF level,we have optimized minima,conical intersections,minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer(ESIPT),rotation,photoisomerization,and the excited-state deactivation pathways.The energies of all structures and paths are re fi ned by the MS-CASPT2 method.On the basis of the present results,we found that the ESIPT process in a conformer with the OH···N hydrogen bond is essentially barrierless process; whereas,the ESIPT process is inhibited in the other conformer with the OH···O hydrogen bond.The central single-bond rotation of the S1enol species is energetically unfavorable due to a large barrier.In addition,the excited-state deactivation of the S1keto species,as a result of the ultrafast ESIPT,is very e ffi cient because of the existence of two easily-approached keto S1/S0conical intersections.In stark contrast to the S1keto species,the decay of the S1enol species is almostly blocked.The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.

    Keywords:Excited state proton transfer,Photoisomerization,Conical intersection,Ab initio,Photochemistry

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: ganglong.cui@bnu.edu.cn,fangqiu917@bnu.edu.cn

    I.INTRODUCTION

    Excited state intramolecular proton transfer(ESIPT) and its subsequent photodynamics play an important role in a lot of biological processes[1?8]and in numerous applications such as photostabilizers[9]UV fi lter materials[10?12], fl uorescent probes[13],and sunscreens[14].Due to its importance,this kind of photochemical reactions has been extensively studied by experimental and theoretical chemists in past decades [15?37].

    FIG.1 2-(2'-Hydroxyphenyl)-4-methyloxazole molecule in which there is a strong intramolecular hydrogen bond O?H···Nenablingexcited-stateintramolecularproton transfer between the enol and keto conformers.Also shown are the competitive single-bond rotation(left)and doublebond photoisomerization(right)channels.

    In this work,we focus on the system of 2-(2′-hydroxyphenyl)-4-methyloxazole(HPMO),as shown in Fig.1.Experimental study of excited-state dynamics of HPMO can be dated back to the end of the last century.Guallar et al.experimentally studied the ESIPT and rotational processes of 2-(2′-hydroxyphenyl)-oxazole derivatives including HPMO in both S0and S1states and supported the coexistence of two groundstate conformers with OH···N and OH···O hydrogen bonds[38].Interestingly,only a conformer was observed to experience a photoinduced proton transfer.Zewail et al.studied the femtosecond dynamics of HPMO in con fi ned nanocavities and in aprotic solvents[39].They suggested that the ESIPT process occurs within 300 fs in aprotic solvents;whereas,in con fi ned nanocavities, this process is slowed down to a subpicosecond time scale.In addition,they also found a picosecond twisting motion around the central single bond,which is noticeably inhibited inside the nanocavities.Garc′?a-Ochoa et al.explored the ESIPT process of HPMO in various hydrophobic nanocavities in aqueous medium[40].In their experiments,upon irradiation,a fast ESIPT re-action produces a phototautomer with a large Stokes shift.Furthermore,they also found a twisting motion around the central single bond of this generated phototautomer.Later,Zhong et al.further explored the femtosecond dynamics of HPMO in human serum albumin protein,also in micelles and cyclodextrins for comparison[41].They found that the con fi ned geometry restrains the nonradiative decay and thus significantly extends the excited-state lifetime.Their most important fi nding is that the ESIPT and subsequent intramolecular twisting proceed in two di ff erent routes. The fi rst is the direct in-plane stretching motion,about 200 fs,which is insensitive to the surroundings.The second is less dominant and is related to the out-ofplane twisting motion(ca.3 ps)of the two heterocyclic rings,which is drastically slowed down in the protein hydrophobic environment.

    On the theoretical side,there exist merely a few crude theoretical calculations at the semiempirical,Hartree-Fock(HF)and con fi guration interaction with single excitation(CIS)levels.Douhal et al.employed the HF and CIS methods to study the ESIPT processes in the S0and S1states,respectively[38].Guallar and coworkers performed semiclassical molecular dynamics simulations for the ESIPT process,which is however based on the CIS computed potential energy surface [42].Lluch et al.also studied the ESIPT process of HPMO embedded in β-cyclodextrin using the HF and CIS-based ONIOM methods[43,44].Hamms-Schi ff er et al.simulated the ultrafast ESIPT process of HPMO in vacuo,solution,and protein environments using classical molecular dynamics in conjunction with an empirical valence bond potential[45].They found that the ring-ring bending motion is the most important low-frequency vibrational mode,which helps decrease the proton-acceptor distance and thus facilitates proton transfer;the S1decay is much slower in water than in aprotic solvents and protein,which is ascribed to the fact that intermolecular hydrogen-bonding leads to a disruption of the intramolecular hydrogen-bonding in HPMO.

    However,previous theoretical studies only focus on the ESIPT process of the excited-state dynamics of HPMO;thus,a few essential mechanistic details remain unknown,for example,how does the generated phototautomer decay to the S0state?Furthermore,it is well known that excited-state deactivation is usually related to conical intersections.Near these quasi-degenerate regions,multi-reference electronic structure methods must be used to get a correct description of topological structures of relevant potential energy surfaces.Herein, we have for the fi rst time employed the high-level complete active space self-consistent fi eld(CASSCF)and its multi-state second-order perturbation theory(MSCASPT2)methods to study the ESIPT and rotational processes,and the S1excited-state deactivation channels.

    II.COMPUTATIONAL DETAILS

    Minima(S0and S1),minimum-energy conical intersections(MECI,S1/S0),and minimum-energy reaction paths(S0and S1)are computed using the stateaveraged complete active space self-consistent fi eld(SACASSCF)method in which equal state weights are used for both electronic states.In all SA-CASSCF geometric optimizations,an active space of 10 electrons in 8 orbitals is used,which includes 10π electrons in 8π and π?orbitals(Fig.2).To obtain more accurate potential energy pro fi les,the MS-CASPT2 method[46, 47]that provides more correlation energy is exploited to re-evaluate the energies of all CASSCF optimized geometries and reaction paths.In single-point MSCASPT2 calculations,an imaginary shift of 0.2 a.u.is used to avoid the intruder-state issue[48];the Cholesky decomposition technique with unbiased auxiliary basis sets is used for accurate two-electron integral approximations[49];the ionization potential-electron a ffi nity (IPEA)shift was not applied[50].This combined MSCASPT2//CASSCF computational strategy enables a good description for photophysics and photochemistry of medium-size molecular systems in vacuo,solution, and proteins,as demonstrated in many our previous computational studies[16,51?59].

