• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REVIEW Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications?

    2016-04-08 06:35:28WenkaiZhangCenterforAdvancedQuantumStudiesDepartmentofPhysicsBeijingNormalUniversityBeijing100875China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Wen-kai Zhang?Center for Advanced Quantum Studies,Department of Physics,Beijing Normal University,Beijing 100875,China

    ?

    REVIEW Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications?

    Wen-kai Zhang?
    Center for Advanced Quantum Studies,Department of Physics,Beijing Normal University,Beijing 100875,China

    (Dated:Received on December 1,2015;Accepted on December 28,2015)

    Polarization dependent time-resolved infrared(TRIR)spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process.The angular information of transient species is obtainable in this measurement,which makes it a valuable technique for the investigation of electron distribution,molecular structure,and conformational dynamics.In this review,we brie fl y introduce the principles and applications of polarization dependent TRIR spectroscopy.We mainly focused on the following topics:(i)an overview of TRIR spectroscopy,(ii)principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques,(iii)examples that use polarization dependent TRIR spectroscopy to probe a variety of chemical and dynamical phenomena including protein conformational dynamics,excited state electron localization,and photoisomerization,(iv)the limitations and prospects of TRIR spectroscopy.

    Key words:Ultrafast spectroscopy,Infrared spectroscopy,Polarization,Time-resolved infrared spectroscopy

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: wkzhang@bnu.edu.cn

    I.INTRODUCTION

    Femtosecond resolution studies of photochemical dynamics have the potential to detect the critical nuclear motions in real time from which a reaction mechanism can be constructed,understood,and ideally controlled[1?5].After the ultrashort UV/visible pulse excites a molecule,the subsequent evolution of the excited species can be followed by time-resolved fl uorescence[6?8],transient absorption in the UV/visible and infrared regions[9?11],X-ray di ff raction[12?14]and spectroscopy[15?18],and electron di ff raction[19,20]. Even though X-ray and electron probe can provide more insights into the structural dynamics,the technical diffi culties limit them to very few labs and research facilities and prevent their accessibility to the larger research community.On the other hand,transient electronic absorption spectroscopy has been intensively used to study the ultrafast dynamics in chemistry,physics and biology for decades.But electronic spectroscopy is typically very broad and relatively featureless,which makes structure determination extremely challenging.However,vibrational spectroscopy can identify the absorbing species more precisely than electronic spectroscopy because the absorption bands of vibrational transitions are narrower and less overlapped.Furthermore,because vibrational transitions are more spatially localized than electronic transitions,time-resolved vibrational spectroscopy can provide more insights into the structural dynamics[21?23].In the case where speci fi c vibrational modes correlate with speci fi c vibrational motions, one can directly obtain a structural information of the photo-induced reaction by inspecting the changes in vibrational absorption.Two primary vibrational spectroscopy methods,time-resolved Raman[24?29]and infrared spectroscopy[30?37],have been extensively used to study photochemical dynamics.

    When the vibrational mode of interest is a local mode, one can directly link the transition dipole moment with the particular chemical bond that is modulated by the vibration.For instance,in the fi rst notable application of polarization dependent time-resolved infrared (TRIR)spectroscopy,Hochstrasser and coworkers examined the orientation of bound CO to myoglobin by detaching CO from carboxy myoglobin(MbCO)with polarized laser pulses and investigated its recombination to the active center by infrared absorption[38]. The authors extracted the angle of the CO in the protein frame of MbCO by monitoring the bleaching signal under di ff erent excitation conditions.They concluded that the Fe?C bond tilts to the heme normal and the Fe?C?O angle di ff ered signi fi cantly from 180?.Recently,An fi nrud and coworkers showed that this deviation is less than 7?by carefully controlling the experimental variables[39].Since then,polarization dependent TRIR spectroscopy has been extensively utilizedto reveal the orientational dynamics of the CO and NO ligands in myoglobin and hemoglobin,either bound to the heme iron or in the heme pockets[40?46].It is worth noting that the assumption that the transition dipole moment lies along the CO bond vector is incorrect in most cases.

    Green fl uorescent protein(GFP)and its chromophore 4′-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI)provide another notable example.The HBDI chromophore in solution has an excited state lifetime of 1.2 ps and a fl uorescence quantum yield of only 10?3 [47?49]while the same chromophore has a fl uorescence lifetime of~3 ns and quantum yield approaching 0.8 in wild-type GFP[50?53].Theoretical calculations suggested that the fl exibility of room temperature solvent leads to bond isomerization and ultrafast excited state quenching for the HBDI chromophore [54].Usman et al.measured the TRIR anisotropy of a localized CO stretching mode in HBDI[55]. They observed an upshifted broadband(with fwhm of~50 cm?1)excited state absorption(ESA)feature at~1750 cm?1in natural HBDI.Their experiment indicated a di ff erent excited state behavior from the formation of a charge transfer state,provided an angle of 70?between the electronic transition dipole moment and CO vibrational transition dipole moment,and concluded that structural change in HBDI is due to an isomerization by a single twist or a hula twist [55].Later,van Thor and coworkers showed that the HBDI isomerization is signi fi cantly reduced in the GFP excited state due to the constraint of the protein environment[52].There are more examples that employed TRIR anisotropy measurements including the isomerization reaction of photoactive yellow protein (PYP)[56,57],phytochrome holoprotein[58],and the structural response of an enzyme to a photo-excited inhibitor[59].It has also been used to determine the three-dimensional orientation of electronic transition dipole moment[60?62]and to follow the photo-induced transfer dynamics and the structural evolution of the charge separated states[63,64].

    Even though the TRIR spectroscopy has been extensively used to study the structural dynamics of the photochemistry process,the di ffi culties in robustly interpreting femtosecond resolution measurements reduce its ability to determine photochemical reaction mechanisms.As a consequence,the TRIR spectroscopy and its application in the chemical reaction dynamics have been underutilized.Within this context,we believe there is a need to introduce the principle of polarization dependent TRIR spectroscopy and summarize its applications in structural dynamics to a larger research community.In this review,we fi rst give an overview of the TRIR spectroscopy and describe its advantages in resolving structural dynamics.We then present examples of using anisotropy measurements to study electron localization dynamics in charge transfer excited states and bond isomerization dynamics in a push-pull donorphenyl-accepter system.We show that the recent improvements in ultrafast laser technology,continuous advances in experimental methodology,and the advent of a common language for the interpretation of measurements,have assisted the study of chemical dynamics. We then brie fl y describe the challenges of ultrafast infrared spectroscopy in biological applications and conclude with a future outlook.

    II.PRINCIPLES OF POLARIZATION DEPENDENT TRIR SPECTROSCOPY

    The TRIR spectroscopy employs a pump-probe methodology,where the pump pulse is typically in the UV/visible region and the probe pulse is in the midinfrared(mid-IR)region for most photochemistry studies.Femtosecond mid-IR pulses are generated through a di ff erence frequency generation process after optical parametric ampli fi er[65].Experimentally,TRIR spectroscopy is performed in a spectrally-resolved con fi guration.The pump-induced absorbance changes are then measured with a mercury cadmium telluride(MCT)detector after spectral dispersion using a monochromator. A side e ff ect is that the ground state bleach(GSB)signals appear to grow at negative time delay,which is the so-called perturbed free induction decay.It is a common feature when the dephasing time of bleached transitions is much longer than the cross-correlation time between the pump and probe pulse,which is about 100?200 fs [66?68].

