• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Structural Dynamics of Phenyl Azide in Light-Absorbing Excited States: Resonance Raman and Quantum Mechanical Calculation Study?

    2016-04-08 06:35:33RongdanYuanJiadanXueXumingZhengDepartmentofChemistryZhejiangSciTechUniversityHangzhou310018China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Rong-dan Yuan,Jia-dan Xue,Xu-ming Zheng?Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,China

    ?

    ARTICLE Structural Dynamics of Phenyl Azide in Light-Absorbing Excited States: Resonance Raman and Quantum Mechanical Calculation Study?

    Rong-dan Yuan,Jia-dan Xue,Xu-ming Zheng?
    Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,China

    (Dated:Received on October 15,2015;Accepted on December 8,2015)

    The excited state structural dynamics of phenyl azide(PhN3)after excitation to the light absorbing S2(A′),S3(A′),and S6(A′)states were studied using the resonance Raman spectroscopy and complete active space self-consistent fi eld calculations.The vibrational spectra and the UV absorption bands were assigned on the basis of the Fourier transform(FT)-Raman,FT-infrared measurements,the density-functional theory computations and the normal mode analysis.The A-,B-,and C-bands resonance Raman spectra in cyclohexane,acetonitrile,and methanol solvents were,respectively,obtained at 273.9,252.7,245.9, 228.7,223.1,and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3.The results indicated that the structural dynamics in the S2(A′),S3(A′), and S6(A′)states were signi fi cantly di ff erent.The crossing points of the potential energy surfaces,S2S1(1)and S2S1(2),were predicted to play a key role in the low-lying excited state decay dynamics,in accordance with Kasha’s rule,and N7=N8 dissociation.Two decay channels initiated from the Franck-Condon region of the S2(A′)state were predicted:the radiative S2,min→S0radiative decay and the S2→S1internal conversion through the crossing points S2S1(1)/S2S1(2).

    Key words:Phenyl azide,Structural dynamics,Decay dynamics,Resonance Raman spectroscopy,CASSCF calculation,Curve-crossing

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: zxm@zstu.edu.cn,Tel.:+86-571-86843699

    I.INTRODUCTION

    Photolysis of the aromatic azides(PhN3)in UV light region has been known to produce the short-lived singlet phenylnitrene(PhN)intermediates and N2molecule[1–4].The quantum yields were determined to be close to unity and in the range of 0.1?0.7 for the photodissociation of naphthyl azides and simple phenyl azides respectively[5–7].The quantum chemical calculation revealed that the S2state of the azide was bound and there was a lower barrier toward arylnitrene formation in the S1state of the azide[7].This consisted with the experimental observations that simple phenyl,biphenylyl,and naphthyl azides did not have any observable fl uorescence.The early events of the photochemistry of three aryl azides(para-and orthobiphenylyl azides,1-naphthyl azide)were studied by ultrafast spectroscopy and quantum chemical calculations [8].The S2state lifetimes of aryl azides were measured to be hundreds of femtoseconds by using the transient absorption spectroscopy.The S2state of the azides decayed with the growth of the transient absorptions of the corresponding singlet nitrenes.Quantum chemical calculations predicted that the arylnitrenes were formed in the S1states of the azides with a lower reaction barrier if the azides were initially populated in the S2state,in accordance with Kasha’s rule[8].The photochemistry of 4-amino-3-nitrophenyl azide,a widely used photoa ffi nity labeling system,was studied by using the transient absorption spectroscopy(femtosecond to microsecond time scale)and employing a theoretical perspective.The results showed that nitrene generated from the S2surface of azide,in violation of Kasha’s rule[9].

    Relative to the comprehensive studies of the nitrene chemistry,studies on the non-adiabatic decay dynamics and decomposition mechanism of aryl azides initiated from the light absorbing S2states were limited.It was not certain whether the singlet nitrene intermediate was formed from the light absorbing Sn(n≥2)states (in violation of Kasha’s rule)or in the subsequent dark S1state(in accordance with Kasha’s rule).Little has been known about the relationship between the quantum yields of the photodecomposition of the naphthyl azides and the decay channels of the formation of the corresponding niterenes.Therefore,in this work,the decay dynamics of phenyl azide initiated from the light absorbing S2state was studied by using the resonance Raman spectroscopy and quantum mechanical calculations.The resonance Raman spectra covering di ff erentexcited states were obtained to predict the underlying structural dynamics and the possible curve-crossings. CASSCF and TD-DFT calculations were carried out to reveal the excited state structures and help to determine the decay mechanism burried behind the resonance Raman intensity patterns.Both the radiative and nonradiative decay channels were found to occur in the S2state of the phenyl azide.The reaction mechanism of the nitrene formation were proposed.

    II.EXPERIMENTS AND CALCULATIONS

    The Fourier transform(FT)-Raman and FT-IR spectra were obtained with 2 cm?1resolution using FTRaman spectrometer at 1064 nm excitation(Thermo Nicolet 960,Thermo Fisher Nicolet,USA)and FTIR spectrometer(Thermo Nicolet avatar 370,Thermo Fisher Nicolet,USA).The UV absorption spectra were measured using UV/visible spectrometer(UV-2501PC, Shimadzu,Japan).