    Vertical excitation energies are computed using TD-CAM-B3LYP[60],TD-B3LYP[61?64],and MSCASPT2 methods,respectively.The 6-31G?basis set [65,66]is used for all computations.All TD-DFT computations and CASSCF optimizations of conical intersections are carried out using Gaussian 09[67];all other CASSCF computations and MS-CASPT2 computations are performed using MOLCAS 8.0[68].

    III.RESULTS AND DISCUSSION

    Figure 3 shows the schematic structures optimized at the CASSCF(10,8)/6-31G?level.Table I lists the selected geometric parameters and the MS-CASPT2 ref

    i ned energies. A.S0minima and vertical excitation energies

    At the CASSCF level,we have obtained three S0conformers,which are denoted as S0-ENOL-1,S0-KETO, and S0-ENOL-2,respectively.Of them,S0-ENOL-1 and S0-ENOL-2 are the most stable two conformers at this computational level;while,S0-KETO is 18.7 and 13.2 kcal/mol higher than S0-ENOL-1 and S0-ENOL-2 in energy(Table I).

    FIG.2 Eight active orbitals in the CASSCF(10,8)/6-31G*computations.

    FIG.3 CASSAF(10,8)/6-31G?optimized S0and S1minima(bond length in?A).See supplementay material for their Cartesian coordinates.Table I collects their relative energies re fi ned by the MS-CASPT2 method.

    TABLE I Selected geometric parameters(CASSCF level, bond angles and dihedral angles in(?))and MS-CASPT2 re fi ned energies E(in kcal/mol).

    The vertical excitation energy to the fi rst excited single state S1at the enol Franck-Condon point of HPMO shows that this S0→S1vertical excitation energy is computed to be 4.2 eV at the MS-CASPT2 level and TD-B3LYP level,which is about 0.2 eV lower than that computed by the TD-CAM-B3LYP method (4.4 eV)and is about 0.3 eV higher than the experimental value measured in solution[41].We have analyzed the molecular orbitals relevant to the S0→S1 electronic transition of the enol minimum S0-ENOL-1, as shown in Fig.2.The S1state is a spectroscopically bright state being ππ?character.At the CASSCF level,there are two main transition components for the S0→S1electronic transition.One is from HOMO?2 to LUMO(weight:0.317)and another from HOMO?1 to LUMO+1(0.183).Accordingly,there are four activespace orbitals whose electronic occupations signi fi cantly deviate from empty or full one.It can also be found that HOMO?2 and LUMO+1 are localized within the left six-membered group;whereas,HOMO?1 and LUMO spread over the whole molecular space.Thus,we can observe partial electron transfer from the phenyl group (HOMO?2)to the methyloxazole group(LUMO)in the S0→S1electronic transition.

    B.S1excited-state minima

    In addition,we have optimized three S1minima at the CASSCF level,which are denoted as S1-ENOL-1, S1-KETO and S1-ENOL-2.According to the adiabatic excitation energies collected in Table I,it is clear thatat the MS-CASPT2 level,S1-ENOL-1 is 2.3 kcal/mol higher than S1-KETO and 7.4 kcal/mol lower than S1-ENOL-2,respectively;S1-KETO is 9.9 kcal/mol lower than S1-ENOL-2.

    FIG.4 Four molecular orbitals whose electronic occupations signi fi cantly deviate from empty(0.0)or full(2.0)occupation involved in the S0→S1electronic transition at the enol S1minimum.

    FIG.5 Schematic S1/S0conical intersections S1S0-1(left),S1S0-2(middle),and S1S0-3(right).Also shown are their two singly-occupied molecular orbitals and selected bond lengths in?A.

    As shown in Fig.3,the N1?H6 bond length of S1-ENOL-1 is decreased to 1.80?A from 1.91?A of S0-ENOL-1,which is a clear evidence that the excitedstate hydrogen-bonding interaction is reinforced in the S1state.The C2?C3 bond length of S1-ENOL-1 is also strengthened,which is about 0.04?A shorter than that of S0-ENOL-1.The similar changes are seen for S0-ENOL-2 and S1-ENOL-2.At S1-KETO,the H6 has already transferred to the N1 atom;the O5?H6 bond is increased by 0.12?A relative to that of S0-KETO,which implies the N1···H6 hydrogen bond is weakened.

    C.S1/S0conical intersections

    We have optimized three S1/S0conical intersections at the CASSCF level,which are denoted as S1S0-1, S1S0-2 and S1S0-3.S1S0-1 and S1S0-2 are structurally almost equivalent(Fig.5).They are located in the keto region i.e.after the H6 atom transferred to the N1 atom.Structurally,we can fi nd a strong pyramidalization at one C atom after the twisting.This could originate from the sudden polarization e ff ects,as seen in many similar systems[69?71].Table I shows that the energies of S1S0-1 and S1S0-2 are very close to each other,which are computed to be 80.3 and 82.3 kcal/mol at MS-CASPT2 level,respectively.By contrast,S1S0-3 corresponds to a conical intersection with the broken C2?O7 bond.Its energy is also close to the other two conical intersections within about 1 kcal/mol at the MS-CASPT2 level.Finally,we should note that at MS-CASPT2 level,all these three conical intersections are energetically allowed if only considering their energies relative to the S1energy at the enol Franck-Condon point i.e.S0-ENOL-1,which is about 95.7 and 101.5 kcal/mol at MS-CASPT2 and TD-CAM-B3LYP levels,respectively.However,their importance in the photodynamics of HPMO is very distinct(vide infra).

    D.Excited-state rotation

    Does the central C?C bond rotation take place easily?The answer is not.At the MS-CASPT2 level,we have computed the S1minimum-energy rotational path of HPMO.As shown in Fig.6,it is transparent that the S1barrier for the rotation from S1-ENOL-1 to S1-ENOL-2 is more than 20 kcal/mol,which is much higher than the counterpart in the S0state.Clearly,this process cannot compete with the in-plane S1excited-state intramolecular proton transfer.

    E.Excited-state proton transfer

    There are two types of S1excited-state intramolecular proton transfer in HPMO.The fi rst is from the O atom of the six-membered ring to the N atom of the fi ve-membered ring,which is barrierless and thus effi cient;whereas,the second,from the O atom of the six-membered ring to the O atom of the fi ve-membered ring,becomes inhibited due to a much higher barrier.

