• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study?

    2016-04-08 06:35:37BinbinXieChunxiangLiGanglongCuiQiuFangKeyLaboratoryofTheoreticalandComputationalPhotochemistryMinistryofEducationCollegeofChemistryBeijingNormalUniversityBeijing100875ChinaDatedReceivedonDecember2015AcceptedonDecember
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Bin-bin Xie,Chun-xiang Li,Gang-long Cui?,Qiu Fang?Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University,Beijing 100875,China(Dated:Received on December 1,2015;Accepted on December 30,2015)

    ?

    ARTICLE Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study?

    Bin-bin Xie,Chun-xiang Li,Gang-long Cui?,Qiu Fang?
    Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University,Beijing 100875,China
    (Dated:Received on December 1,2015;Accepted on December 30,2015)

    Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2′-hydroxyphenyl)-4-methyloxazole.At the CASSCF level,we have optimized minima,conical intersections,minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer(ESIPT),rotation,photoisomerization,and the excited-state deactivation pathways.The energies of all structures and paths are re fi ned by the MS-CASPT2 method.On the basis of the present results,we found that the ESIPT process in a conformer with the OH···N hydrogen bond is essentially barrierless process; whereas,the ESIPT process is inhibited in the other conformer with the OH···O hydrogen bond.The central single-bond rotation of the S1enol species is energetically unfavorable due to a large barrier.In addition,the excited-state deactivation of the S1keto species,as a result of the ultrafast ESIPT,is very e ffi cient because of the existence of two easily-approached keto S1/S0conical intersections.In stark contrast to the S1keto species,the decay of the S1enol species is almostly blocked.The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.

    Keywords:Excited state proton transfer,Photoisomerization,Conical intersection,Ab initio,Photochemistry

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: ganglong.cui@bnu.edu.cn,fangqiu917@bnu.edu.cn

    I.INTRODUCTION

    Excited state intramolecular proton transfer(ESIPT) and its subsequent photodynamics play an important role in a lot of biological processes[1?8]and in numerous applications such as photostabilizers[9]UV fi lter materials[10?12], fl uorescent probes[13],and sunscreens[14].Due to its importance,this kind of photochemical reactions has been extensively studied by experimental and theoretical chemists in past decades [15?37].

    FIG.1 2-(2'-Hydroxyphenyl)-4-methyloxazole molecule in which there is a strong intramolecular hydrogen bond O?H···Nenablingexcited-stateintramolecularproton transfer between the enol and keto conformers.Also shown are the competitive single-bond rotation(left)and doublebond photoisomerization(right)channels.

    In this work,we focus on the system of 2-(2′-hydroxyphenyl)-4-methyloxazole(HPMO),as shown in Fig.1.Experimental study of excited-state dynamics of HPMO can be dated back to the end of the last century.Guallar et al.experimentally studied the ESIPT and rotational processes of 2-(2′-hydroxyphenyl)-oxazole derivatives including HPMO in both S0and S1states and supported the coexistence of two groundstate conformers with OH···N and OH···O hydrogen bonds[38].Interestingly,only a conformer was observed to experience a photoinduced proton transfer.Zewail et al.studied the femtosecond dynamics of HPMO in con fi ned nanocavities and in aprotic solvents[39].They suggested that the ESIPT process occurs within 300 fs in aprotic solvents;whereas,in con fi ned nanocavities, this process is slowed down to a subpicosecond time scale.In addition,they also found a picosecond twisting motion around the central single bond,which is noticeably inhibited inside the nanocavities.Garc′?a-Ochoa et al.explored the ESIPT process of HPMO in various hydrophobic nanocavities in aqueous medium[40].In their experiments,upon irradiation,a fast ESIPT re-action produces a phototautomer with a large Stokes shift.Furthermore,they also found a twisting motion around the central single bond of this generated phototautomer.Later,Zhong et al.further explored the femtosecond dynamics of HPMO in human serum albumin protein,also in micelles and cyclodextrins for comparison[41].They found that the con fi ned geometry restrains the nonradiative decay and thus significantly extends the excited-state lifetime.Their most important fi nding is that the ESIPT and subsequent intramolecular twisting proceed in two di ff erent routes. The fi rst is the direct in-plane stretching motion,about 200 fs,which is insensitive to the surroundings.The second is less dominant and is related to the out-ofplane twisting motion(ca.3 ps)of the two heterocyclic rings,which is drastically slowed down in the protein hydrophobic environment.

    On the theoretical side,there exist merely a few crude theoretical calculations at the semiempirical,Hartree-Fock(HF)and con fi guration interaction with single excitation(CIS)levels.Douhal et al.employed the HF and CIS methods to study the ESIPT processes in the S0and S1states,respectively[38].Guallar and coworkers performed semiclassical molecular dynamics simulations for the ESIPT process,which is however based on the CIS computed potential energy surface [42].Lluch et al.also studied the ESIPT process of HPMO embedded in β-cyclodextrin using the HF and CIS-based ONIOM methods[43,44].Hamms-Schi ff er et al.simulated the ultrafast ESIPT process of HPMO in vacuo,solution,and protein environments using classical molecular dynamics in conjunction with an empirical valence bond potential[45].They found that the ring-ring bending motion is the most important low-frequency vibrational mode,which helps decrease the proton-acceptor distance and thus facilitates proton transfer;the S1decay is much slower in water than in aprotic solvents and protein,which is ascribed to the fact that intermolecular hydrogen-bonding leads to a disruption of the intramolecular hydrogen-bonding in HPMO.

    However,previous theoretical studies only focus on the ESIPT process of the excited-state dynamics of HPMO;thus,a few essential mechanistic details remain unknown,for example,how does the generated phototautomer decay to the S0state?Furthermore,it is well known that excited-state deactivation is usually related to conical intersections.Near these quasi-degenerate regions,multi-reference electronic structure methods must be used to get a correct description of topological structures of relevant potential energy surfaces.Herein, we have for the fi rst time employed the high-level complete active space self-consistent fi eld(CASSCF)and its multi-state second-order perturbation theory(MSCASPT2)methods to study the ESIPT and rotational processes,and the S1excited-state deactivation channels.