    The signal contribution in the UV/visible pump mid-IR probe TRIR spectroscopy is much simpler than conventional transient absorption spectroscopy.As we know,there are three distinct sources of signals in the transient absorption measurements as illustrated by the energy diagram in Fig.1(a).The GSB and stimulated emission(SE)lead to an increase in signal transmission while the ESA reduces the signal transmission. The potential spectral overlap between GSB,ESA,and SE prevents the application of the transient absorption spectroscopy to many interesting problems,and the situation can be even worse in the transition metal related systems.However,there is no SE contribution in UV/visible pump mid-IR probe TRIR spectroscopy since the frequency of the mid-IR probe is signi fi cantly lower than the pump frequency and the possible electronic excited state emission as shown in Fig.1(b),which will remarkably reduce the di ffi culty in distinguishing the signal from di ff erent contributions.

    Polarization dependent TRIR spectroscopy measures the frequency dependent isotropic,Iiso(ω,t),and the anisotropic,r(ω,t),signals from the parallel and perpendicular polarization measurements[69],

    where I‖and I⊥represent the changes in probe transmission induced by a pump pulse when the pump and probe pulses have parallel and perpendicular polarizations.The experimental and theoretical framework developed for the conventional polarization dependent time-resolved spectroscopy method can be easily applied to the polarization dependent TRIR spectroscopy [70?79].For example,the TRIR anisotropy provides insights into the relative angles between the electronic and infrared transition dipole moments[80,81].Under the most common circumstances,a low concentration of chromophores with non-degenerate excited states will have an anisotropy that ranges from?0.2 to 0.4,where the decay of the anisotropy results from the rotation of excited state molecules.In next section,we will present a detailed example of using TRIR anisotropy measurement to study electron localization dynamics in charge transfer excited states.

    III.ELECTRON LOCALIZATION IN CHARGE TRANSFER EXCITED STATES

    E ffi cient energy migration and charge separation are essential steps in molecularly based light-harvesting materials[82,83].Charge transfer excited states of a high symmetry coordination complex have either an electron or a hole residing in one of the degenerate molecular orbitals.For the idealized degenerate case,the coupling between degenerate molecular orbitals leads to delocalization of the excited state,while static and dynamic disorder will reduce the symmetry and eliminate the energetic degeneracy that provide a mechanism for electron localization.For these reasons,the time-dependent charge transfer excited states in high symmetry coordination complexes provide a particular example of assessing how fundamental molecular properties control excited state electronic structure and charge separation.

    A lot of experimental and theoretical studies have emphasized the importance of time-resolved anisotropy in the structural dynamics of the electronic excited state for high symmetry molecules[84?89].When the pump pulse excites degenerate states,the initial value of the anisotropy re fl ects the molecular symmetry and the decay of the anisotropy re fl ects multiple dynamical processes.Molecules with three-fold degeneracy will have initial anisotropy r(0)=1.0 while molecules with twofold degeneracy will have initial anisotropy r(0)=0.7 [85].A schematic of the relevant processes for twofold degenerate system appears in Fig.2.The dynamical phenomena that govern the loss of anisotropy for the two-fold degenerate states can be expressed as three rates re fl ecting three distinct processes for an overdamped superposition of excited states[89],

    Dephasing due to inter-and intra-molecular fl uctuations occurs with a γ rate and leads to localization of the charge transfer excited state to a single molecular orbital and reduction in anisotropy to r=0.4.Incoherent electron transfer between degenerate localized charge transfer excited states occurs with a Γ rate and further reduces the anisotropy to r=0.1 for two-fold degenerate states.Excited state bond rotation can also lead to changes in the anisotropy[90],though not for the charge transfer systems discussed in this case.For dilute excitation,where excitation transfer between molecules does not occur,molecular rotation with the rate D causes the fi nal loss of anisotropy.

    The contradictory interpretations of anisotropy measurementsforthemetal-to-ligandchargetransfer (MLCT)excited state of ruthenium-tris-bipyridine highlight the challenges in interpreting time-resolved anisotropy results[86?88].The photoexcitation leads to two-fold degenerate electronic excited states with orthogonal transition dipole moments.The biggest problem for anisotropy measurement occurs when the ESA spectrally overlaps with either the GSB or the SE. When signals of opposite sign spectrally overlap,the anisotropy extracted from Eq.(2)can range from?∞to+∞which makes the measurement meaningless[88]. Here we show that these di ffi culties in experimental interpretation can be partially addressed by a change in experimental design.We have used polarization dependent transient mid-IR absorption spectroscopy to study the electron localization dynamics of Fe(CN)63?[69]. Using the TRIR spectrum of CN-stretch vibration to track the dynamics of electronic excited states has the following advantages.The simplicity of CN-stretch vi-brational lineshapes allow us to distinguish clearly the ESA from the GSB signal,and the recorded transient vibrational spectrum does not have an SE contribution. The CN-stretch modes have transition dipole moments parallel to the CN bonding axes in this system,which greatly simpli fi es the interpretation of the anisotropy measurements.

    FIG.2 A sketch of the electronic excited state relaxation processes for a two-fold degenerate system.γ is the rate of the decoherence,Γ is the rate of the incoherent electron transfer,and D is the rate of molecular rotation.This fi gure is adapted with permission from Zhang et al.[18],copyright(2015),American Chemical Society.

    FIG.3 TRIR spectroscopy for[Fe(CN)6]3?dissolved in dimethyl sulfoxide.(a)The isotropic(red points)and S‖?S⊥di ff erence(blue traces)transient spectra are shown for a 0.2 ps time delay.The solid red line is the fi t of isotropic transient spectra.(b)Isotropic transient spectra as a function of mid-IR probe time delay and frequency.These fi gures are adapted with permission from Zhang et al.[18],copyright(2012)American Chemical Society.

    We generate a ligand to metal charge transfer (LMCT)excited state and probe the electronic excited state dynamics with mid-IR pulses polarized parallel and perpendicular to the UV pump polarization.The octahedral Fe(CN)63?complex only has a three-fold degenerate T1uCN stretch mode in the mid-IR region.As shown in Fig.3(a),strong inter-ligand electronic coupling in the LMCT excited state preserves the octahedral symmetry and leads to a single T1uCN-stretch ESA band at 2050 cm?1with no anisotropy by a 0.2 ps time delay.With a solvent dependent rate,we observed this ESA converts to two ESA peaks appearing at 2079 and 2095 cm?1with a 5 ps time constant as shown in Fig.3(b).The original ESA at short time delays and the absence of anisotropy demonstrate that the ligand hole in the LMCT electronic excited state hops very quickly from ligand to ligand,making the excited state look delocalized on the vibrational time scale.This observation also implies that the measurement lacks su fficient temporal resolution to observe the initial dephasing and intra-ligand charge transfer rates represented by γ and Γ in Eq.(3).The eventual appearance of two distinct vibrational transitions with the same rise and decay time constants suggests a reduction in molecular symmetry associated with a localized excited state. As shown in Fig.3,the loss in symmetry causes two CN-stretch absorption peaks split by 20 cm?1.To experimentally resolve this 20 cm?1shift,a time resolution greater than 1 ps is needed.Otherwise,the two transitions will motionally narrow into a single transition that makes the vibrational spectroscopy insensitive to the ligand hole localization.This sub-picosecond loss of anisotropy found for degenerate electronic ex-cited states agrees with the tetraphenyl porphyrin results measured by Hochstrasser and co-workers[89]and ruthenium-tris-bipyridine results obtained by Hammerstr¨om and coworkers[88].But it is hard to apply directly the TRIR anisotropy measurements to ruthenium tris-bipyridine since there are no vibrational transitions in this molecule that can be easily mapped onto the charge transfer coordinates.Vibrational labeling with local vibrational modes,such as cyano groups,may help to solve this problem[91].