    The fi rst S1excited-state intramolecular proton transfer starts from the spectroscopically bright S1state that is of ππ?character at the enol minimum S0-ENOL-1.Upon excitation to this1ππ?state at the enol Franck Condon point,the system fi rst arrives at a shallow S1minimum referred to as S1-ENOL-1 in Fig.3. At this st?ructure,the N?1···H6 bond length is decreasedto 1.80A from 1.91A of the S0enol minimum S0-ENOL-1,which is a clear evidence that the hydrogen bond is reinforced in the S1(1ππ?)state.This kind of enhancement is also seen in our recent several theoretical work on excited-state intramolecular proton transfers[36,72].This hydrogen-bond shortening bene fi ts the subsequent S1excited-state intramolecular proton transfer.From the S1enol minimum S1-ENOL-1,an ultrafast excited-state proton transfer could be expected, forming an S1keto minimum S1-KETO.This point of view is supported by the MS-CASPT2//CASSCF computed S1minimum-energy proton transfer path in Fig.7. The S1potential energy surface with respect to the N1?H6 bond length is very fl at and essentially barrierless(0.7 kcal/mol at the MS-CASPT2 level).In addition,we have found that the driving force for this S1ESIPT process is not so strong because the reaction energy change is only within several kcal/mol at the MS-CASPT2 level.Thus,there should exist an equilibrium between the S1enol and keto minima.This kind of S1excited-state intramolecular proton transfer induced equilibrium is rarely reported computationally. In most of our previous computational studies,the S1excited-state intramolecular proton transfer usually corresponds to a much exothermic process[72?74].

    FIG.7 MS-CASPT2//CASSCF computed S1minimumenergy proton-transfer path(relaxed1ππ?state).

    FIG.8 MS-CASPT2//CASSCF computed S1minimumenergy proton-transfer path(relaxed1ππ?state).

    The second S1excited-state intramolecular proton transfer starts from another S1enol minimum S1-ENOL-2.It is clear that this process is thermodynamically unfavorable in the S1state at the MS-CASPT2 level in that the S1energy increases with the increasing O7?H6 bond length(Fig.8).Considering that it is also very di ffi cult for HPMO to transform from S1-ENOL-1 to S1-ENOL-2 in Fig.6(more than 20 kcal/mol at MS-CASPT2),it is safe to expect that this latter S1excited-state intramolecular proton transfer is entirely blocked in the photodynamics of HPMO.

    FIG.9 MS-CASPT2//CASSCF computed S1minimumenergy reaction path with regard to the O7?C2 bond length. It connects the enol1ππ?minimum S1-ENOL-1 and the enol minimum-energy S1/S0conical intersection S1S0-3.

    F.Deactivation path of the S1enol species

    In addition to the ultrafast,barrierless S1excitedstate intramolecular proton transfer as mentioned above,the S1enol minimum S1-ENOL-1 can also undergo an S1excited-state decay via the S1/S0conical intersection with the broken C?O bond i.e.S1S0-3 (see Fig.3).However,this S1excited-state deactivation channel is nearly blocked because its related S1barrier, on the basis of the MS-CASPT2//CASSCF computed S1minimum-energy reaction path in Fig.9,is predicted to be 21.9 kcal/mol,which cannot be overcome concerning the S1energy of HPMO at the enol Franck-Condon point.

    G.Deactivation path of the S1keto species

    In contrast to the S1enol species,there exist e ffi cient S1excited-state decay pathways connecting the S1keto species and the keto S1/S0conical intersections S1S0-1 and S1S0-2.At the MS-CASPT2//CASSCF level,we have computed the corresponding S1minimum-energy reaction path along the rotation of the N1?C2?C3?C4 dihedral angle,which is shown in Fig.10.It is clear there are two quasi-degenerate regions,which are located at the positions with the dihedral angle of 60?and 130?, respectively.In fact,these two regions are close to the two keto S1/S0conical intersections S1S0-1 and S1S0-2. As mentioned before,these two conical intersections are energetically allowed because their energies are all lower than the S1energy at the enol Franck-Condon point.

    Next,we will show they can also be accessed from their nearby S1keto species.Apparently,it is very easy for the S1keto species to arrive at the fi rst keto S1/S0conical intersection i.e.S1S0-1 because there only exists a small barrier of 3.7 kcal/mol at the MS-CASPT2 level(see Fig.10,at about 60?).At this hopping area, the S1system can be de-excited to the S0state and then recover to its initial enol S0minima S0-ENOL-1 or S0-ENOL-2.Importantly,if the system does not hop to the S0state when it encounters the fi rst keto S1/S0conical intersection S1S0-1,the S1keto species still can decay to the S0state at the second keto S1/S0conical intersection S1S0-2.Taking these two aspects in account,we can conclude that the excited-state deactivation starting from the S1keto species is very e ffi cient and could be an ultrafast process.

    FIG.10 MS-CASPT2//CASSCF computed S1minimumenergy reaction path along the rotation of the N1-C2-C3-C4 dihedral angle connecting the keto1ππ?minimum S1-KETO and the two keto minimum-energy S1/S0conical intersections S1S0-1 and S1S0-2.

    H.Mechanism

    On the basis of the present results,we can summarize the photophysical and photochemical mechanism of HPMO in Fig.11.Upon irradiation to the bright S1state at the enol Franck-Condon point,the system fi rst relaxes to a nearby local S1minimum,which is referred to as S1-ENOL-1 in Fig.3.Starting from this point, there exist two competitive S1relaxation channels.The fi rst one is the nearly barrierless S1excited state intramolecular proton transfer from the O atom of the six-membered ring to the N atom of the fi ve-membered ring.Its related barrier is estimated to be 0.7 kcal/mol at the MS-CASPT2 level.This ultrafast process generates a planar S1keto species,which should be able to fl uoresce in rigid surroundings because steric interaction can signi fi cantly prevent the central C?C bond rotation.Instead,in vacuo or in low-viscosity solution, the C?C bond rotation becomes rather easy,which only needs to overcome a small barrier of 3.7 kcal/mol at the MS-CASPT2 level.Mechanistically,this facile rotation induces an e ffi cient excited-state deactivation via the two keto S1/S0conical intersections S1S0-1 and S1S0-2,which are located near the rotational pathway of the central C?C bond.On hopping to the S0state, the vibrationally“hot”molecule can move to the two enol S0minima,either S0-ENOL-1 or S0-ENOL-2.In the second one,the enol S1species can decay to the S0state via the enol S1/S0conical intersection S1S0-3.However,this relaxation channel is completely prohibited due to the existing large barrier,which is about 21.9 kcal/mol at the MS-CASPT2 level,even higher than the S1energy at the enol Franck-Condon point S0-ENOL-1,95.7 and 101.5 kcal/mol at MS-CASPT2 and TD-CAM-B3LYP levels,respectively.In addition,this process also cannot compete with the essentially barrierless S1excited-state intramolecular proton transfer. Considering these factors,this second decay pathway is mechanistically unimportant.Figure 11 schematically shows our suggested photochemical mechanism based on the present theoretical study.