    II.COMPUTATIONAL DETAILS

    Minima(S0and S1),minimum-energy conical intersections(MECI,S1/S0),and minimum-energy reaction paths(S0and S1)are computed using the stateaveraged complete active space self-consistent fi eld(SACASSCF)method in which equal state weights are used for both electronic states.In all SA-CASSCF geometric optimizations,an active space of 10 electrons in 8 orbitals is used,which includes 10π electrons in 8π and π?orbitals(Fig.2).To obtain more accurate potential energy pro fi les,the MS-CASPT2 method[46, 47]that provides more correlation energy is exploited to re-evaluate the energies of all CASSCF optimized geometries and reaction paths.In single-point MSCASPT2 calculations,an imaginary shift of 0.2 a.u.is used to avoid the intruder-state issue[48];the Cholesky decomposition technique with unbiased auxiliary basis sets is used for accurate two-electron integral approximations[49];the ionization potential-electron a ffi nity (IPEA)shift was not applied[50].This combined MSCASPT2//CASSCF computational strategy enables a good description for photophysics and photochemistry of medium-size molecular systems in vacuo,solution, and proteins,as demonstrated in many our previous computational studies[16,51?59].

    Vertical excitation energies are computed using TD-CAM-B3LYP[60],TD-B3LYP[61?64],and MSCASPT2 methods,respectively.The 6-31G?basis set [65,66]is used for all computations.All TD-DFT computations and CASSCF optimizations of conical intersections are carried out using Gaussian 09[67];all other CASSCF computations and MS-CASPT2 computations are performed using MOLCAS 8.0[68].

    III.RESULTS AND DISCUSSION

    Figure 3 shows the schematic structures optimized at the CASSCF(10,8)/6-31G?level.Table I lists the selected geometric parameters and the MS-CASPT2 ref

    i ned energies. A.S0minima and vertical excitation energies

    At the CASSCF level,we have obtained three S0conformers,which are denoted as S0-ENOL-1,S0-KETO, and S0-ENOL-2,respectively.Of them,S0-ENOL-1 and S0-ENOL-2 are the most stable two conformers at this computational level;while,S0-KETO is 18.7 and 13.2 kcal/mol higher than S0-ENOL-1 and S0-ENOL-2 in energy(Table I).

    FIG.2 Eight active orbitals in the CASSCF(10,8)/6-31G*computations.

    FIG.3 CASSAF(10,8)/6-31G?optimized S0and S1minima(bond length in?A).See supplementay material for their Cartesian coordinates.Table I collects their relative energies re fi ned by the MS-CASPT2 method.

    TABLE I Selected geometric parameters(CASSCF level, bond angles and dihedral angles in(?))and MS-CASPT2 re fi ned energies E(in kcal/mol).

    The vertical excitation energy to the fi rst excited single state S1at the enol Franck-Condon point of HPMO shows that this S0→S1vertical excitation energy is computed to be 4.2 eV at the MS-CASPT2 level and TD-B3LYP level,which is about 0.2 eV lower than that computed by the TD-CAM-B3LYP method (4.4 eV)and is about 0.3 eV higher than the experimental value measured in solution[41].We have analyzed the molecular orbitals relevant to the S0→S1 electronic transition of the enol minimum S0-ENOL-1, as shown in Fig.2.The S1state is a spectroscopically bright state being ππ?character.At the CASSCF level,there are two main transition components for the S0→S1electronic transition.One is from HOMO?2 to LUMO(weight:0.317)and another from HOMO?1 to LUMO+1(0.183).Accordingly,there are four activespace orbitals whose electronic occupations signi fi cantly deviate from empty or full one.It can also be found that HOMO?2 and LUMO+1 are localized within the left six-membered group;whereas,HOMO?1 and LUMO spread over the whole molecular space.Thus,we can observe partial electron transfer from the phenyl group (HOMO?2)to the methyloxazole group(LUMO)in the S0→S1electronic transition.

    B.S1excited-state minima

    In addition,we have optimized three S1minima at the CASSCF level,which are denoted as S1-ENOL-1, S1-KETO and S1-ENOL-2.According to the adiabatic excitation energies collected in Table I,it is clear thatat the MS-CASPT2 level,S1-ENOL-1 is 2.3 kcal/mol higher than S1-KETO and 7.4 kcal/mol lower than S1-ENOL-2,respectively;S1-KETO is 9.9 kcal/mol lower than S1-ENOL-2.

    FIG.4 Four molecular orbitals whose electronic occupations signi fi cantly deviate from empty(0.0)or full(2.0)occupation involved in the S0→S1electronic transition at the enol S1minimum.

    FIG.5 Schematic S1/S0conical intersections S1S0-1(left),S1S0-2(middle),and S1S0-3(right).Also shown are their two singly-occupied molecular orbitals and selected bond lengths in?A.

    As shown in Fig.3,the N1?H6 bond length of S1-ENOL-1 is decreased to 1.80?A from 1.91?A of S0-ENOL-1,which is a clear evidence that the excitedstate hydrogen-bonding interaction is reinforced in the S1state.The C2?C3 bond length of S1-ENOL-1 is also strengthened,which is about 0.04?A shorter than that of S0-ENOL-1.The similar changes are seen for S0-ENOL-2 and S1-ENOL-2.At S1-KETO,the H6 has already transferred to the N1 atom;the O5?H6 bond is increased by 0.12?A relative to that of S0-KETO,which implies the N1···H6 hydrogen bond is weakened.

    C.S1/S0conical intersections

    We have optimized three S1/S0conical intersections at the CASSCF level,which are denoted as S1S0-1, S1S0-2 and S1S0-3.S1S0-1 and S1S0-2 are structurally almost equivalent(Fig.5).They are located in the keto region i.e.after the H6 atom transferred to the N1 atom.Structurally,we can fi nd a strong pyramidalization at one C atom after the twisting.This could originate from the sudden polarization e ff ects,as seen in many similar systems[69?71].Table I shows that the energies of S1S0-1 and S1S0-2 are very close to each other,which are computed to be 80.3 and 82.3 kcal/mol at MS-CASPT2 level,respectively.By contrast,S1S0-3 corresponds to a conical intersection with the broken C2?O7 bond.Its energy is also close to the other two conical intersections within about 1 kcal/mol at the MS-CASPT2 level.Finally,we should note that at MS-CASPT2 level,all these three conical intersections are energetically allowed if only considering their energies relative to the S1energy at the enol Franck-Condon point i.e.S0-ENOL-1,which is about 95.7 and 101.5 kcal/mol at MS-CASPT2 and TD-CAM-B3LYP levels,respectively.However,their importance in the photodynamics of HPMO is very distinct(vide infra).

    D.Excited-state rotation

    Does the central C?C bond rotation take place easily?The answer is not.At the MS-CASPT2 level,we have computed the S1minimum-energy rotational path of HPMO.As shown in Fig.6,it is transparent that the S1barrier for the rotation from S1-ENOL-1 to S1-ENOL-2 is more than 20 kcal/mol,which is much higher than the counterpart in the S0state.Clearly,this process cannot compete with the in-plane S1excited-state intramolecular proton transfer.