    IV.PHOTO-INDUCED BOND ISOMERIZATION DYNAMICS

    Photoisomerization process depends sensitively on the reaction environment.The di ff erences between liquid and protein solvated chromophores represent the most striking demonstration of photochemical sensitivity to local environment.In bacteriorhodopsin,retinal isomerizes around the C13=C14 double bond with a quantum yield of 0.6[92,93],while retinal isomerizes around multiple double bonds with signi fi cantly lower quantum yield in solution[94,95].As we discussed above,the photochemistry of HBDI chromophore also strongly depends on its surrounding environment[48?51].We believe that the detailed understanding of the relationship between reaction environment and the photochemical outcome has wideranging application including designing and directing light-driven materials and molecular sensors.Here,we show an example that uses TRIR anisotropy measurement to characterize the isomerization dynamics of julolidine malononitrile(JDMN),as illustrated in Fig.4,dissolved in dimethylsulfoxide(DMSO).Photoisomerization of a similar molecular system has been extensively studied which include the stilbene bond isomerization [96]and the twisted intramolecular charge transfer (TICT)proposed for the dual fl uorescence of 4-(N,N-dimethylamino)-benzonitrile(DMABN)[97].Previous investigations demonstrated the sensitivity of the photochemical dynamics to the details of the reaction environment,including the viscoelastic e ff ects and solvent electrostatic e ff ects[98?103].But a detailed understanding of the excited state isomerization dynamics in response to the environmental properties is still lacking.

    As we mentioned above,the TRIR anisotropy can provide the relative angle between the electronic and vibrational transition dipole moments when molecular rotation can be ignored[38?42].As shown in Fig.5, photo-induced bond isomerization will change the relative angle θ.We place the rotational axis?R along the z-axis since it is invariant in the molecular frame during the photoisomerization process.The relative angles θ between the electronic transition dipole momentμeand the vibrational transition dipole momentμvcan be correlated to the molecular structure through the following relationship:cosθ=cosθecosθv?sinθesinθvcos?, where ?=?e??vis the dihedral angle between the?Rμeand the?Rμvplanes.So one can determine the bond rotation angle,?,by measuring the angle θ and calculating the two tilt angles,θeand θv,from the combined experimental and computational studies.

    FIG.4Molecular structures of julolidine malononitrile (JDMN).The electronic transition dipole and the torsional angles potentially involved in the electronic excited state relaxation dynamics are also shown.These fi gures are adapted with permission from Zhang et al.[23],copyright(2012) American Chemical Society.

    FIG.5 Schematic view of how the photo-induced change in the torsional angle?? can be extracted from the polarization dependent TRIR spectroscopy.This fi gure is adapted with permission from Zhang et al.[23],copyright(2012) American Chemical Society.

    The detailed assignment and analysis of photoinduced dynamics of JDMN in DMSO can be found in Ref.[23].In short,we have modeled the electronic excited state decay kinetics with two parallel relaxation channels each involving two sequential relaxation steps [23].Isotropic dynamics fi ts at three di ff erent central frequencies:2210 cm?1(GSB),2155 cm?1(ESA),and 2115 cm?1(ESA)with this kinetic model can be found in Fig.6(a).Figure 6(b)shows the time-dependent anisotropy measured at these three frequencies.The GSB has an initial anisotropy of 0.31±0.04 that does not have any decay in the 50 ps time window demonstrates that JDMN molecule rotation occurs on a time scale much slower than 50 ps,which suggests that the anisotropy values at long time delay can be used to as-sess the structural dynamics of the long-lived excited state.

    FIG.6(a)Time-dependent change in transmission for the isotropic pump-probe signal.Population dynamics for the GSB measured at 2210 cm?1(?),the ESA band measured at 2155 cm?1(□),and the ESA band measured at 2115 cm?1(?)of JDMN measured in DMSO.(b)Timedependent anisotropy for JDMN in DMSO at three different spectra range:2210 cm?1(*),2155 cm?1(□)and 2115 cm?1(?).These fi gures are adapted with permission from Zhang et al.[23],copyright(2012)American Chemical Society.

    The ESA anisotropy measured at 2115 cm?1shows an initial value of 0.04±0.03 with no measurable time dependence,indicating the two electronic excited states have very similar anti-symmetric CN stretch anisotropies.However,the ESA anisotropy measured at 2155 cm?1has an initial value of 0.39±0.05 decaying to 0.13±0.03 which corresponds to a weighted sum of the two anisotropies[23].If both anisotropies were time independent,the time constant of the overall anisotropy would follow the 12.3 ps excited state population decay time constant.But this anisotropy decay occurs much faster than 12.3 ps strongly indicates that the anisotropy of long-lived excited state has a time-dependent decay.We have fi t it to a single exponential with an o ff set,r=Aexp(?t/τ)+C,which gives τ=2.6±0.7 ps,A=0.21±0.04,and C=0.18±0.03.

    As shown in Fig.5,to correlate the measured relative transient dipole angle to the bond rotation,we need to calculate the tilt angles,θeand θv.TDDFT/CAMB3LYP calculations predict the presence of one structure minimum on the excited state potential energy surface(PES)near the Frank-Condon region that is consistent with no bond isomerization.The calculated PES energy varies weakly with torsion of bond b and bond c that is in line with the orientational dynamics observed for the excited state.A conical intersection is reached when bond c twists to τc≈80??90?[98,104].We then searched the excited state PES and identi fi ed two di ff erent minima using TDDFT calculations.One minimum occurs in the Frank-Condon region and cannot account for the long-lived excited state that we labeled as an S1state.The second minimum occurs at τb=80?that we labeled as Sbstate and corresponds to a rotational angle??=80?for bond b rotation[23].The Sbelectronic dipole moment exceeds that of S1by 6.2 Debye,which originates from the transfer of charge from the julolidine to the malononitrile π electron system.So the Sbstate can be assigned to a TICT state since it involves electron transfer between decoupled molecular orbitals [23,97].In short,we demonstrate that the combination of measurements and TDDFT calculations has confi rmed the photoisomerization of JDMN generates a metastable TICT excited state.We have to emphasize that there are two critical attributes to determine the success of this experiment.(i)To follow the structural dynamics using anisotropy measurement,it is necessary that the bond rotation changes the projection of the vibrational transition dipole moment onto the electronic transition dipole moment.(ii)The structural change in the laboratory frame and molecular frame needs to be similar.This requirement can be satis fi ed when the isomerizing bond separates the molecule into two components with very di ff erent moments of inertia,which is met by JDMN,but not by stilbene or azobenzene.V.FUTURE PROMISE