    FIG.11 Photophysical and photochemical mechanism of HPMO suggested based on the present MS-CASPT2//CASSCF electronic structure calculations.Relative energies are also shown(kcal/mol).

    IV.CORRELATION WITH PREVIOUS WORK

    Our proposed photochemical mechanism rationalizes the phenomena of experiments available.We found that the ESIPT process happens only for S1-ENOL-1, which explains very well the observation of Guallar et al.[38]and Zewail et al.[39,41].In their experiments, only a conformer was observed to experience a photoinduced proton transfer and the ESIPT process occurs within subpicosecond in aprotic solvents and con fi ned nanocavities.In addition,the generated S1keto species can twist its central C?C bond to arrive at the S1/S0conical intersection so as to decay to the ground state. This process is demonstrated to be e ffi cient owing to a small barrier of ca.3 kcal/mol at the MS-CASPT2 level.This also rationalizes why previous experiments found a picosecond twisting motion around the central single bond of the phototautomer[41].Since the rotational motion involves a large conformation change,it must be noticeably inhibited inside the nanocavities due to steric interaction.This fi ts very well with the conclusion of Zewail and coworkers:“the con fi ned geometry restrains the nonradiative decay and thus signi fi cantly extends the excited-state lifetime”[41].

    Furthermore,our work provides new mechanistic insights.First,correct and accurate potential energy pro fi les are attained,which plays a key role in understanding the photochemical mechanism of HPMO and its derivatives.At the CIS level,Douhal et al. predicted the S1barrier related to ESIPT is more than 10 kcal/mol for 2-(2′-hydroxyphenyl)-4-oxazole [38].Due to the use of single-reference methods in previous theoretical works,the potential energy pro fi les close to the S1/S0conical intersections,for example those related to the excited-state decay of the S1keto species, are incorrectly described.For instance,Lluch et al. predicted a barrier of ca.8 kcal/mol for the central C?C bond rotation of the S1keto species in isolated HPMO and HPMO/β-CD complex[44].Instead,both S1and S0states should be close to each other along this rotational motion,as shown in Fig.10.Second,we have located several enol and keto S1/S0conical intersections and their S1deactivation channels,which is helpful for understanding the nonradiative dynamics of HPMO and its variants.

    V.CONCLUSION

    By means of high-level CASSCF and MS-CASPT2 methods,we have systematically explored the photophysical and photochemical mechanism of HPMO. The S1and S0minima,S1/S0MECIs,and minimumenergy reaction paths relevant to the S1excited-state intramolecular proton transfer and the S1enol and keto species decay channels are optimized at the CASSCF level and re fi ned at the MS-CASPT2 level.In terms of the present results,we fi nd that the excited-state intramolecular proton transfer is an overwhelmingly dominant relaxation pathway for the S1enol species and is expected to be an ultrafast process.It completely defeats the S1excited-state decay via the enolS1/S0MECI with a large barrier.The produced S1keto species should be able to fl uoresce if its central C?C bond rotation is inhibited in certain rigid surroundings,such as in solid states or high-viscosity solution.On the contrary,this S1keto species will decay to the S0state in an ultrafast means via the two keto S1/S0MECIs that can be easily approached in vacuo and dilute solution.Then,the S0enol minima are re-populated again.The present high-level electronic structure calculations provide many valuable mechanistic insights and could help understand the photodynamics of HPMO and other similar intramolecularly hydrogen-bonded molecular systems.

    Supplementary materials:Cartesian coordinates of all optimized structures are shown.

    VI.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.21522302, No.21520102005,and No.21421003).Gang-long Cui is also grateful for fi nancial support from the Recruitment Program of Global Youth Experts Youth Scholars Program of Beijing Normal University,Fundamental Research Funds for Central Universities.

    [1]P.F.Barbara,P.K.Walsh,and L.E.Brus,J.Phys. Chem.93,29(1989).

    [2]W.E.Brewer,M.L.Martnez,and P.T.Chou,J.Phys. Chem.94,1915(1990).

    [3]T.Arthen-Engeland,T.Bultmann,N.P.Ernsting,M. A.Rodriguez,and W.Thiel,Chem.Phys.163,43 (1992).

    [4]A.Sytnik and M.Kasha,Proc.Natl.Acad.Sci.91, 8627(1994).

    [5]T.Mutai,H.Tomoda,T.Ohkawa,Y.Yabe,and K. Araki,Angew.Chem.Int.Ed.47,9522(2008).

    [6]F.A.S.Chipem and G.Krishnamoorthy,J.Phys. Chem.A 113,12063(2009).

    [7]L.Antonov,V.Deneva,S.Simeonov,V.Kurteva,D. Nedeltcheva,and J.Wirz,Angew.Chem.Int.Ed.48, 7875(2009).

    [8]S.Park,J.E.Kwon,and S.Y.Park,Phys.Chem. Chem.Phys.14,8878(2012).

    [9]M.J.Paterson,M.A.Robb,L.Blancafort,and A.D. DeBellis,J.Phys.Chem.A 109,7527(2005).

    [10]S.Park,O.H.Kwon,S.Kim,S.Park,M.G.Choi,M. Cha,S.Y.Park,and D.J.Jang,J.Am.Chem.Soc. 127,10070(2005).

    [11]J.E.Kwon,S.Park,and S.Y.Park,J.Am.Chem. Soc.135,11239(2013).

    [12]W.Zhang,Y.L.Yan,J.M.Gu,J.N.Yao,and Y.S. Zhao,Angew.Chem.Int.Ed.54,7125(2015).