    E.Excited-state proton transfer

    There are two types of S1excited-state intramolecular proton transfer in HPMO.The fi rst is from the O atom of the six-membered ring to the N atom of the fi ve-membered ring,which is barrierless and thus effi cient;whereas,the second,from the O atom of the six-membered ring to the O atom of the fi ve-membered ring,becomes inhibited due to a much higher barrier.

    The fi rst S1excited-state intramolecular proton transfer starts from the spectroscopically bright S1state that is of ππ?character at the enol minimum S0-ENOL-1.Upon excitation to this1ππ?state at the enol Franck Condon point,the system fi rst arrives at a shallow S1minimum referred to as S1-ENOL-1 in Fig.3. At this st?ructure,the N?1···H6 bond length is decreasedto 1.80A from 1.91A of the S0enol minimum S0-ENOL-1,which is a clear evidence that the hydrogen bond is reinforced in the S1(1ππ?)state.This kind of enhancement is also seen in our recent several theoretical work on excited-state intramolecular proton transfers[36,72].This hydrogen-bond shortening bene fi ts the subsequent S1excited-state intramolecular proton transfer.From the S1enol minimum S1-ENOL-1,an ultrafast excited-state proton transfer could be expected, forming an S1keto minimum S1-KETO.This point of view is supported by the MS-CASPT2//CASSCF computed S1minimum-energy proton transfer path in Fig.7. The S1potential energy surface with respect to the N1?H6 bond length is very fl at and essentially barrierless(0.7 kcal/mol at the MS-CASPT2 level).In addition,we have found that the driving force for this S1ESIPT process is not so strong because the reaction energy change is only within several kcal/mol at the MS-CASPT2 level.Thus,there should exist an equilibrium between the S1enol and keto minima.This kind of S1excited-state intramolecular proton transfer induced equilibrium is rarely reported computationally. In most of our previous computational studies,the S1excited-state intramolecular proton transfer usually corresponds to a much exothermic process[72?74].

    FIG.7 MS-CASPT2//CASSCF computed S1minimumenergy proton-transfer path(relaxed1ππ?state).

    FIG.8 MS-CASPT2//CASSCF computed S1minimumenergy proton-transfer path(relaxed1ππ?state).

    The second S1excited-state intramolecular proton transfer starts from another S1enol minimum S1-ENOL-2.It is clear that this process is thermodynamically unfavorable in the S1state at the MS-CASPT2 level in that the S1energy increases with the increasing O7?H6 bond length(Fig.8).Considering that it is also very di ffi cult for HPMO to transform from S1-ENOL-1 to S1-ENOL-2 in Fig.6(more than 20 kcal/mol at MS-CASPT2),it is safe to expect that this latter S1excited-state intramolecular proton transfer is entirely blocked in the photodynamics of HPMO.

    FIG.9 MS-CASPT2//CASSCF computed S1minimumenergy reaction path with regard to the O7?C2 bond length. It connects the enol1ππ?minimum S1-ENOL-1 and the enol minimum-energy S1/S0conical intersection S1S0-3.

    F.Deactivation path of the S1enol species

    In addition to the ultrafast,barrierless S1excitedstate intramolecular proton transfer as mentioned above,the S1enol minimum S1-ENOL-1 can also undergo an S1excited-state decay via the S1/S0conical intersection with the broken C?O bond i.e.S1S0-3 (see Fig.3).However,this S1excited-state deactivation channel is nearly blocked because its related S1barrier, on the basis of the MS-CASPT2//CASSCF computed S1minimum-energy reaction path in Fig.9,is predicted to be 21.9 kcal/mol,which cannot be overcome concerning the S1energy of HPMO at the enol Franck-Condon point.

    G.Deactivation path of the S1keto species

    In contrast to the S1enol species,there exist e ffi cient S1excited-state decay pathways connecting the S1keto species and the keto S1/S0conical intersections S1S0-1 and S1S0-2.At the MS-CASPT2//CASSCF level,we have computed the corresponding S1minimum-energy reaction path along the rotation of the N1?C2?C3?C4 dihedral angle,which is shown in Fig.10.It is clear there are two quasi-degenerate regions,which are located at the positions with the dihedral angle of 60?and 130?, respectively.In fact,these two regions are close to the two keto S1/S0conical intersections S1S0-1 and S1S0-2. As mentioned before,these two conical intersections are energetically allowed because their energies are all lower than the S1energy at the enol Franck-Condon point.

    Next,we will show they can also be accessed from their nearby S1keto species.Apparently,it is very easy for the S1keto species to arrive at the fi rst keto S1/S0conical intersection i.e.S1S0-1 because there only exists a small barrier of 3.7 kcal/mol at the MS-CASPT2 level(see Fig.10,at about 60?).At this hopping area, the S1system can be de-excited to the S0state and then recover to its initial enol S0minima S0-ENOL-1 or S0-ENOL-2.Importantly,if the system does not hop to the S0state when it encounters the fi rst keto S1/S0conical intersection S1S0-1,the S1keto species still can decay to the S0state at the second keto S1/S0conical intersection S1S0-2.Taking these two aspects in account,we can conclude that the excited-state deactivation starting from the S1keto species is very e ffi cient and could be an ultrafast process.

    FIG.10 MS-CASPT2//CASSCF computed S1minimumenergy reaction path along the rotation of the N1-C2-C3-C4 dihedral angle connecting the keto1ππ?minimum S1-KETO and the two keto minimum-energy S1/S0conical intersections S1S0-1 and S1S0-2.

    H.Mechanism

    On the basis of the present results,we can summarize the photophysical and photochemical mechanism of HPMO in Fig.11.Upon irradiation to the bright S1state at the enol Franck-Condon point,the system fi rst relaxes to a nearby local S1minimum,which is referred to as S1-ENOL-1 in Fig.3.Starting from this point, there exist two competitive S1relaxation channels.The fi rst one is the nearly barrierless S1excited state intramolecular proton transfer from the O atom of the six-membered ring to the N atom of the fi ve-membered ring.Its related barrier is estimated to be 0.7 kcal/mol at the MS-CASPT2 level.This ultrafast process generates a planar S1keto species,which should be able to fl uoresce in rigid surroundings because steric interaction can signi fi cantly prevent the central C?C bond rotation.Instead,in vacuo or in low-viscosity solution, the C?C bond rotation becomes rather easy,which only needs to overcome a small barrier of 3.7 kcal/mol at the MS-CASPT2 level.Mechanistically,this facile rotation induces an e ffi cient excited-state deactivation via the two keto S1/S0conical intersections S1S0-1 and S1S0-2,which are located near the rotational pathway of the central C?C bond.On hopping to the S0state, the vibrationally“hot”molecule can move to the two enol S0minima,either S0-ENOL-1 or S0-ENOL-2.In the second one,the enol S1species can decay to the S0state via the enol S1/S0conical intersection S1S0-3.However,this relaxation channel is completely prohibited due to the existing large barrier,which is about 21.9 kcal/mol at the MS-CASPT2 level,even higher than the S1energy at the enol Franck-Condon point S0-ENOL-1,95.7 and 101.5 kcal/mol at MS-CASPT2 and TD-CAM-B3LYP levels,respectively.In addition,this process also cannot compete with the essentially barrierless S1excited-state intramolecular proton transfer. Considering these factors,this second decay pathway is mechanistically unimportant.Figure 11 schematically shows our suggested photochemical mechanism based on the present theoretical study.

