• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Structural and Infrared Spectroscopic Study on Solvation of Acetylene by Protonated Water Molecules?

    2016-04-08 06:35:36XingtoKongXinLeiQinqinYunBingbingZhngZhiZhoDongYngShukngJingDongxuDiLingJingStteKeyLbortoryofMoleculrRectionDynmicsCollbortiveInnovtionCenterofChemistryforEnergyndMterilsDlinInstituteofChemiclPhysicsChineseAcde
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Xing-to Kong,Xin Lei,Qin-qin Yun,Bing-bing Zhng,b,Zhi Zho,c,Dong Yng,Shu-kng Jing,Dong-xu Di,Ling Jing?.Stte Key Lbortory of Moleculr Rection Dynmics,Collbortive Innovtion Center of Chemistry for Energy nd Mterils,Dlin Institute of Chemicl Physics,Chinese Acdemy of Sciences,Dlin 116023,Chinb.Stte Key Lbortory of Fine Chemicls,Dlin University of Technology,Dlin 116024,Chinc.Key Lbortory of Mterils Modi fi ction by Lser,Ion nd Electron Bems,Dlin University of Technology,Ministry of Eduction,Dlin 116024,Chin

    ?

    ARTICLE Structural and Infrared Spectroscopic Study on Solvation of Acetylene by Protonated Water Molecules?

    Xiang-tao Konga,Xin Leia,Qin-qin Yuana,Bing-bing Zhanga,b,Zhi Zhaoa,c,Dong Yanga,
    Shu-kang Jianga,Dong-xu Daia,Ling Jianga?
    a.State Key Laboratory of Molecular Reaction Dynamics,Collaborative Innovation Center of Chemistry for Energy and Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China
    b.State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China
    c.Key Laboratory of Materials Modi fi cation by Laser,Ion and Electron Beams,Dalian University of Technology,Ministry of Education,Dalian 116024,China

    (Dated:Received on November 19,2015;Accepted on December 11,2015)

    The e ff ect of solvation on the conformation of acetylene has been studied by adding one water molecule at a time.Quantum chemical calculations of the H+(C2H2)(H2O)n(n=1?5) clusters indicate that the H2O molecules prefer to form the OH··π interaction rather than the CH··O interaction.This solvation motif is di ff erent from that of neutral(C2H2)(H2O)n(n=1?4)clusters,in which the H2O molecules prefer to form the CH··O and OH··C H-bonds.For the H+(C2H2)(H2O)ncationic clusters,the fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Simulated infrared spectra reveal that vibrational frequencies of OH··π H-bonded O?H stretching a ff ord a sensitive probe for exploring the solvation of acetylene by protonated water molecules.Infrared spectra of the H+(C2H2)(H2O)n(n=1?5)clusters could be readily measured by the infrared photodissociation technique and thus provide useful information for the understanding of solvation processes.

    Key words:Acetylene,Water,Solvation,Infrared photodissociation spectroscopy,Quantum chemical calculation

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: ljiang@dicp.ac.cn.

    I.INTRODUCTION

    Hydrogen-bonded interactions are of considerable interest because of their signi fi cant importance in physical,chemical,atmospheric,biological sciences,and so on[1?7].The classical hydrogen bonds(H-bonds)are usually de fi ned as A?H··B interactions,where A?H is a proton donating bond and B is a proton accepting center that has at least one lone electron pair. A and B are electronegative atoms,such as O,N, F,and Cl.Extensive e ff orts have also been made to study new types of H-bonds,which include nonconventional proton donors(i.e.,C?H)and proton acceptors (i.e.,π-bonded functional groups),as well as dihydrogen bonds[8?13].

    Fully rotationally resolved spectra have demonstrated that water is positioned above the benzene plane,forming the OH··π H-bonded interactions[14]. Resonantion-dipinfraredspectroscopyofthe C6H6(H2O)n(n=1?7)clusters has indicated that there exist both classical OH··O and nonconventional OH··π H-bonded interactions[15].The NH··π H-bonded interactions have been detected in the ammonia-benzene dimer by high-resolution optical and microwave spectra [16].High-level ab initio calculations have exhibited that the OH··π H-bond in C6H6-H2O is stronger than the NH··π H-bond in C6H6-NH3,and their directionality is mainly controlled by the electrostatic interaction [17].The CH··π H-bonded energy in C6H6-CH4is determined to be 4.31?4.73 kJ/mol by mass analyzed threshold ionization spectroscopy,which is consistent with the theoretical value calculated by the CCSD(T) method[18].In the interactions of ethylene with the fi rst-row hydrides(CH4,NH3,H2O,and HF),π H-bonds become stronger from CH4to HF,which is highly correlated to inductive energy[19].

    The OH··π H-bond could also be formed in the interactions of water with the simplest alkyne,acetylene. Previous studies have revealed that(C2H2)(H2O)has two con fi gurations,in which either H2O acts as proton acceptor to form CH··O H-bond or C2H2serves as proton acceptor to form OH··π H-bond.The CH··O H-bond is stronger than the OH··π H-bond,and the barrier for the isomerization from the latter to the former is very low(0.75 kJ/mol),suggesting that the interconversion readily occurs[11,20].Theoretical inves-tigations of neutral(C2H2)(H2O)n(n=1?4)clusters have indicated that the interactions between acetylene and water are mainly composed by CH··O and OH··C H-bonds[21,22].When acetylene interacts with protonated water molecule(H3O+),only one stable con fi guration with OH··π H-bond is formed,which binding energy was predicted to be 81.13 kJ/mol at MP2/6-311++G(3df,3pd)level[5].So far,much less work has been done for the systematic study on the solvation of C2H2by protonated water clusters,leaving that the issues how the excess proton a ff ects solvation motif of C2H2as compared to the neutral water and how the OH··π H-bond varies with sequential hydration remain open.