    [13]B.Gu,L.Y.Huang,N.X.Mi,P.Yin,Y.Y.Zhang,X. M.Tu,X.B.Luo,S.L.Luo,and S.Z.Yao,Analyst 140,2778(2015).

    [14]M.T.Ignasiak,C.Hou′ee-Levin,G.Kciuk,B. Marciniak,and T.Pedzinski,ChemPhysChem 16,628 (2015).

    [15]G.Yang,F.Morlet-Savary,Z.Peng,S.Wu,and J.P. Fouassier,Chem.Phys.Lett.256,536(1996).

    [16]W.H.Fang,J.Am.Chem.Soc.120,7568(1998).

    [17]A.L.Sobolewski and W.Domcke,Phys.Chem.Chem. Phys.1,3065(1999).

    [18]S.Lochbrunner,A.J.Wurzer,and E.Riedle,J.Chem. Phys.112,10699(2000).

    [19]A.L.Sobolewski and W.Domcke,J.Phys.Chem.A 108,10917(2004).

    [20]M.Zi′o lek,J.Kubicki,A.Maciejewski,R.Naskr?ecki, and A.Grabowska,Phys.Chem.Chem.Phys.6,4682 (2004).

    [21]D.Nedeltcheva,B.Damyanova,and S.Popov,J.Mol. Struct.749,36(2005).

    [22]Y.Wu and V.S.Batista,J.Chem.Phys.124,224305 (2006).

    [23]A.Sobolewski and W.Domcke,J.Phys.Chem.A 111, 11725(2007).

    [24]A.Migani,M.Bearpark,M.Olivucci,and M.Robb,J. Am.Chem.Soc.129,3703(2007).

    [25]W.Rodr′?guez-C′ordoba,J.S.Zugazagoitia,E.Collado-Fregoso,and J.Peon,J.Phys.Chem.A 111,6241 (2007).

    [26]A.Migani,L.Blancafort,M.A.Robb,and A.D.De-Bellis,J.Am.Chem.Soc.130,6932(2008).

    [27]G.J.Zhao and K.L.Han,Phys.Chem.Chem.Phys. 12,8914(2010).

    [28]K.C.Tang,M.Chang,T.Y.Lin,H.A.Pan,T.C. Fang,K.Y.Chen,W.Y.Hung,Y.H.Hsu,and P.T. Chou,J.Am.Chem.Soc.133,17738(2011).

    [29]G.J.Zhao and K.L.Han,Acc.Chem.Res.45,404 (2012).

    [30]G.L.Cui and W.Thiel,Phys.Chem.Chem.Phys.14, 12378(2012).

    [31]T.Sekikawa,O.Schalk,G.Wu,A.E.Boguslavskiy,and A.Stolow,J.Phys.Chem.A 117,2971(2013).

    [32]N.Suzuki,A.Fukazawa,K.Nagura,S.Saito,H.Kitoh-Nishioka,D.Yokogawa,S.Irle,and S.Yamaguchi, Angew.Chem.Int.Ed.53,8231(2014).

    [33]D.Tuna,A.Sobolewski,and W.Domcke,J.Phys. Chem.B 118,976(2014).

    [34]X.P.Chang,Q.Fang,and G.L.Cui,J.Chem.Phys. 141,154311(2014).

    [35]S.H.Xia,B.B.Xie,Q.Fang,G.L.Cui,and W.Thiel, Phys.Chem.Chem.Phys.17,9687(2015).

    [36]P.J.Guan,G.L.Cui,and Q.Fang,ChemPhysChem 16,805(2015).

    [37]X.P.Chang,G.L.Cui,W.H.Fang,and W.Thiel, ChemPhysChem 16,933(2015).

    [38]V.Guallar,M.Moreno,J.M.Lluch,F.Amat-Guerri, and A.Douhal,J.Phys.Chem.100,19789(1996).

    [39]A.Douhal,T.Fiebig,M.Chachisvilis,and A.H.Zewail, J.Phys.Chem.A 102,1657(1998).

    [40]I.Garc′?a-Ochoa,M.A.D.L′opez,M.H.Vi?nas,L.Santos,E.M.At′az,F.Amat-Guerri,and A.Douhal,Chem. Eur.J.5,897(1999).

    [41]D.P.Zhong,A.Douhal,and A.H.Zewail,Proc.Natl. Acad.Sci.USA 97,14056(2000).

    [42]V.Guallar,V.S.Batista,and W.H.Miller,J.Chem. Phys.113,9510(2000).

    [43]R.Casades′us,M.Moreno,and J.M.Lluch,Chem. Phys.Lett.356,423(2002).

    [44]R.Casades′us,M.Moreno,and J.M.Lluch,Photobiol. 173,365(2005).

    [45]O.Vendrell,M.Moreno,J.M.Lluch,and S.Hammes-Schi ff er,J.Phys.Chem.B 108,6616(2004).

    [46]K.Andersson,P.?A.Malmqvist,B.O.Roos,A.J. Sadlej,and K.Wolinski,J.Phys.Chem.94,5483 (1990).

    [47]K.Andersson,P.?A.Malmqvist,and B.O.Roos,J. Chem.Phys.96,1218(1992).

    [48]N.′Forsberg and P.Malmqvist,Chem.Phys.Lett.274, 196(1997).

    [49]F.Aquilante,R.Lindh,and T.B.Pedersen,J.Chem. Phys.127,114107(2007).

    [50]G.Ghigo,B.O.Roos,and P.?A.Malmqvist,Chem. Phys.Lett.396,142(2004).

    [51]W.H.Fang,J.Am.Chem.Soc.121,8376(1999).

    [52]H.Y.He and W.H.Fang,J.Am.Chem.Soc.125, 16139(2003).

    [53]W.H.Fang,Acc.Chem.Res.41,452(2008).

    [54]G.L.Cui,L.Ding,F.Feng,Y.J.Liu,and W.H.Fang, J.Chem.Phys.132,194308(2010).

    [55]G.L.Cui and W.H.Fang,ChemPhysChem 12,1689 (2011).

    [56]G.L.Cui and W.H.Fang,ChemPhysChem 12,1351 (2011).

    [57]G.L.Cui,Z.G.Sun,and W.H.Fang,J.Phys.Chem. A 115,10146(2011).

    [58]G.L.Cui and W.H.Fang,J.Chem.Phys.138,044315 (2013).

    [59]G.L.Cui and W.Thiel,J.Phys.Chem.Lett.5,2682 (2014).