    FIG.11 Photophysical and photochemical mechanism of HPMO suggested based on the present MS-CASPT2//CASSCF electronic structure calculations.Relative energies are also shown(kcal/mol).

    IV.CORRELATION WITH PREVIOUS WORK

    Our proposed photochemical mechanism rationalizes the phenomena of experiments available.We found that the ESIPT process happens only for S1-ENOL-1, which explains very well the observation of Guallar et al.[38]and Zewail et al.[39,41].In their experiments, only a conformer was observed to experience a photoinduced proton transfer and the ESIPT process occurs within subpicosecond in aprotic solvents and con fi ned nanocavities.In addition,the generated S1keto species can twist its central C?C bond to arrive at the S1/S0conical intersection so as to decay to the ground state. This process is demonstrated to be e ffi cient owing to a small barrier of ca.3 kcal/mol at the MS-CASPT2 level.This also rationalizes why previous experiments found a picosecond twisting motion around the central single bond of the phototautomer[41].Since the rotational motion involves a large conformation change,it must be noticeably inhibited inside the nanocavities due to steric interaction.This fi ts very well with the conclusion of Zewail and coworkers:“the con fi ned geometry restrains the nonradiative decay and thus signi fi cantly extends the excited-state lifetime”[41].

    Furthermore,our work provides new mechanistic insights.First,correct and accurate potential energy pro fi les are attained,which plays a key role in understanding the photochemical mechanism of HPMO and its derivatives.At the CIS level,Douhal et al. predicted the S1barrier related to ESIPT is more than 10 kcal/mol for 2-(2′-hydroxyphenyl)-4-oxazole [38].Due to the use of single-reference methods in previous theoretical works,the potential energy pro fi les close to the S1/S0conical intersections,for example those related to the excited-state decay of the S1keto species, are incorrectly described.For instance,Lluch et al. predicted a barrier of ca.8 kcal/mol for the central C?C bond rotation of the S1keto species in isolated HPMO and HPMO/β-CD complex[44].Instead,both S1and S0states should be close to each other along this rotational motion,as shown in Fig.10.Second,we have located several enol and keto S1/S0conical intersections and their S1deactivation channels,which is helpful for understanding the nonradiative dynamics of HPMO and its variants.

    V.CONCLUSION

    By means of high-level CASSCF and MS-CASPT2 methods,we have systematically explored the photophysical and photochemical mechanism of HPMO. The S1and S0minima,S1/S0MECIs,and minimumenergy reaction paths relevant to the S1excited-state intramolecular proton transfer and the S1enol and keto species decay channels are optimized at the CASSCF level and re fi ned at the MS-CASPT2 level.In terms of the present results,we fi nd that the excited-state intramolecular proton transfer is an overwhelmingly dominant relaxation pathway for the S1enol species and is expected to be an ultrafast process.It completely defeats the S1excited-state decay via the enolS1/S0MECI with a large barrier.The produced S1keto species should be able to fl uoresce if its central C?C bond rotation is inhibited in certain rigid surroundings,such as in solid states or high-viscosity solution.On the contrary,this S1keto species will decay to the S0state in an ultrafast means via the two keto S1/S0MECIs that can be easily approached in vacuo and dilute solution.Then,the S0enol minima are re-populated again.The present high-level electronic structure calculations provide many valuable mechanistic insights and could help understand the photodynamics of HPMO and other similar intramolecularly hydrogen-bonded molecular systems.

    Supplementary materials:Cartesian coordinates of all optimized structures are shown.

    VI.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.21522302, No.21520102005,and No.21421003).Gang-long Cui is also grateful for fi nancial support from the Recruitment Program of Global Youth Experts Youth Scholars Program of Beijing Normal University,Fundamental Research Funds for Central Universities.

    [1]P.F.Barbara,P.K.Walsh,and L.E.Brus,J.Phys. Chem.93,29(1989).

    [2]W.E.Brewer,M.L.Martnez,and P.T.Chou,J.Phys. Chem.94,1915(1990).

    [3]T.Arthen-Engeland,T.Bultmann,N.P.Ernsting,M. A.Rodriguez,and W.Thiel,Chem.Phys.163,43 (1992).

    [4]A.Sytnik and M.Kasha,Proc.Natl.Acad.Sci.91, 8627(1994).

    [5]T.Mutai,H.Tomoda,T.Ohkawa,Y.Yabe,and K. Araki,Angew.Chem.Int.Ed.47,9522(2008).

    [6]F.A.S.Chipem and G.Krishnamoorthy,J.Phys. Chem.A 113,12063(2009).

    [7]L.Antonov,V.Deneva,S.Simeonov,V.Kurteva,D. Nedeltcheva,and J.Wirz,Angew.Chem.Int.Ed.48, 7875(2009).

    [8]S.Park,J.E.Kwon,and S.Y.Park,Phys.Chem. Chem.Phys.14,8878(2012).

    [9]M.J.Paterson,M.A.Robb,L.Blancafort,and A.D. DeBellis,J.Phys.Chem.A 109,7527(2005).

    [10]S.Park,O.H.Kwon,S.Kim,S.Park,M.G.Choi,M. Cha,S.Y.Park,and D.J.Jang,J.Am.Chem.Soc. 127,10070(2005).

    [11]J.E.Kwon,S.Park,and S.Y.Park,J.Am.Chem. Soc.135,11239(2013).

    [12]W.Zhang,Y.L.Yan,J.M.Gu,J.N.Yao,and Y.S. Zhao,Angew.Chem.Int.Ed.54,7125(2015).

    [13]B.Gu,L.Y.Huang,N.X.Mi,P.Yin,Y.Y.Zhang,X. M.Tu,X.B.Luo,S.L.Luo,and S.Z.Yao,Analyst 140,2778(2015).

    [14]M.T.Ignasiak,C.Hou′ee-Levin,G.Kciuk,B. Marciniak,and T.Pedzinski,ChemPhysChem 16,628 (2015).