    Herein,we present a study on the solvation of C2H2by a series of protonated water clusters.Electronic structure calculations of the H+(C2H2)(CO2)n(n=1?5) clusters reveal that the H2O molecules prefer to form the OH··π interaction rather than the CH··O interaction.The fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Simulated IR spectra exhibit that vibrational frequencies of OH··π H-bonded O?H stretching a ff ord a sensitive probe for exploring the solvation of acetylene by adding one water molecule at a time.

    II.THEORETICAL METHODS

    Quantum chemical calculations are carried out using Gaussian 09 program suite[23].Initial con fi gurations are built on the basis of the relevant structures reported in Refs.[5,21,22].Previous investigations have demonstrated that the structures and energetics of H-bonded complexes could be properly predicted by the M06-2X hybrid functional[24?27],which functional is employed for the present calculations.The aug-ccpVDZ basis set is used for C,H,and O atoms.Tight convergence of the optimization and the self-consistent fi eld procedures is imposed,and an ultra fi ne grid is utilized.Relative energies include zero-point vibrational energies.Harmonic vibrational frequencies are calculated at the same level.All reported structures are true minima without imaginary vibrational frequencies. Simulated IR spectra are derived from M06-2X/aug-ccpVDZ harmonic vibrational frequencies and intensities. Harmonic vibrational frequencies are scaled by a factor of 0.933,which is determined by the comparison of simulated vibrational frequencies of the bridged proton stretch in the nonclassical H+(C2H2)ion with experimental value[28].IR stick spectra are convoluted by a Gaussian line shape function with a width of 10 cm?1. The quantum theory of“atoms in molecules”calculations are performed by the Multiwfn program at the M06-2X/aug-cc-pVDZ level[29].

    III.RESULTS AND DISCUSSION

    A.Solvation motifs and IR spectra

    Several representative low-lying structures of the H+(C2H2)(H2O)n(n=1?5)clusters are presented in Fig.1.The structures are labeled according to the number of H2O molecules and relative energies.For each cluster up to n=5,simulated IR spectra of the representative low-lying isomers are shown in Figs.2?5. Scaled harmonic vibrational frequencies and intensities of free O?H stretching,OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and CC2H2in the lowest-lying isomers of (n=1?5)are listed in Table I.

    1.n=1

    As illustrated in Fig.1,one OH group of the H3O+moiety in the isomer 1A forms one OH··π H-bond with π electrons of C2H2,leaving other two OH groups free.

    Four kinds of absorption peaks are mainly observed in 1A(Fig.2).The frequencies at 3536 and 3449 cm?1 are assigned to the free O?H stretching vibration of H3O+(labeled free νOH)(Table I).The frequency at 3134 cm?1corresponds to the C?H stretching vibrations of C2H2(labeled νCH).Sharp peak at 2036 cm?1 belongs to the OH··π H-bonded O?H stretching(labeled νOH···π).The C≡C stretching vibration(labeled νC≡C)is predicted at 1920 cm?1.

    2.n=2

    On the basis of 1A,the second H2O either binds to H3O+(isomer 2A)or one CH end of acetylene (isomer 2B).The isomer 2B consists of one OH··π H-bond and one CH··O H-bond,which lies 64.03 kJ/mol above 2A.

    In the simulated IR spectrum of 2A(Fig.2),the free νOHmodes appear at 3650 and 3556 cm?1.The frequency at 3158 cm?1corresponds to the νCHmotion. The peak at 2813 cm?1is attributed to the OH··π H-bonded O?H stretching,which is remarkably blueshifted by 777 cm?1with respect to that in 1A.A new type of absorption peak is observed around 1963 cm?1 in 2A as compared to 1A,which is assigned to the OH··O H-bonded O?H stretching(labeled νOH···O). For 2B,the free νOH,νCH,and νOH···πmodes are calculated around 3560,3000,and 1800 cm?1,respectively.

    3.n=3

    FIG.1 Optimized structures of the H+(C2H2)(H2O)n(n=1?5)clusters(C:gray;H:light gray;O:red).Relative energies are given in parenthesis with unit of kJ/mol.

    TABLE I Scaled vibrational frequencies(in cm?1)and intensities(km/mol,in parenthesis)of free O?H stretching(free νOH),OH··O H-bonded O?H stretching(νOH···O),OH··π H-bonded O?H stretching(νOH···π),and C?H stretching of C2H2(νCH)for the lowest-lying isomers of H+(C2H2)(H2O)n(n=1?5).

    The lowest energy isomer(3A)could be regarded as the derivative of 2A,in which the third H2O occupies the remaining free OH site of H3O+(Fig.1).In the next energetically low-lying isomer 3B(+4.36 kJ/mol), one H-bonded ring is formed by two OH··π H-bonds and one OH··O H-bond.3C(+5.93 kJ/mol)is evolved from 2A,in which the third water is attached by one H-bonded interaction with the second water.In 3D (+6.93 kJ/mol),two terminal water molecules in the H7O3+chain form two OH···π H-bonds with C2H2,resulting in one H-bonded three-water ring.The isomers 3E(+46.33 kJ/mol)and 3F(+106.19 kJ/mol)could be viewed as the derivative of 2C,in which the third water binds to the OH group of H3O+and H2O,respectively.