    The resonance Raman experimental method and apparatus have been described previously[10],so only a short description will be provided here.The harmonics of a nanosecond Nd:YAG laser and their hydrogen Raman shifted laser lines were employed to generate the 266.0,273.9,282.4,299.1 and 309.1 nm excitation wavelengths utilized in the resonance Raman experiments. The excitation laser beam used a~100μJ pulse energy loosely focused to a 0.5?1.0 mm diameter spot size onto a fl owing liquid stream of sample.A backscattering geometry was employed for collection of the Raman scattered light by re fl ective optics that imaged the light through a polarizer and entrance slit of a 0.5 m spectrograph and the grating of the spectrograph dispersed the light onto a liquid nitrogen cooled CCD mounted on the exit of the spectrograph.The Raman shifts of the resonance Raman spectra were calibrated with the known vibrational frequencies of acetonitrile Raman bands.To fully subtract the solvent Raman bands from the resonance Raman spectra of the sample solutions and to accurately measure the absolute resonance Raman cross-sections,the sensitivity-correction[11–15]for the wavelength dependence of the e ffi ciency of the collecting system(including the optical,the monochromator,and the detector),and the reabsorption-correction for the sample’s absorbance in backscattering geometry [11,12,16]are taken into consideration,which uses our self-programming routine coded in Origin 6.0 software. The pure solvent Raman spectrum at certain excitation wavelength is scaled by a proper factor,which depends on the self absorption correction factor using angles of incidence which varies from 60?to 40?in our procedure, until the intensities of the scaled solvent Raman bands matches those of the corresponding bands in the sample resonance Raman spectrum at the same excitation wavelength.Sections of the resonance Raman spectra were fi t to a baseline plus a sum of Lorentzian bands to determine the integrated areas of the Raman bands of interest.The spectral resolution is about 3 cm?1for the resonance Raman spectra.

    FIG.1 The schematic diagram of the geometry structure and UV absorption spectra of PhN3in cyclohexane,acetonitrile and methanol.

    The geometric structure optimization and vibrational frequency computation were done using the B3LYP/6-31+G(d)level of theory.The S0→Snvertical transition energies were estimated at B3LYP-TD/6-31+G(d) levels of theory employing a self-consistent reaction fi eld(SCRF),polarized continuum overlapping spheres model(PCM).The complete active space self-consistent fi eld(CASSCF)theory was used to study the excited state structures and decay mechanism of PhN3.The curve-crossing points between electronic excited states were computed at CASSCF(8,7)/6-31G(d)level.An active space with 8 electrons in 7 orbitals is referred to as CASSCF(8,7)hereafter.All of the quantum mechanical calculations were done using the Gaussian 03 program[17].The normal mode analysis is done using the VEDA4 program coded by Jamr′oz[18].

    III.RESULTS AND DISCUSSION

    A.UV absorption spectra and electronic transitions

    Figure 1 shows the schematic diagram of the geometry structure and the UV absorption spectra of PhN3in cyclohexane,acetonitrile and methanol with the laser excitation wavelengths indicated above the spectral curves.The experimental UV spectra in three solvents are in shape and in λmax(wavelength at the

    TABLE I B3LYP-TD/6-31+G(d)computed electronic transition energies and oscillator strengths f of PhN3in acetonitrile using PCM solvent model.

    aThe data in parentheses are orbital coe ffi cents. maximum absorption)very close to one another,and this suggests that the vertical electronic transition energies of PhN3depend little on the polarity and/or hydrogen bonding of solvents.Two broad experimental absorption bands are observed at λmax=279 nm(A-band) and 248 nm(B-band)in acetonitrile respectively in 220?300 nm spectral region with the oscillator strength for B-band absorption(f=0.2985)being much larger than that for the A-band absorption(f=0.0298).Table I lists the B3LYP-TD/6-31G(d)computed electronic transition energies,the molecular orbitals,and oscillator strengths of PhN3in acetonitrile using PCM solvent model.The calculated results display two transitionallowed absorption bands at 245 nm(f=0.3184)and 256 nm(f=0.0352),and this correlates well with the B-band(248 nm)and A-band(279 nm)absorptions respectively.

    According to Table I,the orbitals 31 and 29 are the highest and third highest occupied π bonding orbitals(referred as πHand πH?2)respectively with thecorrespondingelectronicdensitiesdistributed among the whole molecular frame,while the orbital 30 is the second highest occupied π bonding orbital (πH?1)with the electronic density mostly partitioned in the benzene moiety.The orbital 33 is the second lowest unoccupied π?anti-bonding orbital(π?L+1)with the electronic density distributed among the whole molecular frame,while the orbital 34 is a π?L+2orbital with the electronic density partitioned mostly in the benzene moiety.The orbital 32 is the lowest unoccupied π?anti-bonding orbital(π?L)formed via a Py-Py conjugation interaction of the N=N=N chromophore. Orbitals 35 and 36 are two di ff use orbitals,and they are designated as Ryd1and Ryd2.Therefore the A-, and B-band absorptions are assigned as a combined πH→π?L+2(0.52)+πH→π?L+1(0.34)+πH?1→π?L+1(0.31)+ πH?1→π?L+2(?0.10)transitions and a combined πH→π?L+1(0.58)+πH→π?L+2(?0.30)+πH?1→π?L+1(?0.18)+ nH?3→π?L(?0.15)transitions. B.Vibrational assignments of resonance Raman spectra

    No report has been found on the vibrational assignments of PhN3.We have carried out the vibrational assignments for PhN3with the aids of the density functional theory calculations,the normal mode analysis and the vibrational spectroscopic measurements in order to help to assign the resonance Raman spectra. Figure 2 shows the experimental FT-Raman and FTIR spectra of PhN3in neat liquid and their correlation to the B3LYP/6-31+G(d)computed Raman spectrum.The normal mode analysis is also done to help the assignments.Table II lists the experimental and B3LYP/6-31+G(d)calculated vibrational frequencies as well as the vibrational assignments of PhN3.The calculated vibrational frequencies are spectroscopically scaled through the linear-regression of the B3LYP/6-31+G(d)calculated frequencies to the experimental observed ones.It appears that the correlation between the experimental frequencies and the spectroscopically scaled calculated ones are in good agreement.

    FIG.2 Comparison of the FT-Raman and FT-IR spectra with the B3LYP/6-31+G(d)computed Raman spectrum of phenyl azide with the frequency value indicated.