    [15]G.Yang,F.Morlet-Savary,Z.Peng,S.Wu,and J.P. Fouassier,Chem.Phys.Lett.256,536(1996).

    [16]W.H.Fang,J.Am.Chem.Soc.120,7568(1998).

    [17]A.L.Sobolewski and W.Domcke,Phys.Chem.Chem. Phys.1,3065(1999).

    [18]S.Lochbrunner,A.J.Wurzer,and E.Riedle,J.Chem. Phys.112,10699(2000).

    [19]A.L.Sobolewski and W.Domcke,J.Phys.Chem.A 108,10917(2004).

    [20]M.Zi′o lek,J.Kubicki,A.Maciejewski,R.Naskr?ecki, and A.Grabowska,Phys.Chem.Chem.Phys.6,4682 (2004).

    [21]D.Nedeltcheva,B.Damyanova,and S.Popov,J.Mol. Struct.749,36(2005).

    [22]Y.Wu and V.S.Batista,J.Chem.Phys.124,224305 (2006).

    [23]A.Sobolewski and W.Domcke,J.Phys.Chem.A 111, 11725(2007).

    [24]A.Migani,M.Bearpark,M.Olivucci,and M.Robb,J. Am.Chem.Soc.129,3703(2007).

    [25]W.Rodr′?guez-C′ordoba,J.S.Zugazagoitia,E.Collado-Fregoso,and J.Peon,J.Phys.Chem.A 111,6241 (2007).

    [26]A.Migani,L.Blancafort,M.A.Robb,and A.D.De-Bellis,J.Am.Chem.Soc.130,6932(2008).

    [27]G.J.Zhao and K.L.Han,Phys.Chem.Chem.Phys. 12,8914(2010).

    [28]K.C.Tang,M.Chang,T.Y.Lin,H.A.Pan,T.C. Fang,K.Y.Chen,W.Y.Hung,Y.H.Hsu,and P.T. Chou,J.Am.Chem.Soc.133,17738(2011).

    [29]G.J.Zhao and K.L.Han,Acc.Chem.Res.45,404 (2012).

    [30]G.L.Cui and W.Thiel,Phys.Chem.Chem.Phys.14, 12378(2012).

    [31]T.Sekikawa,O.Schalk,G.Wu,A.E.Boguslavskiy,and A.Stolow,J.Phys.Chem.A 117,2971(2013).

    [32]N.Suzuki,A.Fukazawa,K.Nagura,S.Saito,H.Kitoh-Nishioka,D.Yokogawa,S.Irle,and S.Yamaguchi, Angew.Chem.Int.Ed.53,8231(2014).

    [33]D.Tuna,A.Sobolewski,and W.Domcke,J.Phys. Chem.B 118,976(2014).

    [34]X.P.Chang,Q.Fang,and G.L.Cui,J.Chem.Phys. 141,154311(2014).

    [35]S.H.Xia,B.B.Xie,Q.Fang,G.L.Cui,and W.Thiel, Phys.Chem.Chem.Phys.17,9687(2015).

    [36]P.J.Guan,G.L.Cui,and Q.Fang,ChemPhysChem 16,805(2015).

    [37]X.P.Chang,G.L.Cui,W.H.Fang,and W.Thiel, ChemPhysChem 16,933(2015).

    [38]V.Guallar,M.Moreno,J.M.Lluch,F.Amat-Guerri, and A.Douhal,J.Phys.Chem.100,19789(1996).

    [39]A.Douhal,T.Fiebig,M.Chachisvilis,and A.H.Zewail, J.Phys.Chem.A 102,1657(1998).

    [40]I.Garc′?a-Ochoa,M.A.D.L′opez,M.H.Vi?nas,L.Santos,E.M.At′az,F.Amat-Guerri,and A.Douhal,Chem. Eur.J.5,897(1999).

    [41]D.P.Zhong,A.Douhal,and A.H.Zewail,Proc.Natl. Acad.Sci.USA 97,14056(2000).

    [42]V.Guallar,V.S.Batista,and W.H.Miller,J.Chem. Phys.113,9510(2000).

    [43]R.Casades′us,M.Moreno,and J.M.Lluch,Chem. Phys.Lett.356,423(2002).

    [44]R.Casades′us,M.Moreno,and J.M.Lluch,Photobiol. 173,365(2005).

    [45]O.Vendrell,M.Moreno,J.M.Lluch,and S.Hammes-Schi ff er,J.Phys.Chem.B 108,6616(2004).

    [46]K.Andersson,P.?A.Malmqvist,B.O.Roos,A.J. Sadlej,and K.Wolinski,J.Phys.Chem.94,5483 (1990).

    [47]K.Andersson,P.?A.Malmqvist,and B.O.Roos,J. Chem.Phys.96,1218(1992).

    [48]N.′Forsberg and P.Malmqvist,Chem.Phys.Lett.274, 196(1997).

    [49]F.Aquilante,R.Lindh,and T.B.Pedersen,J.Chem. Phys.127,114107(2007).

    [50]G.Ghigo,B.O.Roos,and P.?A.Malmqvist,Chem. Phys.Lett.396,142(2004).

    [51]W.H.Fang,J.Am.Chem.Soc.121,8376(1999).

    [52]H.Y.He and W.H.Fang,J.Am.Chem.Soc.125, 16139(2003).

    [53]W.H.Fang,Acc.Chem.Res.41,452(2008).

    [54]G.L.Cui,L.Ding,F.Feng,Y.J.Liu,and W.H.Fang, J.Chem.Phys.132,194308(2010).

    [55]G.L.Cui and W.H.Fang,ChemPhysChem 12,1689 (2011).

    [56]G.L.Cui and W.H.Fang,ChemPhysChem 12,1351 (2011).

    [57]G.L.Cui,Z.G.Sun,and W.H.Fang,J.Phys.Chem. A 115,10146(2011).

    [58]G.L.Cui and W.H.Fang,J.Chem.Phys.138,044315 (2013).

    [59]G.L.Cui and W.Thiel,J.Phys.Chem.Lett.5,2682 (2014).

    [60]T.Yanai,D.Tew,and N.Handy,Chem.Phys.Lett. 393,51(2004).

    [61]S.Vosko,L.Wilk,and M.Nusair,Can.J.Phys.58, 1200(1980).

    [62]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [63]C.Lee,W.Yang,and R.Parr,Phys.Rev.B 37,785 (1988).

    [64]A.D.Becke,J.Chem.Phys.98,1372(1993).

    [65]R.Ditch fi eld,W.Hehre,and J.Pople,J.Chem.Phys. 54,724(1971).

    [66]P.Hariharan and J.Pople,Theor.Chem.Acc.28,213 (1973).