    FIG.2 Simulated IR spectra of the optimized isomers of H+(C2H2)(H2O)1,2.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2,are indicated in green,red,magenta,and blue,respectively.

    In the simulated IR spectra of 3A?3F(Fig.3),the free O?H stretching vibrations weakly appear around 3600 cm?1.The intensities of C?H stretching vibrations are very weak(around 3200 cm?1)in 3A?3D,but recover remarkably in 3E and 3F because of the formation of CH··O H-bonds.The νOH···πmotion presents at 3078,3423,3247,3524/3518,2655,and 1725 cm?1 in 3A?3F,respectively.The νOH···Opeaks are observed around 1800?2500 cm?1in 3A?3E and 3400 cm?1in 3F.

    4.n=4 and 5

    For the n=4 cluster,the isomer 4A could be viewed as the derivative of 3D,in which the fourth water binds to the free OH group of the H3O+moiety(Fig.1).4B is the analogy of 3C,which lies 2.94 kJ/mol higher in energy above 4A.In 4C(+5.58 kJ/mol),the fourth water is attached to the free OH group of the H5O2+moiety of 3B,of which the shared proton also forms one H··π interaction with acetylene with the bond distance of 2.97?A[30].Analogous to 4A,4D holds one additional CH··O H-bond between H2O and C2H2,which lies+5.83 kJ/mol above 4A.In the structure of 4E (+10.01 kJ/mol),one H-bonded ring is formed by two OH··π H-bonds and four H-bonds.In 4E,the distance between the shared proton and the center of C2H2is so long(4.41?A)that there is no H··π interaction.In 4F(+10.89 kJ/mol),one terminal of the H9O4+chain forms OH··π H-bond with C2H2,similar to 3C.In 4G(+11.62 kJ/mol),one ring containing four water molecules is generated and the H3O+moiety is incorporated into the formation of one OH··π H-bond.For the n=5 cluster,the solvated structures are similar to those of n=4,suggesting that the formation of two OH··π H-bonds with the ring containing three or four water molecules is favorable.

    FIG.3 Simulated IR spectra of the six optimized isomers of H+(C2H2)(H2O)3.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2are indicated in green,red,magenta,and blue,respectively.

    In the simulated IR spectra of the n=4 cluster(Fig.4), the νOH···πmotion is calculated at 3539/3532,3355, 3584/3526,3556/3553,3546/3513,3350,and 3117 cm?1 in 4A?4G,respectively.The νOH···Omodes are sharply observed in all the isomers,the positions are distinctively di ff erent throughout the seven isomers.Interestingly,the characteristic vibrations of H5O2+Zundel ion present around 1600 and 1080 cm?1in 4C and 4E,respectively[31].

    As depicted in Fig.5,the νOH···πmotion is predicted to be 3583/3544,3564/3512,3562/3557,3401,3402, 3613/3516,and 3223 cm?1in 5A?5G,respectively. Several peaks of νOH···Omodes remarkably appear in all the isomers.However,the vibrations of H5O2+Zundel is absent from the n=5 cluster.

    B.General trend

    It can be seen from the aforementioned solvation motifs that the H2O molecules in the n=1?5 clusters prefer to form the OH··π interaction rather than the CH··O interaction.The fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Previous studies on the neutral(C2H2)(H2O)n(n=1?4)clusters revealed that the H2O molecules prefer to form the CH··O and OH··C H-bonds with C2H2,and C2H2is involved in the formation of a H-bonded ring starting at n=2.At n=4,the neutral(C2H2)(H2O)4cluster holds a water tetramer interacting with acetylene[21],which is di ff erent from the protonoated H+(C2H2)(H2O)4cluster that contains a water trimer interacting with acetylene.

    IR spectra ofthe lowest-lying isomers for the H+(C2H2)(H2O)n(n=1?5)clusters are compared in Fig.6.It can be seen that the intensities of free O?H stretching and C?H stretching are very weak,and their positions slightly change with the increase of cluster size.The OH··π H-bonded O?H stretching is predicted at 2036,2813,3078,3532/3539,and 3544/3583 cm?1for 1A?5A(Table II),respectively,exhibiting an obvious increase with the increase of cluster size.This implies that the OH··π interaction strength is weakened gradually as the number of the water molecule increases,consequently,resulting in a decrease trend of the red-shift(?νOH···π,Table II)from the antisymmetric stretching vibrational frequency(3756 cm?1)of the free water molecule[32].Furthermore,the?νOH···πvalues are very similar at n=4 or 5,suggesting that the solvation of acetylene by prontonated water approaches to be converged around n=4 or 5.The νOH···Omotions are also blue-shifted from 2A to 5A,but are split into several peaks and expanded in a broad region at larger clusters,indicating a less sensitive probe than the νOH···πmotion for exploring early stage solvation of acetylene by adding one water molecule at a time.

    TABLE II Electron density(ρ(rb)),Laplacian of electron density(■2ρ(rb)),and energy density(HBCP)at the OH··π H-bond critical points in the lowest-lying isomers(1A?? 5A).Scaled vibrational frequencies of OH··π H-bonded O?H stretching(νOH···π)and their red-shifts(?νOH···π)from the antisymmetric stretching vibrational frequency(3756 cm?1)of the free water molecule are also given.

    FIG.4 Simulated IR spectra of the seven optimized isomers of H+(C2H2)(H2O)4.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,C?H stretching of C2H2,and diagnostic vibration of H5O2+are indicated in green,red,magenta,blue, and orange,respectively.