    Figure 3 displays overall views of the resonance Raman spectra of PhN3in acetonitrile,methanol and cyclohexane at six excitation wavelengths that cover across the A-,B-,and C-band absorptions.It shows that the intensity pattern of the resonance Raman spectra at a certain excitation wavelength in three di ff erent solvents is very similar to one another.This suggests that the polarity and/or the hydrogen bond of solvents have minor e ff ect on the slope of the interested excited state potential energy surfaces in the Franck-Condon region.Keep in mind that the experimental oscillator strength measured for the B-band absorption is about 10 times that for the A-band,and that the Raman intensity is proportion to the square of the oscillator strength(f2),we expect that 245.9 and 252.7 nm resonance Raman spectra shall mostly be in resonance with the S3(A′)state(B-band),while 208.8 nm resonance Raman spectrum shall be in resonance with the S6(A′)state(C-band).

    Figure 4 shows the enlarged view of the resonance Raman spectra of PhN3in methanol.Most of the C-band resonance Raman spectra can be assigned as the fundamental modes ν7,ν11,ν19,ν9,and the overtones 2ν7, 2ν11,and combination bands ν11+ν19,2ν11+ν19,etc., while most of the B-band resonance Raman spectra can be assigned as the fundamental modes ν7,ν11,ν19, ν9,ν14,ν16,ν20,ν21,ν22,ν23,ν24,and the overtones 2ν11,3ν11,2ν7,3ν14,and combination bands ν11+ν24, ν11+ν23,ν11+ν19,ν11+ν16,ν11+ν14,2ν11+ν19,ν7+ν24, ν9+ν14,ν6+ν11,ν6+ν7,etc.The intensity patterns for the C-,and B-band resonance Raman spectra are signi fi cantly di ff erent since the relative band intensities vary signi fi cantly for the most intense fundamental modes(ν7,ν11,ν19,ν9),their overtones and combination bands as the excitations wavelengths go from 252.4 nm to 208.8 nm.This suggests that the normal mode displacements of the four most intense modes(ν7, ν11,ν19,ν9)that are along the S3(A′)excited state potential energy surfaces in the Franck-Condon region are considerably di ff erent from those that are along the S6(A′)excited state potential energy surfaces.Owing to the very intense fl uorescence interference,the 282.4 and 299.1 nm resonance Raman spectra are not obtained successfully.This retards us to extract the A-band short-time structural dynamics quantitatively.

    The major di ff erence in the intensity patterns between the 228.7 nm(or 223.1 nm)resonance Raman spectra and the B-band,or C-band resonance Raman spectra is that the former has a moderate N9N8/N8N7 stretch mode ν6at 2086 cm?1,which is absent in the latter two spectra.Since the 228.7 and 223.1 nm excitation wavelengths fall in energy into the overlap region between the S3(A′)and S6(A′)states so that the corresponding resonance Raman spectra may contain important information on the state-coupling or curvecrossing among the higher-lying excited state.However,owing to the di ffi culties in the prediction of these curve-crossing points,we are unable to clarify the decay dynamics initiated from the S3(A′)and S6(A′)states.

    Similarly,most of the 273.9 resonance Raman spectra can be assigned as approximately the thirteen fundamental modes(ν7,ν11,ν19,ν10,ν9,ν14,ν16,ν20, ν21,ν22,ν23,ν24,and ν6),the overtones(2ν11and 2ν7),and the combination bands(ν11+ν24,ν11+ν22, ν11+ν19,ν11+ν16,ν11+ν14,ν7+ν24,ν7+ν22,ν9+ν14, ν6+ν11,etc.).The intensity patterns for the 273.9 and 252.4 nm resonance Raman spectra are similar.We expect that the intensities of the four most intense modes (ν7,ν11,ν19,ν14)in the 273.9 nm resonance Raman spectrum come from the B-band absorption since the oscillator strength(f=0.2985)of the B-band absorption is 10 times that of the A-band absorption and since the resonance Raman intensities are proportion to f2. However,the major di ff erence between the 273.9 and 252.7 nm resonance Raman spectra are noted owing to the signi fi cant resonance enhancement of the ν20,ν21and ν22modes in the 273.9 nm spectrum.Since the 273.9 nm excitation wavelength falls in energy into the overlap region between the S2(A′)and S1(A′′)states,we expect that the corresponding resonance Raman spectra may contain important information on the statecoupling or curve-crossing among the higher-lying excited state.

    C.Excited state structures and reaction dynamics

    To explore the curve-crossings in the excited state decay processes and to understand the Franck-Condon region structural dynamics burried beneath the A-band resonance Raman intensity pattern,we have carried outthe CASSCF calculations.Table III lists the calculated vertical excitation energies and geometric structural parameters of the lower-lying singlet excited states and the corresponding curve-crossing points.Figure 5 displays the schematic diagram of the geometric structures for the above excited states and curve-crossing points.

    TABLE II B3LYP/6-31+G(d)computed and experimentally observed vibrational frequencies.

    FIG.3 Overview of the 273.9,252.7,245.9,228.7,223.1 and 208.8 nm resonance Raman spectra of phenyl azide in(a) acetonitrile,(b)methanol,and(c)cyclohexane.Asterisk(*)labels the solvent subtraction artifacts.

    FIG.4 Enlarged view of the 273.9,252.7,228.7,and 208.8 nm resonance Raman spectra of PhN3in methanol.Asterisk(*) labels the solvent subtraction artifacts.Pound(#)marks the residual uncertain laser line.

    The lowest light absorbing state is the S2(ππ?,A′) state according to both CASSCF and TD-B3LYP calculations.It was previously known that simple phenyl, biphenylyl,and naphthyl azides did not have any observable fl uorescence,which was explainable by their large quantum yields for extrusion of molecular nitro-gen[7].Herein,the existence of the S2,minstructure is detected for the fi rst time by the experimentally observed fl uorescence spectra that accompany the 266.0, 273.9,and 282.4 nm resonance Raman scattering.This fl uorescence spectrum(centered at λmax=294 nm or 97 kcal/mol relative to S0)red-shifts about 14 nm relative to the A-band absorption in cyclohexane,and is close to the transition energy(112 kcal/mol)of S2,minstructure predicted by CASSCF calculation.The fl uorescence at 294 nm is surely not originated from S1,min→S0transition since it is estimated at~500 nm on the basis of our CASSCF calculations listed in Table III.The 294 nm concomitant fl uorescence spectra observed in our resonance Raman experiments consists apparently with the ultrafast transient absorption spectroscopic observation that the S2state of azides that have lifetimes of hundreds of femtoseconds[8].Therefore the 294 nm fl uorescence spectrum of phenyl azide, assigned as the S2,min→S0transition,serves as the e fficient radiative decay channel of PhN3in the populated S2state.The structureless band shape of the S2,min→S0 fl uorescence spectrum suggests that the band broadening is mostly due to the pure electronic dephasing or the very short lifetime of the S2state,but unlikely due to the solvent-induced inhomogeneous broadening.