    TRIR spectroscopy is particularly valuable in the study of systems containing CO or CN vibration mode since their frequencies and bandwidths sensitivities to electronic and molecular structure are well-established. But their extension to the larger biological system is still facing a lot of challenges,the major limitations being their low sensitivity and site-selectivity[105].The low site-selectivity is the consequence of the delocalized backbone vibrational mode and the possible frequent overlap with bu ff er solution.To improve the site-selectivity,researchers have developed various extrinsic vibrational probes and incorporated them into biological molecules to study their site-speci fi cal structural and environmental properties.These extrinsic vibrational probes have played an essential role in the study of a wide variety of structure and dynamics of proteins and peptides and the advancements in this rapidly growing research area have been inten-sively reviewed recently[106?108].The low sensitivity of the TRIR spectroscopy is the result of the low cross sections of vibrational transitions which are more than two orders of magnitude lower than those of the electronic transitions.Combining this low sensitivity with the strong absorption of water in the mid-IR region,biological samples need to be highly concentrated,which is not favorable for most of the larger proteins.However,there is a signi fi cant sensitivity gain when we move to the two-dimensional infrared(2DIR)spectroscopy.First,the detection can be background free when using the so-called box-CARS geometry.Second,the 2D-IR signal strength quadratically depends on the extinction coe ffi cient[105].For example,for a medium strong IR absorber with an extinction coe ffi cient of 500(mol/L)?1cm?1at 2120 cm?1in a cuvette of 10-micron thickness,an absorption band with 0.5 mOD is expected at 1 mmol/L concentration.The D2O background at the same condition is expected to be 100 mOD since the extinction coe ffi cient is 1.8(mol/L)?1cm?1at 2120 cm?1for D2O.So the signal ratio between the IR label and water background is 1:500 for linear spectroscopy,which is expected to be improved to 1:2.3 for 2D-IR measurement since the reason of the enormous water background is its massive concentration(~56 mol/L)[105].Combined with the development of other light-induced triggering,we expect the time-resolved 2D-IR spectroscopy will serve as a critical tool in providing new mechanistic insights into photo-induced biological problems[109,110].

    Recently,high-intensity continuum mid-IR pulse has been demonstrated and used to study water hydrogen bonding related phenomenon[111?114].This advancement makes the TRIR more similar to the transient absorption experiment where the supercontinuum is commonly used.The extinction ratio of commercial mid-IR polarizer has also been dramatically improved which allows the researchers to detect extremely weak chiral signals on top of large achiral background contributions[115,116].The advancement of the 2D area detector has opened the opportunity to study the nonlinear infrared imaging of the heterogeneous samples with micron resolution[117].With all these technology and methodology developments,the structural dynamics study in the chemical and biological system using the ultrafast infrared methods will be furthered.

    VI.ACKNOWLEDGMENTS

    This work was supported by the“Thousand Plan”Youth Program and Beijing Normal University.

    [1]S.Woutersen,U.Emmerichs,and H.J.Bakker,Science 278,658(1997)

    [2]A.H.Zewail,J.Phys.Chem.A 104,5660(2000).

    [3]N.A.Anderson and T.Q.Lian,Annual Rev.Phys. Chem.Palo Alto,491(2005).

    [4]A.Rosspeintner,B.Lang,and E.Vauthey,Annual Review of Physical Chemistry,Vol.64,M.A.Johnson and T.J.Martinez,Eds.,Palo Alto:Annual Reviews, 247(2013).

    [5]R.J.D.Miller,Science 343,1108(2014).

    [6]J.R.Lakowicz,Principles of Fluorescence Spectroscopy,Springer,(2006).

    [7]P.Mukherjee,Ultrafast Fluorescence Spectroscopy Used as a Probe to Explore Excited State Photophysics of Biologically and Environmentally Relevant Systems, Proquest:Umi Dissertation Publishing,(2011).

    [8]Y.X.Weng and H.L.Chen,Ultrafast Spectroscopyrinciples and Techniques(Chinese Edition),Beijing: Chemical Industry Press,(2013).

    [9]G.R.Fleming,Chemical ApplicationsofUltrafast Spectroscopy,Oxford:Oxford University Press, (1986).

    [10]P.Hannaford,FemtosecondLaserSpectroscopy, Springer,(2005).

    [11]M.D.Fayer,Ultrafast Infrared Vibrational Spectroscopy,New York:CRC Press,(2013).

    [12]F.Schotte,H.S.Cho,V.R.I.Kaila,H.Kamikubo,N. Dashdorj,E.R.Henry,T.J.Graber,R.Henning,M. Wul ff,G.Hummer,M.Kataoka,and P.A.An fi nrud, Proc.Nat.Acad.Sci.USA 109,19256(2012).

    [13]Y.O.Jung,J.H.Lee,J.Kim,M.Schmidt,K.Mo ff at, V.Srajer,and H.Ihee,Nature Chem.5,212(2013).

    [14]K.H.Kim,J.G.Kim,S.Nozawa,T.Sato,K.Y. Oang,T.Kim,H.Ki,J.Jo,S.Park,C.Song,T. Sato,K.Ogawa,T.Togashi,K.Tono,M.Yabashi, T.Ishikawa,J.Kim,R.Ryoo,J.Kim,and H.Ihee, Nature 518(2015).

    [15]H.T.Lemke,C.Bressler,L.X.Chen,D.M.Fritz,K. J.Ga ff ney,A.Galler,W.Gawelda,K.Haldrup,R.W. Hartsock,H.Ihee,J.Kim,K.H.Kim,J.H.Lee,M. M.Nielsen,A.B.Stickrath,W.Zhang,D.Zhu,and M.Cammarata,J.Phys.Chem.A 117,735(2013).

    [16]W.Zhang,R.Alonso-Mori,U.Bergmann,C.Bressler, M.Chollet,A.Galler,W.Gawelda,R.G.Hadt,R. W.Hartsock,T.Kroll,K.S.Kjaer,K.Kubicek,H. T.Lemke,H.W.Liang,D.A.Meyer,M.M.Nielsen, C.Purser,J.S.Robinson,E.I.Solomon,Z.Sun,D. Sokaras,T.B.van Driel,G.Vanko,T.C.Weng,D. Zhu,and K.J.Ga ff ney,Nature 509,345(2015).

    [17]P.Wernet,K.Kunnus,I.Josefsson,I.Rajkovic,W. Quevedo,M.Beye,S.Schreck,S.Grubel,M.Scholz, D.Nordlund,W.Zhang,R.W.Hartsock,W.F. Schlotter,J.J.Turner,B.Kennedy,F.Hennies,F. M.F.de Groot,K.J.Ga ff ney,S.Techert,M.Odelius, and A.Fohlisch,Nature 520,78(2015).

    [18]W.Zhang and K.J.Ga ff ney,Account.Chem.Res.48, 1140(2015).

    [19]B.J.Siwick,J.R.Dwyer,R.E.Jordan,and R.J.D. Miller,Science 302,1382(2003).

    [20]A.H.Zewail,Annual Review of Physical Chemistry. Palo Alto:Annual Reviews,65(2006).

    [21]M.B.Ji,M.Odelius,and K.J.Ga ff ney,Science 328, 1003(2010).

    [22]D.Y.Vorobyev,C.H.Kuo,J.X.Chen,D.G.Kuroda, J.N.Scott,J.M.Vanderkooi,and R.M.Hochstrasser,J.Phys.Chem.B 113,15382(2009).

    [23]W.K.Zhang,Z.G.Lan,Z.Sun,and K.J.Ga ff ney, J.Phys.Chem.B 116,11527(2012).

    [24]D.McMorrow and W.T.Lotshaw,J.Phys.Chem.95, 10395(1991).

    [25]A.M.Weiner,D.E.Leaird,G.P.Wiederrecht,and K.A.Nelson,J.Opt.Soc.Am.B 8,1264(1991).