    FIG.5 Simulated IR spectra of the seven optimized isomers of H+(C2H2)(H2O)5.Assignments of free O?H stretching, OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2are indicated in green,red,magenta,and blue,respectively.

    Topological parameters of OH··π H-bonds at bond critical points are calculated to assess the e ff ect of protonated water molecules on the νOH···πfrequency shift. Electron density(ρ(rb)),Laplacian of electron density(■2ρ(rb)),and energy density(HBCP)of OH··π H-bond at bond critical points(BCPs)in the lowestlying isomers(1A?5A)are summarized in Table II. The ρ(rb)value for 1A?5A is calculated to be 0.0584, 0.0287,0.0362,0.0126/0.0125,and 0.0124/0.0118(Table II),respectively,indicating a monotonic decrease of OH··π H-bond strength.This supports the red-shifts of OH··π H-bonded O?H stretching vibrational frequencies from the free water molecule as a function of the number of water molecule(Fig.7).The negative HBCPvalues for 1A(?0.0134)and 2A(?0.0007)suggest the OH··π H-bonds could be regarded as partially covalent interactions.The HBCPvalues become positive in the 3A?5A clusters,indicating that the OH··π H-bonds could be mainly dominant by electrostatic interactions and thus get weaker as the cluster size increases[5].

    FIG.6 Simulated IR spectra of the lowest-lying isomers of H+(C2H2)(H2O)n(n=1?5).Assignments of free O-H stretching,OH··π H-bonded O?H stretching,OH··O H-bonded O?H stretching,and C?H stretching of C2H2are indicated in green,red,magenta,and blue,respectively.

    Infrared photodissociation(IRPD)spectroscopy of mass-selected complexes has emerged as a powerful tool for the structural characterization of the gas-phase species[33?36].Under readily achievable experimental conditions,absorption of single IR photon or multiple IR photons by a cluster can induce a measurable increase in the sequence,resulting in IRPD spectra that closely resemble linear absorption spectra.Compared with the conventional vibrational spectroscopy, IRPD has advantages of high selectivity,high sensitivity and being a background-free consequence technique.Considering that the free O?H stretching,H-bonded O?H stretching,and diagnostic vibration of H5O2+have been successfully resolved in the IRPD spectra of a series of mass-selected clusters radiated by optical parametric oscillator/optical parametric ampli fi er table-top laser system or infrared free electron laser source[31,37?39],the predicted IR spectra for the H+(C2H2)(H2O)n(n=1?5)clusters could be readily measured by the IRPD technique and thus a ff ord useful information for the understanding of early stage solvation of acetylene by adding one water molecule at a time.

    IV.CONCLUSION

    The solvation of acetylene by protonated water molecules has been studied via a cluster model.Quantum chemical calculations of the H+(C2H2)(H2O)n(n=1?5)clusters indicate that the H2O molecules prefer to form the OH··π interaction rather than the CH··O interaction.The fi rst solvation shell consists of one ring structure with two OH··π H-bonds and three water molecules,which is completed at n=4.Simulated IR spectra reveal that vibrational frequencies of OH··π H-bonded O?H stretching a ff ord a sensitive probe for exploring the solvation of acetylene by protonated water molecules.The combination of IRPD technique and theoretical modeling thus provide a vivid physical picture about how protonated water molecules solvate the acetylene.

    FIG.7 Red-shifts(?νOH···π)of OH··π H-bonded O?H stretching vibrational frequencies from the antisymmetric stretching vibrational frequency(3756 cm?1)of the free water molecule and electron density(ρ(rb))of the OH··π H-bond critical points as a function of the number of water molecule(n).

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21273232 and No.21327901)and the Key Research Program of the Chinese Academy of Science(No.KGZD-EW-T05). Ling Jiang acknowledges Hundred Talents Program of Chinese Academy of Sciences and Collaborative Innovation Center of Chemistry for Energy and Materials.

    [1]G.A.Je ff rey and W.Saenger,Hydrogen Bonding in Biological Structures,Berlin:Springer-Verlag(1991).

    [2]G.A.Je ff rey,An Introduction to Hydrogen Bonding, New York:Oxford University Press(1997).

    [3]G.R.Desiraju and T.Steiner,The Weak Hydrogen Bond in Structural Chemistry and Biology,New York:Oxford University Press Inc.(1999).

    [4]T.Steiner,Angew.Chem.Int.Ed.41,48(2002).

    [5]S.Janusz Grabowski,Chem.Rev.111,2597(2011).

    [6]N.Heine and K.R.Asmis,Int.Rev.Phys.Chem.34, 1(2015).

    [7]P.A.Hunt,C.R.Ashworth,and R.P.Matthews, Chem.Soc.Rev.44,1257(2015).

    [8]I.Alkorta,I.Rozas,and J.Elguero,Chem.Soc.Rev. 27,163(1998).

    [9]P.Hobza and Z.Havlas,Chem.Rev.100,4253(2000).

    [10]S.J.Grabowski,J.Phys.Chem.A 105,10739(2001). [11]L.Sobczyk,S.J.Grabowski,and T.M.Krygowski, Chem.Rev.105,3513(2005).

    [12]S.Tsuzuki and A.Fujii,Phys.Chem.Chem.Phys.10, 2584(2008).

    [13]B.G.de Oliveira,Phys.Chem.Chem.Phys.15,37 (2013).

    [14]S.Suzuki,P.G.Green,R.E.Bumgarner,S.Dasgupta, W.A.Goddard,and G.A.Blake,Science 257,942 (1992).