    TABLE III Vertical excitation energy?E(in kcal/mol)and geometric structural parameters of the singlet excited states and conical intersection points with the bond length R in?A,the bond angle A in(?),and D of C?N=N=N in(?).

    The transition energies of the curve-crossing points S2S1(1)and S2S1(2)are determined to be 116 and 87.5 kcal/mol at CASSCF(8,7)level of theory.The transition energy of S2S1(1)is higher than S2,min(112 kcal/mol)by 4 kcal/mol,while that of S2S1(2)is higher than S1,min(57.7 kcal/mol)by 30 kcal/mol.This suggests that when PhN3is initially populated in the S2potential energy surface,it can cross to the dark S1state through both S2S1(1)and S2S1(2),with S2S1(1) being more close to the Franck-Condon region according to the geometry structures.

    The lowest electronic state is the dark S1(πHπL?,A′′). As Table I shows,the lowest unoccupied anti-bonding πL?orbital is formed from the Py-Py conjugation interaction of the N=N=N chromophore.Thus one would expect that the-N7=N8=N9 chromophore undergoes large N7=N8 or N8=N9 bond length lengthening upon(0.69)transition.As expected,CASSCF calculations reveal that the N7?N8 and N8?N9 bond lengths of the S1,minstructure are 1.380 and 1.197?A,longer than the corresponding 1.246 and 1.119?A for S0by 0.134 and 0.078?A respectively.This indicates that the N7?N8 and N8?N9 bonds become weakly bonded in S1,min.Moreover,the transition energy for S1,min is 57.7 kcal/mol,much lower than that for S2S1(2). Thus upon internal-converting to the dark S1state, ~30 kcal/mol available energy may make the initially populated S1state of PhN3highly vibrational excited so that the predicted N7?N8 bond dissociation may take place[7].

    TheFranck-Condonregionstructuraldynamics of PhN3in the S2(A′)and S3(A′)state potential energy surfaces(A-,and B-band absorptions) is mostly along the vibration coordinates of ν11, ν7,ν9,ν14,ν19on the basis of the resonance Raman spectra in Fig.3 and Fig.4.The most intense fundamental bands andovertone progressions appearintheN8N7(21%)+C2C3(12%)+N7C1(10%) stretch+H10C2C1(12%)in plane bend mode ν11,the C6C5(27%)+C2C3(15%)+C1C2(15%)+C4C5(10%)

    stretch mode ν7,2ν11and 2ν7.This suggests that the predominant structural dynamics occurs along ν11and ν7.The appearance of the intense ν7mode consists qualitatively with the major(?0.32 or 0.52) electronic transition for the S3or S2state,which changes the C2?C3,C6?C5,C4?C5 and C1?C2 bond orders,while the appearance of the ν11mode can partially be explained by the(0.58 or 0.34) transition since it weakens N8N7 bond but enhances N7C1 and C2C3 bonds.

    FIG.5 Schematic diagram of the geometry structure of the lower-lying excited states and the corresponding curve-crossing points predicted at the CASSCF(8,7)level of theory.

    As mentioned above,the major di ff erence between the A-and B-band resonance Raman spectra is that the A-band spectrum displays noticeable intensity increase in the fundamentals of the C3C4C5 in plane bend(32%)+N7C1(18%)stretch mode ν20, the N9N8N7(33%)+N8N7C1(29%)+C3C4C5(14%)in planebendmodeν21,andtheC2C3C4(40%)+ C6C5C4(23%)+C1C2C3(11%)in plane bend mode ν22. Their intensity enhancements are surely not due to the B-band absorption since they are much weaker in the 252.4 nm resonance Raman spectra.Thus these three Franck-Condon active modes are characteristic to the 273.9 nm resonance Raman spectrum.Keep in mind that the oscillator strength for the A-band absorption is only 10%that of the B-band absorption,we expect that PhN3undergoes substantial structural changes along the ν20,ν21,and ν22vibrational reaction coordinates in the S2potential energy surface in the Franck-Condon region.

    Quantitative correlation of the A-band short-time structural dynamics of PhN3to the CASSCF calculated S2S1or S2,minstructure requires both the well separated A-,and B-band absorptions and the quantitative simulation of the A-band resonance Raman spectra using time-dependent wave-packet so as to obtain the fi nal short-time structural dynamics in terms of the easy-tovisualize internal coordinates.However the much intense B-band absorption retards our e ff ort to extract at the quantitative or semi-quantitative level the A-band short-time dynamics in terms of the easy-to-visualize internal coordinates owing to the severe pre-resonanceresonance interference of the B-band absorption.

    FIG.6 3D rigid potential energy surface scans of the S1and S2states of PhN3with the RC1?N7and RN7?N8and the AC1?N7?N8being varied.At TD-B3LYP level of theory,the scan initiates at the Franck-Condon point of the ground state geometry(a),and then with the AC1?N7?N8being set to 124.4?(b)and 119.4?(c).In situation C,the S2potential energy becomes predissociative when the RN7?N8is longer than about 1.45?A.The black arrow serves as a reference point where the energy fl uctuation for the S2potential surface is small at each scan.The blue arrow shows the curve-crossing point for each scan.