    [26]H.Hamaguchi,An.Rev.Phys.Chem.45,593(1994). [27]L.Dhar,J.A.Rogers,and K.A.Nelson,Chem.Rev. 94,157(1994).

    [28]M.Schmitt,G.Knopp,A.Materny,and W.Kiefer, Chem.Phys.Lett.270,9(1997).

    [29]P.Kukura,D.W.McCamant,and R.A.Mathies,Annual Review of Physical Chemistry,Palo Alto:Annual Reviews,461(2007).

    [30]J.R.Schoonover and G.F.Strouse,Chem.Rev.98, 1335(1998).

    [31]M.W.George and J.J.Turner,Coordination Chem. Rev.177,201(1998).

    [32]E.T.J.Nibbering,H.Fidder,E.Pines,Annual Review of Physical Chemistry,Palo Alto:Annual Reviews, 337(2005).

    [33]J.M.Butler,M.W.George,J.R.Schoonover,D.M. Dattelbaum,and T.J.Meyer,Coordination Chem. Rev.251,492(2007).

    [34]R.D.Pensack,K.M.Banyas,L.W.Barbour,M. Hegadorn,and J.B.Asbury,Phys.Chem.Chem. Phys.11,2575(2009).

    [35]H.J.Bakker and J.L.Skinner,Chem.Rev.110,1498 (2010).

    [36]P.Hamm,Chimia 65,313(2011).

    [37])M.D.Fayer and N.E.Levinger,Annual Review of Analytical Chemistry,Vol.3.E.S.Yeung and R.N. Zare Eds.,Palo Alto:Annual Reviews,89(2010).

    [38]J.N.Moore,P.A.Hansen,and R.M.Hochstrasser, Proc.Nat.Acad.Sci.USA 85 5062(1988).

    [39]M.Lim,T.A.Jackson,and P.A.An fi nrud,Science 269,962(1995).

    [40]P.A.Hansen,J.N.Moore,and R.M.Hochstrasser, Chem.Phys.131,49(1989).

    [41]M.H.Lim,T.A.Jackson,and P.A.An fi nrud,J. Chem.Phys.102,4355(1995).

    [42]M.H.Lim,T.A.Jackson,and P.A.An fi nrud,Nature Struct.Bio.4,209(1997).

    [43]P.A.An fi nrud,C.Han,and R.M.Hochstrasse,Proc. Nat.Acad.Sci.USA 86,8387(1989).

    [44]D.E.Sagnella,J.E.Straub,T.A.Jackson,M.Lim, and P.A.An fi nrud,Proce.Nat.Acad.Sci.USA 96, 14324(1999).

    [45]M.H.Lim,Bull.Korean Chem.Soc.23,865(2002). [46]T.Zemojtel,M.Rini,K.Heyne,T.Dandekar,E.T.J. Nibbering,and P.M.Kozlowski,J.Am.Chem.Soc. 126,1930(2004).

    [47]H.Niwa,S.Inouye,T.Hirano,T.Matsuno,S.Kojima, M.Kubota,M.Ohashi,and F.I.Tsuji,Proc.Nat. Aca.Sci.USA 93,13617(1996).

    [48]K.B.Bravaya,B.L.Grigorenko,A.V.Nemukhin, and A.I.Krylov,Acc.Chem.Res.45,265(2012).

    [49]L.M.Tolbert,A.Baldridge,J.Kowalik,and K.M. Solntsev,Acc.Chem.Res.45,171(2012).

    [50]R.Y.Tsien,Annual Rev.Biochem.67,509(1998).

    [51]R.Y.Tsien,Angew.Chem.Int.Ed.48,5612(2009). [52]J.J.van Thor,K.L.Ronayne,M.Towrie,and J.T. Sage,Biophys.J.95,1902(2008).

    [53]J.J.van Thor,Chem.Soc.Rev.38,2935(2009).

    [54]A.M.Virshup,C.Punwong,T.V.Pogorelov,B.A. Lindquist,C.Ko,and T.J.Martinez,J.Phys.Chem. B 113,3280(2009).

    [55]A.Usman,O.F.Mohammed,E.T.J.Nibbering,J. Dong,K.M.Solntsev,and L.M.Tolbert,J.Am. Chem.Soc.127,11214(2005).

    [56]K.Heyne,O.F.Mohammed,A.Usman,J.Dreyer, and E.T.J.Nibbering,J.Am.Chem.Soc.127,18100 (2005).

    [57]A.Usman,O.F.Mohammed,K.Heyne,J.Dreyer, and E.T.J.Nibbering,Chem.Phys.Lett.401,157 (2005).

    [58]Y.Yang,M.Linke,T.von Haimberger,J.Hahn,R. Matute,L.Gonzalez,P.Schmieder,and K.Heyne,J. Am.Chem.Soc.134,1408(2012).

    [59]S.K.Jha,M.B.A.Ji,K.J.Ga ff ney,and S.G.Boxer, Proc.Nat.Acad.Sci.USA 108,16612(2011).

    [60]M.Linke,A.Lauer,T.von Haimberger,A.Zacarias, and K.Heyn,J.Am.Chem.Soc.130,14904(2008). [61]M.Linke,M.Theisen,T.von Haimberger,M.E. A.Madjet,A.Zacarias,H.Fidder,and K.Heyne, ChemPhysChem 11,1283(2010).

    [62]M.Theisen,M.Linke,M.Kerbs,H.Fidder,M.E.A. Madjet,A.Zacarias,and K.Heyne,J.Chem.Phys. 131,8(2009).

    [63]C.F.Wang,B.K.Mohney,B.B.Akhremitchev,and G.C.Walker,J.Phys.Chem.A 104,4314(2000).

    [64]I.V.Rubtsov,N.P.Redmore,R.M.Hochstrasser,and M.J.Therien,J.Am.Chem.Soc.126,2684(2004). [65]R.A.Kaindl,M.Wurm,K.Reimann,P.Hamm,A. M.Weiner,and M.Woerner,J.Opt.Soc.Am.B 17, 2086(2000).

    [66]K.Wynne and R.M.Hochstrasser,Chem.Phys.193, 211(1995).

    [67]P.Hamm,Chem.Phys.200,415(1995).

    [68]M.Chachisvilis,H.Fidder,and V.Sundstrom,Chem. Phys.Lett.234,141(1995).

    [69]W.K.Zhang,M.B.Ji,Z.Sun,and K.J.Ga ff ney,J. Am.Chem.Soc.134,2581(2012).

    [70]R.Jimenez,S.N.Dikshit,S.E.Bradforth,and G.R. Fleming,J.Phys.Chem.100,6825(1996).

    [71]C.Sissa,A.Painelli,M.Blanchard-Desce,and F. Terenziani,J.Phys.Chem.B 115,7009(2011).

    [72]D.M.Jonas,M.J.Lang,Y.Nagasawa,T.Joo,and G.R.Fleming,J.Phys.Chem.100,12660(1996).

    [73]K.Wynne,S.M.Lecours,C.Galli,M.J.Therien, and R.M.Hochstrasser,J.Am.Chem.Soc.117,3749 (1995).

    [74]R.Kumble,S.Palese,V.S.Y.Lin,M.J.Therien,and R.M.Hochstrasser,J.Am.Chem.Soc.120,11489 (1998).

    [75]C.K.Min,T.Joo,M.C.Yoon,C.M.Kim,Y. N.Hwang,D.Kim,N.Aratani,N.Yoshida,and A. Osuka,J.Chem.Phys.114,6750(2001).