    [15]R.N.Pribble and T.S.Zwier,Science 265,75(1994).

    [16]D.A.Rodham,S.Suzuki,R.D.Suenram,F.J.Lovas, S.Dasgupta,W.A.Goddard,and G.A.Blake,Nature 362,735(1993).

    [17]S.Tsuzuki,K.Honda,T.Uchimaru,M.Mikami,and K.Tanabe,J.Am.Chem.Soc.122,11450(2000).

    [18]K.Shibasaki,A.Fujii,N.Mikami and S.Tsuzuki,J. Phys.Chem.A 110,4397(2006).

    [19]P.Tarakeshwar,H.S.Choi,and K.S.Kim,J.Am. Chem.Soc.123,3323(2001).

    [20]D.Tzeli,A.Mavridis,and S.S.Xantheas,J.Chem. Phys.112,6178(2000).

    [21]D.Tzeli,A.Mavridis,and S.S.Xantheas,Chem.Phys. Lett.340,538(2001).

    [22]D.Tzeli,A.Mavridis,and S.S.Xantheas,J.Phys. Chem.A 106,11327(2002).

    [23]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.J.Bearpark,J.Heyd,E.N.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K. Raghavachari,A.P.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,N.J.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Rev A.02, Wallingford CT:Gaussian,Inc.,(2009).

    [24]K.L.Copeland and G.S.Tschumper,J.Chem.Theory Comput.8,1646(2012).

    [25]S.R.Gadre,S.D.Yeole,and N.Sahu,Chem.Rev.114, 12132(2014).

    [26]X.B.Wang and S.R.Kass,J.Am.Chem.Soc.136, 17332(2014).

    [27]Z.Zhao,X.T.Kong,X.Lei,B.B.Zhang,J.J.Zhao, and L.Jiang,Chin.J.Chem.Phys.28,501(2015).

    [28]G.E.Douberly,A.M.Ricks,B.W.Ticknor,W.C. McKee,P.v.R.Schleyer,and M.A.Duncan,J.Phys. Chem.A 112,1897(2008).

    [29]T.Lu and F.Chen,J.Comput.Chem.33,580(2012).

    [

    30]S.J.Grabowski,J.Phys.Chem.A 111,13537(2007).

    [31]K.R.Asmis,N.L.Pivonka,G.Santambrogio,M. Brummer,C.Kaposta,D.M.Neumark,and L.Woste, Science 299,1375(2003).

    [32]L.Jiang,T.Wende,R.Bergmann,G.Meijer,and K. R.Asmis,J.Am.Chem.Soc.132,7398(2010).

    [33]E.J.Bieske and O.Dopfer,Chem.Rev.100,3963 (2000).

    [34]M.A.Duncan,Int.Rev.Phys.Chem.22,407(2003).

    [35]K.R.Asmis and D.M.Neumark,Acc.Chem.Res.45, 43(2012).

    [36]A.B.Wolk,C.M.Leavitt,E.Garand,and M.A.Johnson,Acc.Chem.Res.47,202(2014).

    [37]J.M.Headrick,E.G.Diken,R.S.Walters,N.I.Hammer,R.A.Christie,J.Cui,E.M.Myshakin,M.A. Duncan,M.A.Johnson,and K.D.Jordan,Science 308,1765(2005).

    [38]A.Fujii and K.Mizuse,Int.Rev.Phys.Chem.32,266 (2013).

    [39]J.A.Fournier,C.J.Johnson,C.T.Wolke,G.H.Weddle,A.B.Wolk,and M.A.Johnson,Science 344,1009 (2014).