    [60]T.Yanai,D.Tew,and N.Handy,Chem.Phys.Lett. 393,51(2004).

    [61]S.Vosko,L.Wilk,and M.Nusair,Can.J.Phys.58, 1200(1980).

    [62]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [63]C.Lee,W.Yang,and R.Parr,Phys.Rev.B 37,785 (1988).

    [64]A.D.Becke,J.Chem.Phys.98,1372(1993).

    [65]R.Ditch fi eld,W.Hehre,and J.Pople,J.Chem.Phys. 54,724(1971).

    [66]P.Hariharan and J.Pople,Theor.Chem.Acc.28,213 (1973).

    [67]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheesem,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J. Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G. A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich, A.D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz, J.Cioslowski,D.J.Fox,Gaussian 09,Revision B.01. Wallingford CT:Gaussian,Inc.,(2010).

    [68]F.Aquilante,L.De Vico,N.Ferr′e,G.Ghigo,P. Malmqvist,P.Neogr′ady,T.Pedersen,M.Pito?n′ak,M. Reiher,B.Roos,L.Serrano-Andr`es,M.Urban,V. Veryazov,and R.Lindh,J.Comput.Chem.31,224 (2010).

    [69]J.Kouteck′y,V.Bona?ci′c-Kouteck′y,J.?C′??zek,D.D¨o, Int.J.Quantum Chem.12,357(1978).

    [70]L.Salem,Acc.Chem.Res.12,87(1979).

    [71]A.Viel,R.P.Krawczyk,U.Manthe,and W.Domcke, Angew.Chem.Int.Ed.42,3434(2003).

    [72]G.L.Cui,P.J.Guan,and W.H.Fang,J.Phys.Chem. A 118,4732(2014).

    [73]G.Cui,Z.Lan,and W.Thiel,J.Am.Chem.Soc.134, 1662(2012).

    [74]L.Sp¨orkel,G.L.Cui,and W.Thiel,J.Phys.Chem.A 118,4732(2014).