    [76]W.Qian and D.M.Jonas,J.Chem.Phys.119,1611 (2003).

    [77]D.A.Farrow,E.R.Smith,W.Qian,and D.M.Jonas, J.Chem.Phys.129,20(2008).

    [78]O.Schalk and A.N.Unterreiner,Phys.Chem.Chem. Phys.12,655(2010).

    [79]E.R.Smith and D.M.Jonas,J.Phys.Chem.A 115,4101(2011).

    [80]A.J.Van Tassle,M.A.Prantil,and G.R.Fleming, J.Phys.Chem.B 110,18989(2006).

    [81]J.Rehault,V.Zanirato,M.Olivucci,and J.Helbing, J.Chem.Phy.134,10(2011).

    [82]G.S.Engel,T.R.Calhoun,E.L.Read,T.K.Ahn, T.Mancal,Y.C.Cheng,R.E.Blankenship,and G. R.Fleming,Nature 446,782(2007).

    [83]E.Collini and G.D.Scholes,Science 323,369(2009). [84]R.S.Knox and D.Gulen,Photochem.Photobiol. 57,40(1993).

    [85]K.Wynne and R.M.Hochstrasser,J.Raman Spectro. 26,561(1995).

    [86]R.A.Malone and D.F.Kelley,J.Chem.Phys.95, 8970(1991).

    [87]A.T.Yeh,C.V.Shank,and J.K.McCusker,Science 289,935(2000).

    [88]S.Wallin,J.Davidsson,J.Modin,and L.Hammarstrom,J.Phys.Chem.A 109,4697(2005).

    [89]C.Galli,K.Wynne,S.M.Lecours,M.J.Therien, and R.M.Hochstrasser,Chem.Phys.Lett.206,493 (1993).

    [90]R.J.Sension,S.T.Repinec,A.Z.Szarka,and R.M. Hochstrasser,J.Chem.Phys.98,6291(1993).

    [91]C.E.McCusker and J.K.McCusker,Inorg.Chem. 50,1656(2011).

    [92]R.A.Mathies,S.W.Lin,J.B.Ames,and W.T.Pollard,Annual Rev.Biophys.Biophys.Chem.20,491 (1991).

    [93]R.Neutze,E.Pebay-Peyroula,K.Edman,A.Royant, J.Navarro,and E.M.Landau,Biochim.Et Biophys. Acta-Biomembr.1565,144(2002).

    [94]P.Hamm,M.Zurek,T.Roschinger,H.Patzelt,D. Oesterhelt,and W.Zinth,Chem.Phys.Lett.263,613 (1996).

    [95]P.Hamm,M.Zurek,T.Roschinger,H.Patzelt,D.S. Oesterhelt,and W.Zinth,Chem.Phys.Lett.268,180 (1997).

    [96]D.H.Waldeck,Chem.Rev.91,415(1991).

    [97]Z.R.Grabowski,K.Rotkiewicz,and W.Rettig, Chem.Rev.103,3899(2003).

    [98]C.Swalina and M.Maroncelli,J.Phys.Chem.C 114, 5602(2010).

    [99]H.Jin,M.Liang,S.Arzhantsev,X.Li,and M.Maroncelli,J.Phys.Chem.B 114,7565(2010).

    [100]B.D.Allen,A.C.Benniston,A.Harriman,S.A.Rostron,and C.F.Yu,Phys.Chem.Chem.Phys.7,3035 (2005).

    [101]A.Y.Jee,E.Bae,and M.Lee,J.Phys.Chem.B 113, 16508(2009).

    [102]K.I.Gutkowski,M.L.Japas,and P.F.Aramendia, Chem.Phys.Lett.426,329(2006).

    [103]A Paul and A Samanta,J.Phys.Chem.B 112,16626 (2008).

    [104]Z.G.Lan,Y.Lu,O.Weingart,and W.Thiel,J.Phys. Chem.A 116,1510(2012).

    [105]K.L.Koziol,P.J.M.Johnson,B.Stucki-Buchli,S. A.Waldauer,and P.Hamm,Curr.Opin.Struct.Biol. 34,1(2015).

    [106]M.M.Waegele,R.M.Culik,and F.Gai,J.Phys. Chem.Lett.2,2598(2011).

    [107]H.Kim and M.Cho,Chem.Rev.113,5817(2013).

    [108]J.Q.Ma,I.M.Pazos,W.K.Zhang,R.M.Culik,and F.Gai,Annual Review of Physical Chemistry,Vol 66, M.A.Johnson and T.J.Martinez,Eds.,Palo Alto: Annual Reviews,357(2015).

    [109]M.J.Tucker,M.Abdo,J.R.Courter,J.X.Chen,S. P.Brown,A.B.Smith,and R.M.Hochstrasser,Proc. Natl.Acad.Sci.USA 110,17314(2013).

    [110]A.A.Deeg,M.S.Rampp,A.Popp,B.M.Pilles,T. E.Schrader,L.Moroder,K.Hauser,and W.Zinth, Chem.Eur.J.20,694(2014).

    [111]A.B.Myers and R.M.Hochstrasser,J.Chem.Phys. 85,6301(1986).

    [112]P.B.Petersen and A Tokmako ff,Opt.Lett.35,1962 (2010).

    [113]L.De Marco,M.Thamer,M.Reppert,and A.Tokmako ff,J.Chem.Phys.141,10(2014).

    [114]M.Thamer,L.De Marco,K.Ramasesha,A.Mandal, and A.Tokmako ff,Science 350,78(2015).

    [115]M.Bonmarin and J.Helbing,Chirality 21,E298 (2009).

    [116]H.J.Rhee,Y.G.June,J.S.Lee,K.K.Lee,J.H Ha, Z.H.Kim,S.J.Jeon,and M.H.Cho,Nature 458, 310(2009).

    [117]C.R.Baiz,D.Schach,and A.Tokmako ff,Opt.Express 22,18724(2014).