    [67]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheesem,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J. Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G. A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich, A.D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz, J.Cioslowski,D.J.Fox,Gaussian 09,Revision B.01. Wallingford CT:Gaussian,Inc.,(2010).

    [68]F.Aquilante,L.De Vico,N.Ferr′e,G.Ghigo,P. Malmqvist,P.Neogr′ady,T.Pedersen,M.Pito?n′ak,M. Reiher,B.Roos,L.Serrano-Andr`es,M.Urban,V. Veryazov,and R.Lindh,J.Comput.Chem.31,224 (2010).

    [69]J.Kouteck′y,V.Bona?ci′c-Kouteck′y,J.?C′??zek,D.D¨o, Int.J.Quantum Chem.12,357(1978).

    [70]L.Salem,Acc.Chem.Res.12,87(1979).

    [71]A.Viel,R.P.Krawczyk,U.Manthe,and W.Domcke, Angew.Chem.Int.Ed.42,3434(2003).

    [72]G.L.Cui,P.J.Guan,and W.H.Fang,J.Phys.Chem. A 118,4732(2014).

    [73]G.Cui,Z.Lan,and W.Thiel,J.Am.Chem.Soc.134, 1662(2012).

    [74]L.Sp¨orkel,G.L.Cui,and W.Thiel,J.Phys.Chem.A 118,4732(2014).