    Qualitatively,the signi fi cant structural dynamics along the ν20,ν21,and ν22vibrational coordinates suggests that the major part of the initial wave-packets is along the S2(A′)potential energy surface since no vibrational mode in A′is noticeably observed in the 273.9 nm resonance spectrum,and this can correlate either to the S2,min or S2S1structure.As the fi rst step towards understanding the roles of the ν20,ν21, and ν22modes in the photodissociation dynamics of PhN3upon A-band absorption,we have carried out the 3D rigid potential energy surface scans for the S1and S2states using TD-B3LYP level of theory.For each scan,three variables are chosen among the internal coordinates of the RC1?N7,RN7?N8,and RN8?N9bonds and the AC1?N7?N8and AN7?N8?N9bond angles. Figure 6 depicts the potential energy surfaces scans using variables of RC1?N7,RN7?N8,and AC1?N7?N8. The result indicates that at AC1?N7?N8≈124?the S2state internal-converts to the S1state,which is somewhat larger than AC1?N7?N8≈129?for S2S1predicted by the CASSCF(8,7)calculation.Further decrease of the C1?N7?N8 bond angle makes PhN3in the S2state become dissociative along the N7?N8 bond coordinate. The potential energy surfaces scans using variables of other combinations without including the C1?N7?N8 bond angle were also carried out,and the results indicates that there is no curve-crossing taking place at each scan.Apparently the C1?N7?N8 bond angle motion controls the curve-crossing between S2and S1state and the fi nal nitrene formation through the N7?N8 bond dissociation of PhN3.

    Further examination of Fig.5 shows that the most important structural di ff erences between S2S1(2)and S0for the CN7N8N9 moiety are the signi fi cant changes of the AC1?N7?N8(129.3?)and AN7?N8?N9(104.2?)bond angles for S2S1relative to those(115.6?and 173.3?respectively)for S0,which is contrast to the minor change of the AC1?N7?N8(112.2?)for S2,minrelative to that (115.6?)for S0.Thus the appearance of the mode ν21in the 273.9 nm resonance Raman spectrum but absent in the 252.4 nm resonance Raman spectrum suggests that the initial S2state structural dynamics revealed by the 273.9 nm resonance Raman spectrum is likely towards the S2S1(2)structure but does not correlate to the S2,minstructure,which indicates that the S2S1(2) curve-crossing takes place somewhere not far away from the Franck-Condon region.

    IV.CONCLUSION

    In this work,the excited state structures and decay dynamics of phenyl azide(PhN3)after excitation to the light absorbing S2(A′),S3(A′),and S6(A′)states are determined according to the CASSCF calculations and the resonance Raman spectroscopic measurements. The vibrational FT-Raman and FT-IR spectra are assigned on the basis of experimental spectroscopic measurements,the DFT calculations,and the normal mode analysis.At CASSCF(8,7)/6-31G(d)level of theory, the low-lying excited state structures of S1,min,S2,min, S1S0,S2S1(1),S2S1(2),S3S2are predicted.The 294 nm concomitant fl uorescence observed in our resonance Raman experiments is assigned as the S2,min→S0transition.Two decay channels initiated from the FCregion of the S2state are determined.One is the S2,FC→S2,min→S0radiative decay channel that makes PhN3return directly to the ground state.The other is the S2,FC→S2S1→S1nonradiative decay channel to form the dark S1state,where the further N7?N8 dissociation takes place to form phenyl nitrene and N2.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.21473163,No.21033002, No.21202032)and the National Basic Research Program of China(No.2013CB834604).

    [1]W.Lwowski Ed.,Nitrenes,Wiley:New York,(1970).

    [2]D.S.Breslow,Azides and Nitrenes,E.F.V.Scriven, ed.,Orlando,FL:Academic Press,491(1984).

    [3]H.Bayley,Photogenerated Reagents in Biochemistry and Molecular Biology,New York:Elsevier Press, (1983).

    [4]S.A.Fleming,Tetrahedron,51,12479(1995).

    [5]M.F.Budyka,N.V.Biktimirova,T.N.Gavrishova, and O.D.Russ.Laukhina,J.Phys.Chem.79,1666 (2005).

    [6]R.F.Jenkins,W.H.Waddell,and H.W.Richter,J. Am.Chem.Soc.109,1583(1987).

    [7]M.W.Geiger,M.M.Elliot,V.D.Karacostas,T.J. Moricone,J.B.Salmon,V.L.Sideli,and M.A.St. Onge,Photochem.Photobiol.40,545(1984).

    [8]G.Burdzinski,J.C.Hackett,J.Wang,T.L.Gustafson, C.M.Hadad,and M.S.Platz,J.Am.Chem.Soc.128, 13402(2006)

    [9]V.Voskresenska,R.M.Wilson,M.Panov,A.N. Tarnovsky,J.A.Krause,S.Vyas,A.H.Winter,and C.M.Hadad,J.Am.Chem.Soc.131,11535(2009)

    [10]X.Zheng,Y.L.Li,and D.L.Phillips,J.Phys.Chem. A.108,8032(2004).

    [11]A.B.Myers,in Laser Techniques in Chemistry,A.B. Myers and T.R.Rizzo Eds.,New York:Wiley,325 (1995).

    [12]A.B.Myers and R.A.Mathies,in Biological Applications of Raman Spectroscopy,T.G.Spiro Ed.,New York:Wiley,2(1987).

    [13]R.Ouillon and S.Adam,J.Raman Spectrosc.12,281 (1982).

    [14]F.J.Purcell,R.Kaminski,and E.Russavage,Appl. Spectrosc.34,323(1980).

    [15]J.R.Scherer and S.Kint,Appl.Optics.9,1615(1970). [16]A.B.Myers,B.Li,and X.Ci,J.Chem.Phys.89,1876 (1988).

    [17]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci, M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H. Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda, J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O. Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P. Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,¨O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Cli ff ord,J.Cioslowski,B.B.Stefanov,G. Lui,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Revision B.02,Pittsburgh,PA: Gaussian Inc.,(2003).