    黄色 视频免费看| 99国产精品免费福利视频| 国产精品爽爽va在线观看网站 | 国产精品精品国产色婷婷| 18禁裸乳无遮挡免费网站照片 | 欧美+亚洲+日韩+国产| 丁香欧美五月| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| www.www免费av| 亚洲avbb在线观看| 757午夜福利合集在线观看| 久久久久亚洲av毛片大全| 国产一区二区在线av高清观看| 色精品久久人妻99蜜桃| 美女扒开内裤让男人捅视频| 国产乱人伦免费视频| 亚洲国产精品sss在线观看| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到| 日本三级黄在线观看| 香蕉久久夜色| 久久国产乱子伦精品免费另类| 一二三四社区在线视频社区8| 大型av网站在线播放| av片东京热男人的天堂| 熟妇人妻久久中文字幕3abv| 日韩成人在线观看一区二区三区| 国产精品日韩av在线免费观看 | 男人舔女人的私密视频| 淫秽高清视频在线观看| 一区在线观看完整版| 国内久久婷婷六月综合欲色啪| 在线国产一区二区在线| 亚洲va日本ⅴa欧美va伊人久久| 无限看片的www在线观看| 咕卡用的链子| 欧美激情久久久久久爽电影 | 亚洲九九香蕉| 免费人成视频x8x8入口观看| 麻豆av在线久日| 国产熟女午夜一区二区三区| 日本vs欧美在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美在线二视频| 免费观看精品视频网站| 在线观看舔阴道视频| 亚洲专区国产一区二区| 自线自在国产av| 久久精品影院6| 久久久国产成人免费| 精品一区二区三区av网在线观看| 欧美日韩黄片免| 岛国视频午夜一区免费看| 免费看十八禁软件| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| 黄色视频不卡| 国产亚洲欧美98| 91在线观看av| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 国产一区二区三区视频了| 最好的美女福利视频网| 色综合亚洲欧美另类图片| 欧美午夜高清在线| 国产真人三级小视频在线观看| 欧美激情 高清一区二区三区| 欧美激情极品国产一区二区三区| 精品国产乱码久久久久久男人| 电影成人av| 视频在线观看一区二区三区| 色精品久久人妻99蜜桃| 一区二区三区精品91| 一级作爱视频免费观看| 大码成人一级视频| 9热在线视频观看99| 精品人妻在线不人妻| av视频在线观看入口| 久久久久久亚洲精品国产蜜桃av| 在线十欧美十亚洲十日本专区| 天天躁狠狠躁夜夜躁狠狠躁| 少妇裸体淫交视频免费看高清 | 黄色视频不卡| 亚洲第一欧美日韩一区二区三区| 欧美日韩瑟瑟在线播放| 国产精品久久久人人做人人爽| 啪啪无遮挡十八禁网站| 欧美大码av| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利视频1000在线观看 | 琪琪午夜伦伦电影理论片6080| 国产欧美日韩综合在线一区二区| 黄色毛片三级朝国网站| 亚洲av成人不卡在线观看播放网| 欧美成人性av电影在线观看| 91大片在线观看| 激情视频va一区二区三区| 欧美激情 高清一区二区三区| 国产精华一区二区三区| 国产1区2区3区精品| 男人舔女人的私密视频| 久久人妻福利社区极品人妻图片| www.精华液| 麻豆成人av在线观看| 亚洲男人天堂网一区| 国产色视频综合| 亚洲精品av麻豆狂野| 成人特级黄色片久久久久久久| 18禁国产床啪视频网站| 女警被强在线播放| 男男h啪啪无遮挡| 99国产极品粉嫩在线观看| 亚洲精品美女久久久久99蜜臀| 狠狠狠狠99中文字幕| 久久九九热精品免费| 很黄的视频免费| 精品午夜福利视频在线观看一区| 午夜亚洲福利在线播放| 久久亚洲真实| 三级毛片av免费| 国产片内射在线| 美国免费a级毛片| 999久久久精品免费观看国产| 久久人人精品亚洲av| 变态另类丝袜制服| 国产精品久久视频播放| 欧美黄色淫秽网站| 久久久久精品国产欧美久久久| 午夜久久久在线观看| 少妇的丰满在线观看| 黄色a级毛片大全视频| 国产成人欧美| 男女之事视频高清在线观看| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 90打野战视频偷拍视频| 日本在线视频免费播放| 嫩草影视91久久| 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 久久精品91蜜桃| av有码第一页| www.精华液| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 亚洲成人久久性| 91成年电影在线观看| 国产单亲对白刺激| 久久婷婷成人综合色麻豆| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 久热爱精品视频在线9| 午夜福利18| 在线天堂中文资源库| 日韩欧美免费精品| 桃红色精品国产亚洲av| 十分钟在线观看高清视频www| 午夜久久久久精精品| 9191精品国产免费久久| 成人特级黄色片久久久久久久| 黄色女人牲交| 成在线人永久免费视频| 一进一出抽搐动态| 人人澡人人妻人| 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 变态另类丝袜制服| 男人的好看免费观看在线视频 | 欧美黑人欧美精品刺激| 国产亚洲av嫩草精品影院| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 又大又爽又粗| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久久久99蜜臀| 免费不卡黄色视频| 一区二区三区激情视频| 日本免费a在线| 国产av一区在线观看免费| 好男人电影高清在线观看| 国内毛片毛片毛片毛片毛片| 亚洲五月天丁香| 久热这里只有精品99| 99在线人妻在线中文字幕| 欧美成人性av电影在线观看| 女人精品久久久久毛片| 麻豆一二三区av精品| 亚洲精品中文字幕在线视频| 国产主播在线观看一区二区| 日韩av在线大香蕉| 人妻久久中文字幕网| 又黄又粗又硬又大视频| www.