    免费日韩欧美在线观看| 韩国av在线不卡| 成人国产麻豆网| 蜜臀久久99精品久久宅男| 黄色配什么色好看| 秋霞在线观看毛片| 人人澡人人妻人| 永久免费av网站大全| 蜜桃在线观看..| 免费黄色在线免费观看| 久久精品久久久久久噜噜老黄| 久久女婷五月综合色啪小说| 日日啪夜夜爽| av不卡在线播放| 99久久中文字幕三级久久日本| 亚洲成人av在线免费| 黑人巨大精品欧美一区二区蜜桃 | 精品一区二区三区视频在线| 久久久国产一区二区| 18在线观看网站| 亚洲,欧美精品.| 香蕉精品网在线| 丝袜美足系列| 精品久久蜜臀av无| 午夜福利网站1000一区二区三区| 精品视频人人做人人爽| 精品少妇内射三级| 免费久久久久久久精品成人欧美视频 | 久久久久网色| 视频在线观看一区二区三区| 18禁国产床啪视频网站| 建设人人有责人人尽责人人享有的| 国产精品嫩草影院av在线观看| 亚洲精品国产av成人精品| 国产亚洲欧美精品永久| 交换朋友夫妻互换小说| 免费大片黄手机在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美一区二区三区黑人 | 五月玫瑰六月丁香| 在线精品无人区一区二区三| 亚洲丝袜综合中文字幕| 久久久国产欧美日韩av| 久久99热6这里只有精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影在线进入| 久久久欧美国产精品| 欧美精品亚洲一区二区| 美女内射精品一级片tv| 青青草视频在线视频观看| 久久 成人 亚洲| www.色视频.com| 街头女战士在线观看网站| 成人毛片60女人毛片免费| 午夜免费观看性视频| 亚洲av综合色区一区| 国产 精品1| 成年女人在线观看亚洲视频| 久久久久网色| av片东京热男人的天堂| 美女脱内裤让男人舔精品视频| 国产伦理片在线播放av一区| 国产精品人妻久久久久久| 亚洲av综合色区一区| 一二三四中文在线观看免费高清| 一边亲一边摸免费视频| 免费在线观看黄色视频的| 22中文网久久字幕| 老司机影院毛片| 另类亚洲欧美激情| a级毛片黄视频| 天美传媒精品一区二区| 成人国产麻豆网| 久久精品国产亚洲av涩爱| 久久精品国产a三级三级三级| 亚洲av免费高清在线观看| 国产精品一区二区在线不卡| 草草在线视频免费看| 久久免费观看电影| 99re6热这里在线精品视频| 国产亚洲av片在线观看秒播厂| 最近的中文字幕免费完整| 一本大道久久a久久精品| 王馨瑶露胸无遮挡在线观看| 国产国拍精品亚洲av在线观看| 国产极品天堂在线| 国产精品一区二区在线观看99| 午夜福利乱码中文字幕| 欧美日韩亚洲高清精品| 精品一区二区三区视频在线| 亚洲,一卡二卡三卡| 2018国产大陆天天弄谢| 26uuu在线亚洲综合色| 交换朋友夫妻互换小说| 伦理电影大哥的女人| 18禁国产床啪视频网站| 热99国产精品久久久久久7| 黑人欧美特级aaaaaa片| 啦啦啦在线观看免费高清www| xxx大片免费视频| 纵有疾风起免费观看全集完整版| av在线app专区| 亚洲av免费高清在线观看| 99久久精品国产国产毛片| 久久久久网色| 热re99久久精品国产66热6| 亚洲欧美一区二区三区国产| 久久精品国产综合久久久 | 欧美成人午夜免费资源| 国产精品久久久av美女十八| 精品一品国产午夜福利视频| 一级黄片播放器| 国产激情久久老熟女| 精品一区二区三区四区五区乱码 | 成人综合一区亚洲| 日韩欧美精品免费久久| 国产精品国产三级国产av玫瑰| 天天躁夜夜躁狠狠久久av| 国产精品 国内视频| 久久99一区二区三区| 亚洲av日韩在线播放| 亚洲精品乱码久久久久久按摩| 免费高清在线观看视频在线观看| 男女免费视频国产| 精品酒店卫生间| 精品人妻熟女毛片av久久网站| 久久国产精品男人的天堂亚洲 | 亚洲成色77777| 亚洲中文av在线| 99re6热这里在线精品视频| 国产 精品1| 我要看黄色一级片免费的| 国语对白做爰xxxⅹ性视频网站| 午夜激情av网站| 一二三四在线观看免费中文在 | 亚洲国产精品一区三区| 七月丁香在线播放| 看非洲黑人一级黄片| 久久99精品国语久久久| 高清黄色对白视频在线免费看| 国产精品久久久久久久电影| 少妇的逼水好多| 国产高清不卡午夜福利| 精品福利永久在线观看| 欧美亚洲 丝袜 人妻 在线| 两性夫妻黄色片 | 国产成人精品无人区| 看免费成人av毛片| 高清视频免费观看一区二区| 午夜免费观看性视频| 在线观看一区二区三区激情| 乱人伦中国视频| 成年av动漫网址| 女人被躁到高潮嗷嗷叫费观| 韩国高清视频一区二区三区| 久久精品夜色国产| a级毛片黄视频| 日本欧美国产在线视频| 日日爽夜夜爽网站| 色视频在线一区二区三区| av一本久久久久| 大码成人一级视频| 一本色道久久久久久精品综合| 国产 一区精品| 如日韩欧美国产精品一区二区三区| 69精品国产乱码久久久| 婷婷色综合大香蕉| 有码 亚洲区| 久久久久久久精品精品| 日韩av免费高清视频| 又粗又硬又长又爽又黄的视频| 99久久中文字幕三级久久日本| 最黄视频免费看| 日本午夜av视频| 各种免费的搞黄视频| 中国国产av一级| 亚洲精品日本国产第一区| 婷婷色av中文字幕| 97精品久久久久久久久久精品| 久久精品夜色国产| 男人舔女人的私密视频| 午夜福利乱码中文字幕| 九草在线视频观看| 少妇高潮的动态图| 久久精品国产鲁丝片午夜精品| 免费看av在线观看网站| 婷婷成人精品国产| 国产色爽女视频免费观看| 久久亚洲国产成人精品v| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区激情短视频 | 91国产中文字幕| 精品熟女少妇av免费看| 欧美日韩成人在线一区二区| 少妇人妻 视频| 又粗又硬又长又爽又黄的视频| 国产精品欧美亚洲77777| 久久热在线av| www日本在线高清视频| 美女国产高潮福利片在线看| 水蜜桃什么品种好| 在线免费观看不下载黄p国产| 日韩制服丝袜自拍偷拍| 久久av网站| 精品国产一区二区三区久久久樱花| 亚洲av电影在线进入| 亚洲三级黄色毛片| 国产乱人偷精品视频| 免费看不卡的av| 在线天堂最新版资源| 波野结衣二区三区在线| 永久网站在线| 满18在线观看网站| 1024视频免费在线观看| 国产极品天堂在线| 中文字幕另类日韩欧美亚洲嫩草| 精品国产露脸久久av麻豆| 人成视频在线观看免费观看| 91国产中文字幕| 成人黄色视频免费在线看| 久久人人爽人人爽人人片va| 久久久久视频综合| 极品人妻少妇av视频| av又黄又爽大尺度在线免费看| 久久久国产一区二区| 亚洲精品国产色婷婷电影| 国产综合精华液| 人妻人人澡人人爽人人| 日日爽夜夜爽网站| 综合色丁香网| 99热6这里只有精品| 久久久久久久国产电影| 久久久欧美国产精品| 亚洲伊人色综图| 亚洲欧美色中文字幕在线| 亚洲精品国产av蜜桃| 97在线人人人人妻| 亚洲国产精品999| 精品熟女少妇av免费看| 如日韩欧美国产精品一区二区三区| 99香蕉大伊视频| 26uuu在线亚洲综合色| 高清av免费在线| 好男人视频免费观看在线| 999精品在线视频| tube8黄色片| 午夜影院在线不卡| 赤兔流量卡办理| 亚洲在久久综合| 欧美精品人与动牲交sv欧美| 国产麻豆69| 国产av国产精品国产| a 毛片基地| 蜜桃国产av成人99| 亚洲国产精品成人久久小说| 国产亚洲一区二区精品| 久久精品国产a三级三级三级| 亚洲久久久国产精品| 久久女婷五月综合色啪小说| 欧美日韩成人在线一区二区| 亚洲内射少妇av| 欧美 亚洲 国产 日韩一| 成年av动漫网址| 国产免费又黄又爽又色| 亚洲性久久影院| 丝袜人妻中文字幕| 精品国产乱码久久久久久小说| 极品人妻少妇av视频| 九色成人免费人妻av| 一区二区三区乱码不卡18| 女的被弄到高潮叫床怎么办| 伦精品一区二区三区| 亚洲欧美一区二区三区黑人 | 免费看不卡的av| 久久国产精品大桥未久av| 日韩伦理黄色片| 在线观看国产h片| 久久99热6这里只有精品| 久久久a久久爽久久v久久| 性高湖久久久久久久久免费观看| 午夜福利在线观看免费完整高清在| 丝袜人妻中文字幕| 日韩中字成人| 男女高潮啪啪啪动态图| 成人无遮挡网站| 黄网站色视频无遮挡免费观看| 又黄又爽又刺激的免费视频.