    [18]M.H.Jamr′oz,Vibrational Energy Distribution Analysis:VEDA 4 Program,Warsaw,(2004).

    亚洲成人av在线免费| 男人操女人黄网站| 精品久久蜜臀av无| 王馨瑶露胸无遮挡在线观看| 乱人伦中国视频| 国产又色又爽无遮挡免| 久久99精品国语久久久| 黄片播放在线免费| 黄色 视频免费看| 日韩在线高清观看一区二区三区| 国产精品成人在线| 日本av手机在线免费观看| 99热全是精品| 久久久欧美国产精品| 欧美精品一区二区大全| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 男人添女人高潮全过程视频| 成人毛片60女人毛片免费| 女人精品久久久久毛片| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲| 亚洲经典国产精华液单| 免费播放大片免费观看视频在线观看| 免费观看性生交大片5| 久久久精品区二区三区| 亚洲,欧美,日韩| 最新的欧美精品一区二区| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 成年动漫av网址| 久久精品国产亚洲av高清一级| 一级毛片 在线播放| 咕卡用的链子| 日韩视频在线欧美| freevideosex欧美| 亚洲精品久久午夜乱码| 亚洲图色成人| 欧美精品亚洲一区二区| 新久久久久国产一级毛片| 色94色欧美一区二区| 亚洲欧洲国产日韩| 美国免费a级毛片| 女人高潮潮喷娇喘18禁视频| 在线天堂最新版资源| 美女国产视频在线观看| 老司机影院成人| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 18禁裸乳无遮挡动漫免费视频| 人妻人人澡人人爽人人| 久久这里有精品视频免费| 日本-黄色视频高清免费观看| 国产精品亚洲av一区麻豆 | 啦啦啦在线免费观看视频4| 亚洲成人av在线免费| av在线观看视频网站免费| 国产视频首页在线观看| 午夜精品国产一区二区电影| 国产av精品麻豆| 少妇人妻久久综合中文| 久久午夜福利片| 日日啪夜夜爽| 永久免费av网站大全| 亚洲综合色网址| 欧美国产精品va在线观看不卡| 丝袜喷水一区| 男的添女的下面高潮视频| 2018国产大陆天天弄谢| 国产乱来视频区| 亚洲精品一二三| 国产精品偷伦视频观看了| 久久影院123| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 香蕉国产在线看| 色视频在线一区二区三区| 国产精品一二三区在线看| 丝袜在线中文字幕| 久久久久久久久久久免费av| 久久久久久伊人网av| 国产在视频线精品| 久久精品aⅴ一区二区三区四区 | 2021少妇久久久久久久久久久| 日本91视频免费播放| 欧美激情高清一区二区三区 | 亚洲四区av| 巨乳人妻的诱惑在线观看| 成人毛片a级毛片在线播放| 欧美中文综合在线视频| 婷婷色av中文字幕| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看| 亚洲av免费高清在线观看| 国产xxxxx性猛交| 男的添女的下面高潮视频| 国产亚洲最大av| 人妻系列 视频| 国产成人一区二区在线| 久久久久精品久久久久真实原创| av不卡在线播放| 国产精品香港三级国产av潘金莲 | 日本-黄色视频高清免费观看| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 99国产精品免费福利视频| 婷婷色综合大香蕉| 欧美 亚洲 国产 日韩一| 青春草视频在线免费观看| a级毛片在线看网站| 中国国产av一级| 亚洲精品中文字幕在线视频| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 免费人妻精品一区二区三区视频| 久久97久久精品| av在线app专区| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 91国产中文字幕| 91精品国产国语对白视频| 新久久久久国产一级毛片| 男女下面插进去视频免费观看| 久久久精品94久久精品| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜制服| 成人18禁高潮啪啪吃奶动态图| 欧美日韩亚洲高清精品| 寂寞人妻少妇视频99o| 欧美少妇被猛烈插入视频| 超碰97精品在线观看| 国产免费现黄频在线看| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 亚洲av国产av综合av卡| 99九九在线精品视频| 男人添女人高潮全过程视频| av福利片在线| 亚洲精品国产av成人精品| 午夜免费观看性视频| 1024视频免费在线观看| 久久精品国产综合久久久| 日韩视频在线欧美| 看非洲黑人一级黄片| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 国产成人欧美| 最近中文字幕2019免费版| 高清av免费在线| 麻豆乱淫一区二区| 国产av精品麻豆| 97在线视频观看| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| av天堂久久9| 久久久久久人人人人人| 久久免费观看电影| 99九九在线精品视频| 人妻 亚洲 视频| 日本色播在线视频| 777久久人妻少妇嫩草av网站| 亚洲成av片中文字幕在线观看 | 久久青草综合色| 久久精品国产a三级三级三级| 亚洲精品乱久久久久久| 国产乱来视频区| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 亚洲国产欧美日韩在线播放| 伊人亚洲综合成人网| 午夜免费鲁丝| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 亚洲av福利一区| 久久久精品区二区三区| 国产成人精品无人区| 国产一区二区 视频在线| 十八禁高潮呻吟视频| 人人妻人人爽人人添夜夜欢视频| 精品一区二区免费观看| 韩国av在线不卡| 亚洲人成77777在线视频| 又粗又硬又长又爽又黄的视频| 久久久精品区二区三区| 边亲边吃奶的免费视频| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 如日韩欧美国产精品一区二区三区| 