    丰满人妻一区二区三区视频av | 午夜成年电影在线免费观看| 可以在线观看的亚洲视频| 非洲黑人性xxxx精品又粗又长| xxxwww97欧美| 成人鲁丝片一二三区免费| 蜜桃久久精品国产亚洲av| 日韩欧美在线二视频| 91老司机精品| 国产亚洲精品综合一区在线观看| 一个人看视频在线观看www免费 | 成年女人看的毛片在线观看| 国产乱人视频| www日本黄色视频网| 99精品欧美一区二区三区四区| 亚洲九九香蕉| 香蕉国产在线看| 欧美一级毛片孕妇| 精品国内亚洲2022精品成人| 成年女人看的毛片在线观看| 亚洲激情在线av| 日韩欧美免费精品| 老司机午夜十八禁免费视频| 一级毛片精品| 亚洲一区二区三区色噜噜| 在线观看一区二区三区| 亚洲精华国产精华精| 欧美中文日本在线观看视频| 搡老熟女国产l中国老女人| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看 | 真人一进一出gif抽搐免费| 成人18禁在线播放| av天堂中文字幕网| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 国产精品久久电影中文字幕| 国产精品99久久99久久久不卡| 日本与韩国留学比较| 亚洲精品美女久久av网站| 日韩高清综合在线| 男女那种视频在线观看| 精品不卡国产一区二区三区| 国产欧美日韩一区二区三| 国产黄色小视频在线观看| 成人性生交大片免费视频hd| 人妻丰满熟妇av一区二区三区| 久久国产精品影院| 色吧在线观看| 日本 欧美在线| 婷婷丁香在线五月| 久久久久免费精品人妻一区二区| 大型黄色视频在线免费观看| 亚洲无线在线观看| 亚洲成a人片在线一区二区| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 国产一区二区激情短视频| 午夜精品在线福利| 国产成人av激情在线播放| 欧美不卡视频在线免费观看| 国内揄拍国产精品人妻在线| 午夜福利在线观看吧| 亚洲精品456在线播放app | 亚洲av熟女| 亚洲欧美激情综合另类| 人人妻人人看人人澡| 身体一侧抽搐| 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 国产精品电影一区二区三区| 老熟妇仑乱视频hdxx| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 99热这里只有是精品50| 国产av不卡久久| 国产成人影院久久av| 精品久久久久久成人av| 曰老女人黄片| www日本黄色视频网| 性色av乱码一区二区三区2| 免费在线观看亚洲国产| 国产亚洲精品av在线| 亚洲 国产 在线| 国产三级黄色录像| 女警被强在线播放| 国产亚洲精品综合一区在线观看| 日韩免费av在线播放| 97超视频在线观看视频| 精品熟女少妇八av免费久了| 国产亚洲精品综合一区在线观看| 女人高潮潮喷娇喘18禁视频| 深夜精品福利| 中文字幕熟女人妻在线| 日韩三级视频一区二区三区| 国产主播在线观看一区二区| 国产精品av视频在线免费观看| 亚洲,欧美精品.| 亚洲精品中文字幕一二三四区| av女优亚洲男人天堂 | 男人舔奶头视频| 精品国产美女av久久久久小说| 久久久精品欧美日韩精品| 男人的好看免费观看在线视频| 国产精品亚洲av一区麻豆| 美女高潮喷水抽搐中文字幕| 国产成人系列免费观看| 国产精品久久视频播放| 午夜精品一区二区三区免费看| 动漫黄色视频在线观看| 九色成人免费人妻av| 亚洲国产色片| 欧美日本视频| 美女午夜性视频免费| 国产成人精品久久二区二区91| 成人鲁丝片一二三区免费| 欧美绝顶高潮抽搐喷水| 国产精品香港三级国产av潘金莲| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 成年免费大片在线观看| 老司机在亚洲福利影院| 他把我摸到了高潮在线观看| 日本一二三区视频观看| 国产av麻豆久久久久久久| 国产乱人视频| 亚洲欧美日韩卡通动漫| 成人18禁在线播放| 午夜福利高清视频| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 国产亚洲精品久久久久久毛片| 精品乱码久久久久久99久播| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 欧美av亚洲av综合av国产av| 成人无遮挡网站| 九色国产91popny在线| 国产极品精品免费视频能看的| 天堂动漫精品| 桃色一区二区三区在线观看| 婷婷亚洲欧美| 亚洲av美国av| 中文字幕精品亚洲无线码一区| 黑人操中国人逼视频| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 免费在线观看视频国产中文字幕亚洲| 91麻豆精品激情在线观看国产| 久久性视频一级片| 亚洲av成人一区二区三| 搡老岳熟女国产| 亚洲黑人精品在线| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 亚洲中文av在线| 欧美丝袜亚洲另类 | 婷婷六月久久综合丁香| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久中文| 18禁观看日本| 日本a在线网址| 99热6这里只有精品| 欧美色欧美亚洲另类二区| 午夜福利高清视频| 精华霜和精华液先用哪个| www.999成人在线观看| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆| 国产精品电影一区二区三区| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 日韩人妻高清精品专区| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 久久久色成人| 欧美大码av| 成人国产综合亚洲| 老熟妇仑乱视频hdxx| 黄色女人牲交| 久久中文字幕人妻熟女| 好男人在线观看高清免费视频| 成熟少妇高潮喷水视频| 99久久99久久久精品蜜桃| 不卡一级毛片| 婷婷六月久久综合丁香| 舔av片在线| 欧美日韩福利视频一区二区| 成人18禁在线播放| 不卡av一区二区三区| 波多野结衣高清无吗| 美女高潮喷水抽搐中文字幕| 久久精品91无色码中文字幕| 女人被狂操c到高潮| 熟女少妇亚洲综合色aaa.| 在线播放国产精品三级| 特级一级黄色大片| 国产亚洲av高清不卡| 欧美av亚洲av综合av国产av| 国产一区二区在线av高清观看| 国产成人精品无人区| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 五月伊人婷婷丁香| 国产黄色小视频在线观看| 又爽又黄无遮挡网站| 日韩精品中文字幕看吧| 日韩成人在线观看一区二区三区| 国产伦人伦偷精品视频| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 国产91精品成人一区二区三区| 香蕉国产在线看| 啦啦啦韩国在线观看视频| 亚洲精品在线观看二区| 免费大片18禁| 欧美另类亚洲清纯唯美| 熟女电影av网| 国产高清视频在线观看网站| 女警被强在线播放| 99久久99久久久精品蜜桃| 色在线成人网| 99国产综合亚洲精品| 18禁黄网站禁片午夜丰满| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 高清毛片免费观看视频网站| 观看免费一级毛片| 国产一级毛片七仙女欲春2| 亚洲av美国av| av女优亚洲男人天堂 | av天堂在线播放| 最近视频中文字幕2019在线8| 97超级碰碰碰精品色视频在线观看| 特级一级黄色大片| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 村上凉子中文字幕在线| 国产精品美女特级片免费视频播放器 | 国产一区二区在线av高清观看| 亚洲国产中文字幕在线视频| 日本免费一区二区三区高清不卡| 男人和女人高潮做爰伦理| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 色av中文字幕| 久久久国产欧美日韩av| 三级毛片av免费| 精品不卡国产一区二区三区| 母亲3免费完整高清在线观看| 9191精品国产免费久久| 久久久久久久久久黄片| 黄色丝袜av网址大全| 在线视频色国产色| 国产亚洲欧美98| 黄色 视频免费看| cao死你这个sao货| 国产精品99久久久久久久久| 综合色av麻豆| 成人欧美大片| 岛国视频午夜一区免费看| 欧美极品一区二区三区四区| 搡老岳熟女国产| 国产成人av教育| 国产精品亚洲一级av第二区| cao死你这个sao货| 欧美日韩瑟瑟在线播放| 51午夜福利影视在线观看| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 欧美国产日韩亚洲一区| 最新中文字幕久久久久 | 在线a可以看的网站| 男女之事视频高清在线观看| 欧美乱色亚洲激情| 久久久精品欧美日韩精品| 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 国内精品美女久久久久久| 午夜福利在线观看吧| 不卡av一区二区三区| 九九热线精品视视频播放| 两个人看的免费小视频| 