| 久久久久久久久久成人| 大话2 男鬼变身卡| 日本与韩国留学比较| 日韩中字成人| 少妇猛男粗大的猛烈进出视频| 人妻系列 视频| av在线app专区| 日韩在线高清观看一区二区三区| 亚洲成人av在线免费| 亚洲精品久久久久久婷婷小说| 亚洲av.av天堂| 天堂8中文在线网| 在线 av 中文字幕| 成年av动漫网址| 国产成人午夜福利电影在线观看| 亚洲成人av在线免费| 在线观看免费日韩欧美大片| 成人国语在线视频| 亚洲精品久久午夜乱码| av女优亚洲男人天堂| 国产深夜福利视频在线观看| kizo精华| 久久99一区二区三区| 亚洲天堂av无毛| 97在线视频观看| 亚洲精品日本国产第一区| 国产xxxxx性猛交| 男女免费视频国产| 啦啦啦在线观看免费高清www| 丰满迷人的少妇在线观看| 亚洲精品国产av成人精品| 女的被弄到高潮叫床怎么办| 免费看不卡的av| 免费人妻精品一区二区三区视频| 中国国产av一级| 久热久热在线精品观看| 成年人免费黄色播放视频| freevideosex欧美| 一本—道久久a久久精品蜜桃钙片| 日韩欧美精品免费久久| av黄色大香蕉| 亚洲第一区二区三区不卡| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美精品免费久久| 美女国产高潮福利片在线看| 熟妇人妻不卡中文字幕| 免费av不卡在线播放| 最近最新中文字幕免费大全7| 狂野欧美激情性bbbbbb| 国产精品久久久久久精品古装| 考比视频在线观看| 国产精品成人在线| 日日爽夜夜爽网站| av在线老鸭窝| 交换朋友夫妻互换小说| 欧美少妇被猛烈插入视频| 我要看黄色一级片免费的| 老司机影院成人| 国产精品麻豆人妻色哟哟久久| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 成年人午夜在线观看视频| 久久久精品免费免费高清| 在线观看免费日韩欧美大片| av国产精品久久久久影院| 久久精品国产亚洲av天美| 狠狠婷婷综合久久久久久88av| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 在线观看www视频免费| 国产在线视频一区二区| 欧美bdsm另类| 国产成人免费无遮挡视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久午夜乱码| 最近的中文字幕免费完整| 97超碰精品成人国产| 免费观看a级毛片全部| 一区二区三区四区激情视频| 建设人人有责人人尽责人人享有的| 亚洲图色成人| 国产在线免费精品| 各种免费的搞黄视频| 人妻少妇偷人精品九色| 中国美白少妇内射xxxbb| 免费播放大片免费观看视频在线观看| 久久久久久久精品精品| 亚洲精品中文字幕在线视频| 国产不卡av网站在线观看| 日韩av在线免费看完整版不卡| 国产精品欧美亚洲77777| 欧美xxxx性猛交bbbb| 久久毛片免费看一区二区三区| 这个男人来自地球电影免费观看 | 三级国产精品片| 午夜免费男女啪啪视频观看| 亚洲精品日韩在线中文字幕| 亚洲成人手机| 国产成人精品一,二区| 你懂的网址亚洲精品在线观看| www.色视频.com| 丰满少妇做爰视频| 日韩制服丝袜自拍偷拍| 久久女婷五月综合色啪小说| 精品一区二区三区四区五区乱码 | 日本-黄色视频高清免费观看| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 精品国产一区二区久久| 下体分泌物呈黄色| 午夜福利,免费看| 欧美bdsm另类| a级毛片在线看网站| 人人妻人人添人人爽欧美一区卜| 免费黄网站久久成人精品| 一区二区三区精品91| 在线观看免费高清a一片| 男人添女人高潮全过程视频| 日韩不卡一区二区三区视频在线| 九色亚洲精品在线播放| 国产在线视频一区二区| 国产男女内射视频| 丝袜在线中文字幕| 日本免费在线观看一区| 成人影院久久| 午夜精品国产一区二区电影| 精品熟女少妇av免费看| 久久午夜综合久久蜜桃| 国产乱人偷精品视频| 国产永久视频网站| 午夜免费鲁丝| 国产在线一区二区三区精| 永久免费av网站大全| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 国产av精品麻豆| 欧美另类一区| 久久久久久人人人人人| 人体艺术视频欧美日本| 国产亚洲最大av| 老熟女久久久| a级毛片在线看网站| 国产成人免费无遮挡视频| 日韩精品免费视频一区二区三区 | 又粗又硬又长又爽又黄的视频| 99热6这里只有精品| 精品酒店卫生间| 久久人人爽人人爽人人片va| 亚洲精品456在线播放app| 国产熟女欧美一区二区| 多毛熟女@视频| 女的被弄到高潮叫床怎么办| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 日本91视频免费播放| 国产一区二区在线观看日韩| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 精品一区二区三区视频在线| 成人免费观看视频高清| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区四区第35| 精品久久久久久电影网| 美女视频免费永久观看网站| 久久99一区二区三区| 高清不卡的av网站| 久久毛片免费看一区二区三区| 只有这里有精品99| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 七月丁香在线播放| 另类精品久久| 久久久久久久久久人人人人人人| 国产成人精品婷婷| 亚洲精品456在线播放app| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 国产精品免费大片| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 国产在线一区二区三区精| 一级片免费观看大全| 亚洲欧美日韩卡通动漫| 巨乳人妻的诱惑在线观看| 大香蕉久久成人网| 18禁在线无遮挡免费观看视频| 亚洲丝袜综合中文字幕| 波多野结衣一区麻豆| av女优亚洲男人天堂| 久久久久国产网址| 亚洲综合色网址| 另类精品久久| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 丝袜喷水一区| 91aial.com中文字幕在线观看| 最后的刺客免费高清国语| 久久久久国产网址| 日韩三级伦理在线观看| 午夜精品国产一区二区电影| 久久99蜜桃精品久久| 在线 av 中文字幕| 性高湖久久久久久久久免费观看| 亚洲国产精品一区三区| 国产日韩欧美在线精品| 最黄视频免费看| 侵犯人妻中文字幕一二三四区| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 97超碰精品成人国产| 欧美少妇被猛烈插入视频| 午夜福利乱码中文字幕| 色吧在线观看| 高清毛片免费看| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 免费女性裸体啪啪无遮挡网站| av国产精品久久久久影院| 久久这里有精品视频免费| 一本色道久久久久久精品综合| 国产日韩欧美亚洲二区| 26uuu在线亚洲综合色| 国产精品久久久久久久久免| 如日韩欧美国产精品一区二区三区| 亚洲欧美中文字幕日韩二区| 精品国产露脸久久av麻豆| 视频中文字幕在线观看| 欧美变态另类bdsm刘玥| av片东京热男人的天堂| 午夜精品国产一区二区电影| 2022亚洲国产成人精品| av电影中文网址| 国产av码专区亚洲av| 美女内射精品一级片tv| 少妇高潮的动态图| 久久韩国三级中文字幕| 国产成人一区二区在线| 精品第一国产精品| 免费人成在线观看视频色| 久久人人爽人人爽人人片va| av在线app专区| 伊人亚洲综合成人网| 大香蕉97超碰在线| 精品国产一区二区三区久久久樱花| 日本爱情动作片www.在线观看| 日韩在线高清观看一区二区三区| 免费av中文字幕在线| 欧美97在线视频| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区 | 亚洲精品久久午夜乱码| 欧美激情极品国产一区二区三区 | 久久久欧美国产精品| 日本猛色少妇xxxxx猛交久久| 国产高清三级在线| 日本wwww免费看| 国产一级毛片在线| 一级片免费观看大全| a级毛片黄视频| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| 久久久久精品性色| 永久免费av网站大全| 久久久久网色| 满18在线观看网站| 久久久久精品性色| 在线观看免费日韩欧美大片| 国产精品久久久久久久久免| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 亚洲av福利一区| 巨乳人妻的诱惑在线观看| 欧美另类一区| 99国产精品免费福利视频| 国产1区2区3区精品| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站| 日本欧美视频一区| 一本色道久久久久久精品综合| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| av黄色大香蕉| 黑人高潮一二区| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 久久久欧美国产精品| 人人澡人人妻人| 久久久久国产网址| 99九九在线精品视频| 精品国产露脸久久av麻豆| 人妻人人澡人人爽人人| 久久精品国产亚洲av涩爱| 久久97久久精品| 国产精品.久久久| 美女内射精品一级片tv| 大陆偷拍与自拍| 春色校园在线视频观看| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 美女大奶头黄色视频| 亚洲精品第二区| 成人手机av| 久久99热6这里只有精品| 两性夫妻黄色片 | 青春草视频在线免费观看| 国产精品免费大片| a级片在线免费高清观看视频| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| www.色视频.com| 极品少妇高潮喷水抽搐| av免费在线看不卡| 丝袜喷水一区| 国产欧美另类精品又又久久亚洲欧美| 国产成人精品一,二区| 啦啦啦在线观看免费高清www|