自偷自拍.com| 日韩三级视频一区二区三区| 国产熟女午夜一区二区三区| 午夜免费鲁丝| 12—13女人毛片做爰片一| 天堂√8在线中文| 97超级碰碰碰精品色视频在线观看| 日韩精品中文字幕看吧| 日本欧美视频一区| 大陆偷拍与自拍| x7x7x7水蜜桃| 亚洲第一欧美日韩一区二区三区| 亚洲精品av麻豆狂野| 亚洲欧美激情在线| 精品人妻1区二区| 变态另类丝袜制服| 少妇裸体淫交视频免费看高清 | 超碰成人久久| 97人妻精品一区二区三区麻豆 | 日韩av在线大香蕉| 可以免费在线观看a视频的电影网站| 久久久久国内视频| 香蕉丝袜av| 首页视频小说图片口味搜索| 亚洲国产欧美网| 国产精品久久久av美女十八| av网站免费在线观看视频| 亚洲天堂国产精品一区在线| 色哟哟哟哟哟哟| 亚洲av日韩精品久久久久久密| 久9热在线精品视频| 欧美大码av| 久久香蕉精品热| 欧美黑人精品巨大| 一个人观看的视频www高清免费观看 | 精品人妻在线不人妻| 啪啪无遮挡十八禁网站| 校园春色视频在线观看| 曰老女人黄片| 国产xxxxx性猛交| 狠狠狠狠99中文字幕| 性少妇av在线| 一卡2卡三卡四卡精品乱码亚洲| 日本撒尿小便嘘嘘汇集6| 国产国语露脸激情在线看| 午夜福利在线观看吧| 岛国视频午夜一区免费看| 国产av在哪里看| 韩国av一区二区三区四区| 老司机午夜十八禁免费视频| 久久精品影院6| av欧美777| 久久精品aⅴ一区二区三区四区| 男人舔女人的私密视频| 999久久久精品免费观看国产| www日本在线高清视频| 99久久99久久久精品蜜桃| 高潮久久久久久久久久久不卡| 高清黄色对白视频在线免费看| 欧美日韩黄片免| 高清在线国产一区| 国内毛片毛片毛片毛片毛片| 精品国产亚洲在线| 国产精品亚洲av一区麻豆| av片东京热男人的天堂| 精品一区二区三区av网在线观看| 欧美绝顶高潮抽搐喷水| 丁香欧美五月| a级毛片在线看网站| 日本在线视频免费播放| 少妇 在线观看| 国产精品久久久人人做人人爽| 亚洲人成电影观看| 亚洲国产精品久久男人天堂| 成人国产综合亚洲| av视频免费观看在线观看| 黄片大片在线免费观看| 日韩大尺度精品在线看网址 | 可以在线观看的亚洲视频| 国产伦一二天堂av在线观看| 美女高潮到喷水免费观看| 国产高清videossex| 村上凉子中文字幕在线| aaaaa片日本免费| 久久久久久免费高清国产稀缺| 亚洲一码二码三码区别大吗| 亚洲午夜理论影院| 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 中文字幕人成人乱码亚洲影| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 青草久久国产| 免费无遮挡裸体视频| 亚洲人成77777在线视频| 国产在线精品亚洲第一网站| 亚洲第一青青草原| 国产人伦9x9x在线观看| 午夜a级毛片| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 免费在线观看黄色视频的| 成年版毛片免费区| 深夜精品福利| 大香蕉久久成人网| 国产亚洲欧美98| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 精品久久久久久,| 亚洲欧美激情在线| 亚洲成人国产一区在线观看| 欧美日韩一级在线毛片| 看片在线看免费视频| 99久久久亚洲精品蜜臀av| 亚洲av电影在线进入| 成人三级做爰电影| 黄色成人免费大全| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| 美女免费视频网站| 亚洲欧美精品综合久久99| 国产男靠女视频免费网站| 午夜精品久久久久久毛片777| 中文亚洲av片在线观看爽| 免费人成视频x8x8入口观看| 精品福利观看| 亚洲五月天丁香| 久久久久国产精品人妻aⅴ院| 欧美日韩亚洲综合一区二区三区_| 久久 成人 亚洲| 深夜精品福利| 一级毛片女人18水好多| 亚洲第一青青草原| 人人澡人人妻人| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 免费在线观看完整版高清| 久久久久精品国产欧美久久久| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91| av中文乱码字幕在线| 美女 人体艺术 gogo| 午夜福利高清视频| 国产成人一区二区三区免费视频网站| 18禁观看日本| x7x7x7水蜜桃| 国产野战对白在线观看| 老司机午夜福利在线观看视频| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 老熟妇仑乱视频hdxx| 69精品国产乱码久久久| 国产精品综合久久久久久久免费 | 天堂影院成人在线观看| 亚洲视频免费观看视频| 国产人伦9x9x在线观看| 欧美黄色片欧美黄色片| 啦啦啦观看免费观看视频高清 | 国产伦一二天堂av在线观看| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 国产成人精品久久二区二区91| 欧美国产精品va在线观看不卡| 欧美激情高清一区二区三区| 老司机深夜福利视频在线观看| 欧美激情高清一区二区三区| 757午夜福利合集在线观看| 搡老妇女老女人老熟妇| 国产免费男女视频| 久久久久久久精品吃奶| 侵犯人妻中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 国产乱人伦免费视频| 久久亚洲真实| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 男人舔女人的私密视频| 国产亚洲欧美98| 久久国产乱子伦精品免费另类| 成人国语在线视频| 男人舔女人下体高潮全视频| 国产高清videossex| 国产一卡二卡三卡精品| 怎么达到女性高潮| 亚洲人成电影观看| 丝袜在线中文字幕| 精品国产一区二区久久| 亚洲自拍偷在线| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 成熟少妇高潮喷水视频| 精品国产美女av久久久久小说| 正在播放国产对白刺激| 91精品三级在线观看| 黄色a级毛片大全视频| 亚洲av成人av| 久久 成人 亚洲| 午夜福利免费观看在线| 91大片在线观看| 成人三级黄色视频| 欧美日韩一级在线毛片| 老熟妇乱子伦视频在线观看| 亚洲久久久国产精品| 女人精品久久久久毛片| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女| av天堂久久9| 久久人人97超碰香蕉20202| 亚洲aⅴ乱码一区二区在线播放 | 黄频高清免费视频| 