国产在视频线精品| 亚洲在久久综合| 99久久中文字幕三级久久日本| 国产日韩欧美视频二区| 天堂中文最新版在线下载| 美女xxoo啪啪120秒动态图| 久久精品国产鲁丝片午夜精品| 美女大奶头黄色视频| 啦啦啦中文免费视频观看日本| 国产精品麻豆人妻色哟哟久久| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 看免费成人av毛片| 久久久久人妻精品一区果冻| 天天影视国产精品| 久久这里只有精品19| 九色亚洲精品在线播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲 欧美一区二区三区| 美女午夜性视频免费| 国产熟女午夜一区二区三区| 精品少妇一区二区三区视频日本电影 | 亚洲三区欧美一区| 国产有黄有色有爽视频| 制服人妻中文乱码| videos熟女内射| 日产精品乱码卡一卡2卡三| 久久国产亚洲av麻豆专区| 人妻 亚洲 视频| 亚洲国产av新网站| 97精品久久久久久久久久精品| videosex国产| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 熟妇人妻不卡中文字幕| 如日韩欧美国产精品一区二区三区| 国产精品熟女久久久久浪| www.av在线官网国产| 国产激情久久老熟女| 18禁动态无遮挡网站| 人成视频在线观看免费观看| 丰满少妇做爰视频| 美女高潮到喷水免费观看| 有码 亚洲区| 韩国精品一区二区三区| 麻豆av在线久日| 亚洲精品国产av成人精品| 日本黄色日本黄色录像| 午夜福利在线观看免费完整高清在| 黄片播放在线免费| 蜜桃在线观看..| 一本色道久久久久久精品综合| 国产成人欧美| 国产黄色免费在线视频| 久久国内精品自在自线图片| 捣出白浆h1v1| 国产精品免费大片| 国产野战对白在线观看| 精品一区二区三区四区五区乱码 | 日韩成人av中文字幕在线观看| 国产淫语在线视频| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 永久免费av网站大全| 久久午夜福利片| 欧美人与善性xxx| 777米奇影视久久| 亚洲精品国产av蜜桃| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| 99国产精品免费福利视频| 色哟哟·www| videos熟女内射| av福利片在线| 天堂俺去俺来也www色官网| 边亲边吃奶的免费视频| 五月天丁香电影| 久久国产精品大桥未久av| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 亚洲av综合色区一区| 中文天堂在线官网| 精品久久久精品久久久| 亚洲成人av在线免费| 亚洲 欧美一区二区三区| 国产成人午夜福利电影在线观看| 色哟哟·www| 精品亚洲成国产av| 精品久久久久久电影网| 18禁观看日本| 男人操女人黄网站| 成人二区视频| 香蕉国产在线看| 97精品久久久久久久久久精品| 国产成人精品久久久久久| videossex国产| 欧美日本中文国产一区发布| 久久久久久久精品精品| 亚洲精品美女久久久久99蜜臀 | 日韩中文字幕视频在线看片| 新久久久久国产一级毛片| av福利片在线| 人妻系列 视频| 国产女主播在线喷水免费视频网站| 久久韩国三级中文字幕| 看十八女毛片水多多多| 男男h啪啪无遮挡| 亚洲第一青青草原| 成人漫画全彩无遮挡| 成年动漫av网址| av免费在线看不卡| 亚洲图色成人| 日韩制服骚丝袜av| 高清在线视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人人人人人| 91国产中文字幕| 狂野欧美激情性bbbbbb| 老鸭窝网址在线观看| 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看| 啦啦啦中文免费视频观看日本| 尾随美女入室| 两个人看的免费小视频| 欧美人与善性xxx| 91久久精品国产一区二区三区| 一区福利在线观看| 又粗又硬又长又爽又黄的视频| 高清在线视频一区二区三区| 最近手机中文字幕大全| 成人免费观看视频高清| 中文字幕av电影在线播放| 亚洲视频免费观看视频| 一区在线观看完整版| 最近手机中文字幕大全| 国产又爽黄色视频| 在线免费观看不下载黄p国产| 18禁观看日本| 国产女主播在线喷水免费视频网站| 久久综合国产亚洲精品| 乱人伦中国视频| 亚洲一区二区三区欧美精品| av卡一久久| tube8黄色片| 日本欧美视频一区| 日韩电影二区| 国产精品免费大片| 精品一品国产午夜福利视频| 成人国语在线视频| 老女人水多毛片| 哪个播放器可以免费观看大片| 韩国高清视频一区二区三区| 国产精品成人在线| 欧美成人精品欧美一级黄| 波多野结衣一区麻豆| 久久精品久久久久久久性| 大香蕉久久成人网| 免费黄色在线免费观看| 2022亚洲国产成人精品| 黄网站色视频无遮挡免费观看| 最新的欧美精品一区二区| 亚洲欧美日韩另类电影网站| 亚洲精品久久久久久婷婷小说| 最近2019中文字幕mv第一页| 久久免费观看电影| 国产日韩欧美视频二区| 午夜av观看不卡| 黄网站色视频无遮挡免费观看| 日产精品乱码卡一卡2卡三| 一级黄片播放器| 一级,二级,三级黄色视频| 日韩 亚洲 欧美在线| 久久久久久久久久久久大奶| 久久人人爽人人片av| 男女边摸边吃奶| 97精品久久久久久久久久精品| 亚洲精品视频女| 少妇 在线观看| 亚洲av中文av极速乱| 欧美日韩精品网址| 超色免费av| 韩国高清视频一区二区三区| 观看av在线不卡| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 亚洲欧美色中文字幕在线| 777米奇影视久久| 精品视频人人做人人爽| 伦理电影免费视频| 99国产精品免费福利视频| 久久青草综合色| 欧美激情极品国产一区二区三区| 国产免费一区二区三区四区乱码| 免费观看av网站的网址| 水蜜桃什么品种好| 只有这里有精品99| 999精品在线视频| 美女主播在线视频| 极品少妇高潮喷水抽搐| 精品久久蜜臀av无| 少妇的逼水好多| 亚洲国产精品一区三区| 国产在线免费精品| 一区二区三区乱码不卡18| 精品国产乱码久久久久久男人| 国产精品久久久久成人av| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 老汉色∧v一级毛片| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 