    亚洲av美国av| 人人妻人人看人人澡| 午夜久久久久精精品| 精品高清国产在线一区| 精品国产亚洲在线| 国产精品久久久人人做人人爽| av视频在线观看入口| 国产成人一区二区三区免费视频网站| 精品高清国产在线一区| 国产三级在线视频| 国产伦在线观看视频一区| 久久久久久人人人人人| 久久久水蜜桃国产精品网| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 久久久久免费精品人妻一区二区 | 午夜免费观看网址| 国产成人影院久久av| 美女扒开内裤让男人捅视频| 国产精品免费视频内射| 色综合亚洲欧美另类图片| 亚洲精品中文字幕一二三四区| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 欧美又色又爽又黄视频| 免费高清在线观看日韩| 国产区一区二久久| 欧美国产精品va在线观看不卡| 最好的美女福利视频网| 51午夜福利影视在线观看| 在线看三级毛片| 亚洲av中文字字幕乱码综合 | 在线观看免费日韩欧美大片| 久久精品国产亚洲av高清一级| 久久久久久免费高清国产稀缺| 老司机靠b影院| 日韩欧美国产一区二区入口| 搡老岳熟女国产| 久热这里只有精品99| 国产精品久久久久久精品电影 | 丝袜人妻中文字幕| 最近最新中文字幕大全免费视频| 性色av乱码一区二区三区2| 香蕉丝袜av| 日韩av在线大香蕉| 中亚洲国语对白在线视频| 高清毛片免费观看视频网站| 给我免费播放毛片高清在线观看| 麻豆成人午夜福利视频| 午夜激情福利司机影院| bbb黄色大片| 国内精品久久久久久久电影| 久久精品国产99精品国产亚洲性色| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 男人操女人黄网站| 亚洲国产欧美网| www.自偷自拍.com| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 国产伦在线观看视频一区| 国产亚洲精品第一综合不卡| 成人午夜高清在线视频 | 久久中文看片网| 欧美成人一区二区免费高清观看 | 两人在一起打扑克的视频| 久久久久久久久中文| 日韩精品青青久久久久久| av有码第一页| 午夜激情福利司机影院| a在线观看视频网站| 免费在线观看影片大全网站| 国产精品亚洲美女久久久| 99久久99久久久精品蜜桃| 精品卡一卡二卡四卡免费| 色综合婷婷激情| 欧美精品啪啪一区二区三区| 久久国产精品影院| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线在线| www日本黄色视频网| 久久精品国产亚洲av香蕉五月| 在线免费观看的www视频| 一个人免费在线观看的高清视频| 中国美女看黄片| 免费在线观看黄色视频的| 精品国内亚洲2022精品成人| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 丁香六月欧美| 精品人妻1区二区| 亚洲人成77777在线视频| 99热6这里只有精品| 精品久久蜜臀av无| 国产精品国产高清国产av| 亚洲专区中文字幕在线| 亚洲精品美女久久久久99蜜臀| 1024手机看黄色片| 女人爽到高潮嗷嗷叫在线视频| 色在线成人网| 这个男人来自地球电影免费观看| 一级毛片女人18水好多| 村上凉子中文字幕在线| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 欧美一区二区精品小视频在线| 久久久久久大精品| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 一级黄色大片毛片| 成人免费观看视频高清| 色av中文字幕| 国产男靠女视频免费网站| 一进一出抽搐动态| 制服人妻中文乱码| 久久久久国产精品人妻aⅴ院| 国产成人系列免费观看| 黑丝袜美女国产一区| 1024手机看黄色片| 观看免费一级毛片| 欧美精品亚洲一区二区| 黄色女人牲交| 日本a在线网址| 女人被狂操c到高潮| 麻豆一二三区av精品| 老司机靠b影院| 色综合站精品国产| 久久这里只有精品19| 国内精品久久久久精免费| 亚洲精品国产区一区二| 国产av不卡久久| 免费在线观看黄色视频的| 日日爽夜夜爽网站| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频| 国产精华一区二区三区| 国产久久久一区二区三区| 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 成人三级做爰电影| 成人永久免费在线观看视频| 亚洲专区中文字幕在线| 一进一出好大好爽视频| 久久中文字幕人妻熟女| av超薄肉色丝袜交足视频| 非洲黑人性xxxx精品又粗又长| 成人18禁在线播放| 又黄又爽又免费观看的视频| 精品人妻1区二区| 女生性感内裤真人,穿戴方法视频| 亚洲精华国产精华精| 首页视频小说图片口味搜索| 国内精品久久久久精免费| 亚洲色图av天堂| 亚洲自拍偷在线| 国产一区二区三区在线臀色熟女| 好男人在线观看高清免费视频 | 他把我摸到了高潮在线观看| 欧美色欧美亚洲另类二区| 老司机在亚洲福利影院| a级毛片a级免费在线| 亚洲一区高清亚洲精品| 日日摸夜夜添夜夜添小说| 亚洲精品久久国产高清桃花| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 欧美午夜高清在线| 日本 欧美在线| 日韩欧美在线二视频| 欧美日韩瑟瑟在线播放| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 天天一区二区日本电影三级| 无遮挡黄片免费观看| or卡值多少钱| 日韩一卡2卡3卡4卡2021年| 成人一区二区视频在线观看| 亚洲精品国产区一区二| 88av欧美| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 欧美亚洲日本最大视频资源| 国产又色又爽无遮挡免费看| 久久中文字幕人妻熟女| 99精品久久久久人妻精品| 在线播放国产精品三级| www日本在线高清视频| 人人妻,人人澡人人爽秒播| 国产一区二区激情短视频| 国产色视频综合| 一本精品99久久精品77| 国产乱人伦免费视频| 国内揄拍国产精品人妻在线 | 午夜福利视频1000在线观看| 久久午夜综合久久蜜桃| 日韩中文字幕欧美一区二区| 久久99热这里只有精品18| 久久午夜亚洲精品久久| 国产99久久九九免费精品| 老司机靠b影院| 性色av乱码一区二区三区2| 观看免费一级毛片| av欧美777| 在线观看日韩欧美| 国产精品亚洲一级av第二区| 两个人视频免费观看高清| 免费观看精品视频网站| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| 欧美性猛交黑人性爽| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 国产精品亚洲美女久久久| 男女床上黄色一级片免费看| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 欧美乱色亚洲激情| 90打野战视频偷拍视频| 一级毛片女人18水好多| 久久中文看片网| 久久久精品国产亚洲av高清涩受| 黄色成人免费大全| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 亚洲第一青青草原| 欧美一级毛片孕妇| 日本五十路高清| 在线观看免费日韩欧美大片| 久久青草综合色| 亚洲一区二区三区不卡视频| www.精华液| 丁香六月欧美| 免费在线观看影片大全网站| 国产黄a三级三级三级人| 亚洲一卡2卡3卡4卡5卡精品中文| 真人做人爱边吃奶动态| 精华霜和精华液先用哪个| 欧美激情高清一区二区三区| 女警被强在线播放| 亚洲av第一区精品v没综合| 日韩一卡2卡3卡4卡2021年| 在线国产一区二区在线| 亚洲全国av大片| 女性生殖器流出的白浆| 99久久国产精品久久久| 午夜日韩欧美国产| 亚洲真实伦在线观看| 亚洲狠狠婷婷综合久久图片| av片东京热男人的天堂| 国产成人精品久久二区二区免费| 91字幕亚洲| 黄色视频,在线免费观看| 精品欧美一区二区三区在线| 无限看片的www在线观看| 日韩精品免费视频一区二区三区| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 一个人免费在线观看的高清视频| 99热这里只有精品一区 | 国产成人影院久久av| 色播在线永久视频| 亚洲av日韩精品久久久久久密| 国产又黄又爽又无遮挡在线| 日韩欧美一区二区三区在线观看| 成人三级做爰电影| 精华霜和精华液先用哪个| 久久久精品国产亚洲av高清涩受| 精品电影一区二区在线| 男人操女人黄网站| 欧美日韩黄片免| 一个人观看的视频www高清免费观看 | 久久精品aⅴ一区二区三区四区| 亚洲成人久久爱视频| 日本黄色视频三级网站网址| 国产成人精品无人区| 中文资源天堂在线| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 美女午夜性视频免费| 热99re8久久精品国产| 日本黄色视频三级网站网址| a在线观看视频网站| 婷婷亚洲欧美| av在线天堂中文字幕| 精品国内亚洲2022精品成人| 男女床上黄色一级片免费看| 亚洲人成网站高清观看| 免费电影在线观看免费观看| 国产高清videossex| 欧美av亚洲av综合av国产av| 国产成人av教育| 亚洲精品在线美女| 国产精品 国内视频| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 看黄色毛片网站| 亚洲久久久国产精品| 天堂影院成人在线观看| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 99re在线观看精品视频| 