看片在线看免费视频| 亚洲第一青青草原| 国内精品久久久久久久电影| 韩国av一区二区三区四区| 午夜福利,免费看| 两个人看的免费小视频| 久久久久久国产a免费观看| 男男h啪啪无遮挡| av有码第一页| 50天的宝宝边吃奶边哭怎么回事| 久久天堂一区二区三区四区| 日韩大尺度精品在线看网址 | 免费观看精品视频网站| 久久中文看片网| 夜夜躁狠狠躁天天躁| 女生性感内裤真人,穿戴方法视频| 国产激情欧美一区二区| 亚洲九九香蕉| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 悠悠久久av| 女警被强在线播放| 国产精品久久久av美女十八| 欧美国产日韩亚洲一区| 中文字幕人妻丝袜一区二区| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 亚洲国产精品合色在线| 黄片大片在线免费观看| 伊人久久大香线蕉亚洲五| 十分钟在线观看高清视频www| 精品国产一区二区三区四区第35| 91大片在线观看| 啦啦啦 在线观看视频| 国产亚洲精品av在线| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 十八禁人妻一区二区| 12—13女人毛片做爰片一| 久久婷婷成人综合色麻豆| 久久香蕉激情| 波多野结衣高清无吗| 性欧美人与动物交配| 欧美黑人精品巨大| 啦啦啦观看免费观看视频高清 | 国产熟女xx| videosex国产| 国产精品野战在线观看| 99在线人妻在线中文字幕| 欧美大码av| 久久狼人影院| e午夜精品久久久久久久| 亚洲精品国产区一区二| 免费搜索国产男女视频| 咕卡用的链子| 亚洲无线在线观看| 中文字幕久久专区| 欧美激情 高清一区二区三区| 国产精品永久免费网站| 国产真人三级小视频在线观看| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| av福利片在线| 亚洲精品国产区一区二| 午夜免费激情av| 九色亚洲精品在线播放| 高清黄色对白视频在线免费看| 亚洲一区二区三区不卡视频| 淫秽高清视频在线观看| 中文字幕av电影在线播放| 99国产精品免费福利视频| 亚洲在线自拍视频| 日韩视频一区二区在线观看| 色老头精品视频在线观看| 青草久久国产| 国产亚洲精品第一综合不卡| 国产高清videossex| 亚洲精品国产精品久久久不卡| 在线观看舔阴道视频| 啪啪无遮挡十八禁网站| 12—13女人毛片做爰片一| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| 亚洲av成人一区二区三| 中亚洲国语对白在线视频| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 欧美国产精品va在线观看不卡| 久久久久国内视频| 日韩精品青青久久久久久| 国产亚洲欧美精品永久| АⅤ资源中文在线天堂| 天天一区二区日本电影三级 | 涩涩av久久男人的天堂| 亚洲欧洲精品一区二区精品久久久| 国产三级黄色录像| 久久久久国产精品人妻aⅴ院| 在线观看免费日韩欧美大片| 最好的美女福利视频网| 制服人妻中文乱码| av在线天堂中文字幕| 侵犯人妻中文字幕一二三四区| 国产国语露脸激情在线看| 国产不卡一卡二| 国产成人av激情在线播放| 香蕉丝袜av| 亚洲熟女毛片儿| 很黄的视频免费| 午夜福利一区二区在线看| 看片在线看免费视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人午夜精品| 99久久精品国产亚洲精品| 在线永久观看黄色视频| 亚洲av片天天在线观看| 久久精品成人免费网站| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 国产精品爽爽va在线观看网站 | 纯流量卡能插随身wifi吗| 国产单亲对白刺激| 男女床上黄色一级片免费看| 99国产精品一区二区三区| 成年人黄色毛片网站| 最好的美女福利视频网| 国产日韩一区二区三区精品不卡| 叶爱在线成人免费视频播放| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲av一区麻豆| 欧美黄色片欧美黄色片| 搞女人的毛片| 好男人在线观看高清免费视频 | 久久精品国产亚洲av高清一级| 欧美亚洲日本最大视频资源| 少妇的丰满在线观看| 国产精品二区激情视频| 一本大道久久a久久精品| 给我免费播放毛片高清在线观看| 成人三级黄色视频| 看免费av毛片| 69av精品久久久久久| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| 视频区欧美日本亚洲| 一级a爱视频在线免费观看| 女警被强在线播放| 少妇被粗大的猛进出69影院| 热re99久久国产66热| 欧美成人一区二区免费高清观看 | 国产精品 欧美亚洲| 久久久久久大精品| 亚洲av五月六月丁香网| 一进一出抽搐动态| 美女免费视频网站| 久久国产精品人妻蜜桃| 欧美日韩亚洲综合一区二区三区_| 久久精品91蜜桃| 老司机午夜福利在线观看视频| 天堂√8在线中文| 成年版毛片免费区| 国内精品久久久久久久电影| 亚洲第一青青草原| 不卡av一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久狼人影院| 色综合婷婷激情| 一本久久中文字幕| 搡老岳熟女国产| 中文字幕av电影在线播放| 中亚洲国语对白在线视频| 免费看a级黄色片| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 伊人久久大香线蕉亚洲五| 中文字幕最新亚洲高清| 免费女性裸体啪啪无遮挡网站| 12—13女人毛片做爰片一| 亚洲国产精品久久男人天堂| 极品教师在线免费播放| 身体一侧抽搐| 午夜久久久在线观看| 国产精品自产拍在线观看55亚洲| 午夜两性在线视频| 99久久综合精品五月天人人| 在线天堂中文资源库| 变态另类成人亚洲欧美熟女 | 久久婷婷人人爽人人干人人爱 | 18禁裸乳无遮挡免费网站照片 | 国产91精品成人一区二区三区| 搞女人的毛片| 一进一出抽搐动态| 欧美激情 高清一区二区三区| 757午夜福利合集在线观看| 国产成人av教育| 岛国视频午夜一区免费看| 久久久久国产精品人妻aⅴ院| 午夜老司机福利片| 午夜福利一区二区在线看| 国产伦一二天堂av在线观看| 中文字幕人妻熟女乱码| 他把我摸到了高潮在线观看| 不卡av一区二区三区| 午夜老司机福利片|