成年女人毛片免费观看观看9 | 我的亚洲天堂| 久久精品人人爽人人爽视色| 99久久精品国产国产毛片| 成年美女黄网站色视频大全免费| 国产 精品1| 最新的欧美精品一区二区| 超碰97精品在线观看| 免费在线观看黄色视频的| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 韩国精品一区二区三区| 久久这里只有精品19| 老女人水多毛片| 一级片'在线观看视频| 午夜福利乱码中文字幕| 人人澡人人妻人| 黄色配什么色好看| av电影中文网址| 成人毛片60女人毛片免费| 少妇 在线观看| 香蕉国产在线看| 久久久久久久大尺度免费视频| 亚洲国产av影院在线观看| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 精品视频人人做人人爽| 亚洲情色 制服丝袜| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频| 国产成人精品久久久久久| 水蜜桃什么品种好| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 人人妻人人澡人人看| 新久久久久国产一级毛片| 午夜激情久久久久久久| 宅男免费午夜| 嫩草影院入口| 高清黄色对白视频在线免费看| 狂野欧美激情性bbbbbb| 成人黄色视频免费在线看| 欧美成人午夜免费资源| 一级片'在线观看视频| 亚洲精华国产精华液的使用体验| 亚洲 欧美一区二区三区| 成人亚洲欧美一区二区av| 欧美国产精品va在线观看不卡| 亚洲精品自拍成人| 国产精品久久久久久久久免| 亚洲伊人久久精品综合| 美女午夜性视频免费| 国产精品一区二区在线不卡| www.av在线官网国产| 最近手机中文字幕大全| 这个男人来自地球电影免费观看 | 国产一区亚洲一区在线观看| 国产精品一区二区在线观看99| 黄片无遮挡物在线观看| 亚洲精品乱久久久久久| 日韩制服丝袜自拍偷拍| 久久久久精品人妻al黑| 久久99热这里只频精品6学生| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 亚洲,欧美精品.| 观看美女的网站| 波野结衣二区三区在线| 春色校园在线视频观看| 伊人亚洲综合成人网| 国产精品国产三级国产专区5o| 成人手机av| 国产成人欧美| 女人精品久久久久毛片| 成年动漫av网址| 久久ye,这里只有精品| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| 久久精品人人爽人人爽视色| 久久久久网色| 日本av免费视频播放| 国产深夜福利视频在线观看| 国产亚洲欧美精品永久| 久久久欧美国产精品| 亚洲国产精品一区三区| av有码第一页| 国产精品熟女久久久久浪| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 午夜免费男女啪啪视频观看| 卡戴珊不雅视频在线播放| 你懂的网址亚洲精品在线观看| 最近2019中文字幕mv第一页| 美女主播在线视频| 一个人免费看片子| 日本vs欧美在线观看视频| av不卡在线播放| 久久精品国产亚洲av涩爱| www.熟女人妻精品国产| 伦精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 交换朋友夫妻互换小说| 美女视频免费永久观看网站| 最近最新中文字幕免费大全7| 亚洲人成网站在线观看播放| 久久 成人 亚洲| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品成人久久小说| 欧美日韩一级在线毛片| 久久国产精品男人的天堂亚洲| 精品第一国产精品| 丝袜美腿诱惑在线| 国产成人aa在线观看| 看非洲黑人一级黄片| 在线观看一区二区三区激情| 亚洲情色 制服丝袜| 久久女婷五月综合色啪小说| 国产片特级美女逼逼视频| 中文欧美无线码| 久久精品国产鲁丝片午夜精品| 男女边吃奶边做爰视频| 性高湖久久久久久久久免费观看| 曰老女人黄片| 日韩伦理黄色片| 精品一区二区三卡| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 天堂俺去俺来也www色官网| 亚洲综合色惰| 午夜福利,免费看| 美国免费a级毛片| 汤姆久久久久久久影院中文字幕| 精品亚洲乱码少妇综合久久| av一本久久久久| 亚洲经典国产精华液单| 水蜜桃什么品种好| 久久久久精品久久久久真实原创| 午夜福利乱码中文字幕| 亚洲,一卡二卡三卡| 欧美精品人与动牲交sv欧美| 久久久久久人人人人人| 国产成人精品婷婷| 大香蕉久久网| 国产黄色视频一区二区在线观看| 免费播放大片免费观看视频在线观看| 国产av一区二区精品久久| 久久 成人 亚洲| 久久久亚洲精品成人影院| 久久久久久久国产电影| 国产激情久久老熟女| 美女高潮到喷水免费观看| a 毛片基地| 亚洲av成人精品一二三区| 日韩精品免费视频一区二区三区| 久久精品久久精品一区二区三区| 国产成人精品久久二区二区91 | 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| 午夜福利网站1000一区二区三区| 国产成人免费无遮挡视频| 欧美日韩综合久久久久久| 免费黄色在线免费观看| 国产一区二区在线观看av| av视频免费观看在线观看| 国产免费一区二区三区四区乱码| 亚洲精品久久久久久婷婷小说| 国产亚洲精品第一综合不卡| 成人漫画全彩无遮挡| 欧美最新免费一区二区三区| 97精品久久久久久久久久精品| 久久久久久伊人网av| 欧美激情 高清一区二区三区| 最近手机中文字幕大全| 哪个播放器可以免费观看大片| 久久狼人影院| 男男h啪啪无遮挡| 亚洲av中文av极速乱| 丁香六月天网| 精品第一国产精品| 高清黄色对白视频在线免费看| 免费黄网站久久成人精品| 欧美精品av麻豆av| 丝袜美腿诱惑在线| 飞空精品影院首页| 有码 亚洲区| 国产男女超爽视频在线观看| 另类精品久久| 亚洲精品国产一区二区精华液| 女人久久www免费人成看片| 在线免费观看不下载黄p国产| 美女国产视频在线观看| 欧美+日韩+精品| 成年人午夜在线观看视频| 搡女人真爽免费视频火全软件| 免费看不卡的av| 国产精品久久久久成人av| 欧美人与性动交α欧美精品济南到 | 91精品伊人久久大香线蕉| 少妇的逼水好多| 一区二区三区乱码不卡18| av免费观看日本| 国产午夜精品一二区理论片|