首页视频小说图片口味搜索| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 成人三级做爰电影| 久久人人精品亚洲av| 可以在线观看的亚洲视频| 国产99白浆流出| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 亚洲av熟女| 香蕉久久夜色| 丝袜美腿诱惑在线| 一本精品99久久精品77| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 国产麻豆成人av免费视频| 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 久久精品成人免费网站| 啦啦啦韩国在线观看视频| 亚洲精品一区av在线观看| 亚洲九九香蕉| √禁漫天堂资源中文www| 不卡一级毛片| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 又大又爽又粗| 99国产精品99久久久久| 黄色女人牲交| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 久久久国产精品麻豆| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| av视频在线观看入口| 久久精品亚洲精品国产色婷小说| 欧美激情高清一区二区三区| 久久久久免费精品人妻一区二区 | 精品一区二区三区av网在线观看| 长腿黑丝高跟| 波多野结衣巨乳人妻| 国产精品日韩av在线免费观看| 人妻丰满熟妇av一区二区三区| 亚洲第一青青草原| 日韩大尺度精品在线看网址| 天堂√8在线中文| 欧美一级a爱片免费观看看 | 满18在线观看网站| 69av精品久久久久久| 麻豆成人午夜福利视频| netflix在线观看网站| 日韩欧美一区视频在线观看| 俺也久久电影网| 淫妇啪啪啪对白视频| 国产av在哪里看| 在线观看午夜福利视频| 精品国产国语对白av| 少妇被粗大的猛进出69影院| 国产成人一区二区三区免费视频网站| 国产精品98久久久久久宅男小说| 亚洲人成77777在线视频| 亚洲天堂国产精品一区在线| 91成人精品电影| 久久午夜亚洲精品久久| www日本在线高清视频| 美女高潮到喷水免费观看| 亚洲第一电影网av| 最好的美女福利视频网| 青草久久国产| 少妇熟女aⅴ在线视频| 亚洲中文av在线| 成人欧美大片| 黄色视频,在线免费观看| 好看av亚洲va欧美ⅴa在| 日韩欧美免费精品| 亚洲一区中文字幕在线| 午夜福利在线观看吧| 国产亚洲av高清不卡| 久久久久九九精品影院| 国产高清视频在线播放一区| 欧美色欧美亚洲另类二区| 午夜福利18| 久久久久国产一级毛片高清牌| 午夜福利欧美成人| 一本精品99久久精品77| 国产av不卡久久| 麻豆一二三区av精品| 亚洲狠狠婷婷综合久久图片| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 久久香蕉精品热| 久久午夜亚洲精品久久| 韩国精品一区二区三区| 国产v大片淫在线免费观看| 波多野结衣av一区二区av| 韩国av一区二区三区四区| 精品国产美女av久久久久小说| 久久香蕉激情| 久久这里只有精品19| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 国内精品久久久久久久电影| 国产一区二区三区视频了| 免费搜索国产男女视频| 国产亚洲精品一区二区www| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频 | 波多野结衣高清作品| 国产久久久一区二区三区| 亚洲自拍偷在线| 国产国语露脸激情在线看| 欧美三级亚洲精品| 欧美在线一区亚洲| 国产伦一二天堂av在线观看| 色综合站精品国产| 精品久久久久久久久久免费视频| 男人舔女人下体高潮全视频| 欧美中文日本在线观看视频| 欧美又色又爽又黄视频| 人妻久久中文字幕网| 两个人免费观看高清视频| 国产在线精品亚洲第一网站| 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 国产精品久久视频播放| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 久久人人精品亚洲av| 熟女少妇亚洲综合色aaa.| 国产蜜桃级精品一区二区三区| 久久久久久久久免费视频了| 精品久久久久久久毛片微露脸| 日本熟妇午夜| 一区二区三区精品91| 精品电影一区二区在线| 久久久久国产一级毛片高清牌| 精品国产美女av久久久久小说| 一级毛片女人18水好多| 免费看美女性在线毛片视频| 少妇 在线观看| tocl精华| 精品日产1卡2卡| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 国产1区2区3区精品| 国产精品av久久久久免费| 又黄又爽又免费观看的视频| 给我免费播放毛片高清在线观看| 99国产极品粉嫩在线观看| 精品午夜福利视频在线观看一区| 免费在线观看完整版高清| 一级毛片高清免费大全| 欧美zozozo另类| 欧美成人午夜精品| 一进一出抽搐动态| 在线观看一区二区三区| 亚洲在线自拍视频| 国产精品av久久久久免费| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网| 老司机福利观看| 88av欧美| 国产精品亚洲美女久久久| 精品久久久久久久末码| 999久久久国产精品视频| 久久久久国产一级毛片高清牌| 国产一卡二卡三卡精品| 看片在线看免费视频| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 日韩一卡2卡3卡4卡2021年| 久久精品夜夜夜夜夜久久蜜豆 | 国产熟女xx| 精品久久久久久久末码| 亚洲 国产 在线| 成人亚洲精品av一区二区| 国产免费av片在线观看野外av| 人妻丰满熟妇av一区二区三区| 久久中文字幕一级| 成人特级黄色片久久久久久久| x7x7x7水蜜桃| 久热这里只有精品99| 一级毛片精品| 免费人成视频x8x8入口观看| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看| 亚洲成av片中文字幕在线观看| 香蕉久久夜色| 亚洲五月婷婷丁香| 色在线成人网| 91老司机精品| 国产亚洲精品久久久久5区| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 亚洲精品久久国产高清桃花| 曰老女人黄片| 露出奶头的视频| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 精品高清国产在线一区| 成人亚洲精品一区在线观看| 久久热在线av| 欧美激情 高清一区二区三区| 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 日本在线视频免费播放| 久久精品国产清高在天天线| 九色国产91popny在线| 日本精品一区二区三区蜜桃| 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 日日爽夜夜爽网站| a级毛片a级免费在线| 国产亚洲精品一区二区www| 日本免费a在线| 久久久久国产精品人妻aⅴ院| 亚洲国产精品成人综合色| 激情在线观看视频在线高清| 亚洲五月天丁香| 日本黄色视频三级网站网址| tocl精华| 久久精品人妻少妇| 97超级碰碰碰精品色视频在线观看| 久久久国产欧美日韩av| 老司机福利观看| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 变态另类丝袜制服| 亚洲精品av麻豆狂野| 少妇裸体淫交视频免费看高清 | 伦理电影免费视频| 成人免费观看视频高清| 国产免费男女视频| 人成视频在线观看免费观看| 国产高清视频在线播放一区| 亚洲国产精品久久男人天堂| 亚洲狠狠婷婷综合久久图片| 亚洲国产高清在线一区二区三 | 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| or卡值多少钱| 欧美三级亚洲精品| 精品日产1卡2卡| 亚洲中文av在线| 亚洲av五月六月丁香网| 免费在线观看黄色视频的| 午夜福利一区二区在线看| 亚洲午夜理论影院| 午夜福利视频1000在线观看| 欧美在线黄色| 丁香六月欧美| 99riav亚洲国产免费| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费鲁丝| 欧美zozozo另类| 日韩精品青青久久久久久| 久久午夜综合久久蜜桃| 亚洲av第一区精品v没综合| 午夜福利高清视频| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女| 亚洲国产高清在线一区二区三 | 不卡一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉国产精品| 黑人巨大精品欧美一区二区mp4| 国产区一区二久久| 久久久水蜜桃国产精品网| 免费无遮挡裸体视频| 午夜精品久久久久久毛片777| 午夜a级毛片| 韩国av一区二区三区四区| 精品欧美国产一区二区三| 午夜福利欧美成人| 99久久99久久久精品蜜桃| 欧美成狂野欧美在线观看| 日本 av在线| 国产亚洲精品一区二区www| 久久久国产成人免费| 国产精品久久久人人做人人爽| 无限看片的www在线观看| 久99久视频精品免费| 精品国产美女av久久久久小说| 国产免费男女视频| 可以在线观看的亚洲视频| 国产精品,欧美在线| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久国产精品久久久| www日本黄色视频网| 男女那种视频在线观看| 观看免费一级毛片| 黄网站色视频无遮挡免费观看|