黄片小视频在线播放| 精品日产1卡2卡| 午夜福利在线在线| 国内精品久久久久久久电影| 国产乱人视频| 无人区码免费观看不卡| 好男人电影高清在线观看| 一本久久中文字幕| 一二三四在线观看免费中文在| 免费大片18禁| 又黄又粗又硬又大视频| 久久中文字幕人妻熟女| 亚洲一区二区三区不卡视频| 亚洲av电影在线进入| 国产欧美日韩精品一区二区| 波多野结衣高清作品| 国产精品永久免费网站| 在线永久观看黄色视频| 99久久成人亚洲精品观看| 亚洲成人中文字幕在线播放| 国产69精品久久久久777片 | 亚洲第一电影网av| 亚洲片人在线观看| 校园春色视频在线观看| av欧美777| 午夜激情福利司机影院| 网址你懂的国产日韩在线| 日本成人三级电影网站| 亚洲国产欧美网| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 日本在线视频免费播放| 午夜视频精品福利| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 亚洲av成人不卡在线观看播放网| 偷拍熟女少妇极品色| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 琪琪午夜伦伦电影理论片6080| 熟女人妻精品中文字幕| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 中文字幕精品亚洲无线码一区| 怎么达到女性高潮| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 亚洲午夜精品一区,二区,三区| 国产精品综合久久久久久久免费| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 成年版毛片免费区| 中文字幕熟女人妻在线| 久久久久久久久免费视频了| 黄色 视频免费看| 亚洲精品美女久久av网站| 宅男免费午夜| 亚洲国产色片| 亚洲午夜精品一区,二区,三区| 天堂√8在线中文| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| 久久精品国产综合久久久| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 1000部很黄的大片| 国产成人精品无人区| 亚洲av中文字字幕乱码综合| 丁香欧美五月| 久久久色成人| 成人高潮视频无遮挡免费网站| 日本免费a在线| 真人做人爱边吃奶动态| 亚洲美女视频黄频| а√天堂www在线а√下载| 亚洲乱码一区二区免费版| 视频区欧美日本亚洲| x7x7x7水蜜桃| 精品福利观看| 欧美一区二区国产精品久久精品| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆 | 亚洲第一欧美日韩一区二区三区| 午夜视频精品福利| 18美女黄网站色大片免费观看| 日韩欧美在线乱码| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 日韩欧美 国产精品| 啪啪无遮挡十八禁网站| 好看av亚洲va欧美ⅴa在| 美女高潮喷水抽搐中文字幕| 欧美另类亚洲清纯唯美| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 88av欧美| 一级毛片高清免费大全| 俄罗斯特黄特色一大片| 婷婷亚洲欧美| 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久久久性生活片| 欧美在线黄色| 中文字幕最新亚洲高清| 日韩三级视频一区二区三区| 中文字幕高清在线视频| 精品免费久久久久久久清纯| 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 精品电影一区二区在线| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| av片东京热男人的天堂| 91av网一区二区| 欧美成人免费av一区二区三区| 国产又色又爽无遮挡免费看| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 99国产精品99久久久久| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| 一本一本综合久久| 婷婷精品国产亚洲av在线| 免费看日本二区| 国产主播在线观看一区二区| 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 看黄色毛片网站| 久久中文字幕人妻熟女| 网址你懂的国产日韩在线| 久久久久九九精品影院| 999久久久国产精品视频| 亚洲欧美激情综合另类| 最新中文字幕久久久久 | 男人舔女人下体高潮全视频| xxx96com| 一个人免费在线观看的高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 一边摸一边抽搐一进一小说| 老汉色∧v一级毛片| 久久这里只有精品19| 国产三级在线视频| svipshipincom国产片| 国产成年人精品一区二区| 看片在线看免费视频| 国内毛片毛片毛片毛片毛片| 激情在线观看视频在线高清| 高清毛片免费观看视频网站| 日韩精品青青久久久久久| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 这个男人来自地球电影免费观看| 日韩免费av在线播放| 成人鲁丝片一二三区免费| 久久精品夜夜夜夜夜久久蜜豆| 久久热在线av| 久久久精品欧美日韩精品| 国内精品一区二区在线观看| www.www免费av| av在线蜜桃| 国产日本99.免费观看| 丁香欧美五月| 久久国产精品人妻蜜桃| 国产精品日韩av在线免费观看| 中文资源天堂在线| 欧美xxxx黑人xx丫x性爽| 悠悠久久av| 很黄的视频免费| 97人妻精品一区二区三区麻豆| 法律面前人人平等表现在哪些方面| 他把我摸到了高潮在线观看| 99国产精品99久久久久| 69av精品久久久久久| 欧美三级亚洲精品| xxxwww97欧美| 一进一出好大好爽视频| 少妇的逼水好多| 国产高清有码在线观看视频| 午夜福利在线观看免费完整高清在 | 中文字幕人妻丝袜一区二区| 国产亚洲精品综合一区在线观看| 夜夜爽天天搞| 老熟妇仑乱视频hdxx| www国产在线视频色| 国产一区在线观看成人免费| 真实男女啪啪啪动态图| 深夜精品福利| 欧美一级a爱片免费观看看| 国产精品影院久久| avwww免费| 久久草成人影院| 男人舔女人的私密视频| 1024手机看黄色片| 国产午夜福利久久久久久| 性色avwww在线观看| 一二三四在线观看免费中文在| 欧美zozozo另类| 久久精品亚洲精品国产色婷小说| 久久中文字幕一级| 日本一本二区三区精品| 91麻豆精品激情在线观看国产| 国产av一区在线观看免费| 一a级毛片在线观看| 亚洲一区高清亚洲精品| av天堂在线播放| 在线观看日韩欧美| 色老头精品视频在线观看| 国产精品av久久久久免费| 国产成人精品久久二区二区免费| 99久久精品热视频| x7x7x7水蜜桃| 国产男靠女视频免费网站| 在线观看免费午夜福利视频| 亚洲人成网站在线播放欧美日韩| 十八禁人妻一区二区| 曰老女人黄片| 久久久久久久精品吃奶| 无限看片的www在线观看| av在线天堂中文字幕| 9191精品国产免费久久| 中文字幕熟女人妻在线| 精品久久久久久久人妻蜜臀av| 19禁男女啪啪无遮挡网站| 国产精品国产高清国产av| 我要搜黄色片| 亚洲欧美日韩东京热| 亚洲av熟女| 一个人看的www免费观看视频| 中国美女看黄片| 亚洲熟女毛片儿| 香蕉国产在线看| 一进一出抽搐gif免费好疼| 无人区码免费观看不卡| 亚洲精品在线观看二区| 美女高潮的动态| 国产又色又爽无遮挡免费看| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 黑人欧美特级aaaaaa片| 久久精品影院6| 可以在线观看毛片的网站| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 一进一出好大好爽视频| 中文字幕高清在线视频| 免费看十八禁软件| 人人妻,人人澡人人爽秒播| 国产成人一区二区三区免费视频网站| 亚洲精品在线观看二区| 草草在线视频免费看| 精品日产1卡2卡| 久久这里只有精品中国| 国产久久久一区二区三区| 欧美午夜高清在线| 精品一区二区三区av网在线观看| 88av欧美| 美女被艹到高潮喷水动态| 亚洲狠狠婷婷综合久久图片| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 美女cb高潮喷水在线观看 | а√天堂www在线а√下载| 免费av不卡在线播放| a在线观看视频网站| av在线蜜桃| 99热6这里只有精品| 美女大奶头视频| 在线播放国产精品三级| 波多野结衣高清作品| 久久久久久久久中文| 搡老妇女老女人老熟妇| 在线观看66精品国产| 好男人在线观看高清免费视频| 此物有八面人人有两片| 国产69精品久久久久777片 | www.熟女人妻精品国产| 天堂动漫精品| 中文字幕高清在线视频| 69av精品久久久久久| 亚洲av成人不卡在线观看播放网| 中文字幕最新亚洲高清| 性色av乱码一区二区三区2| 午夜视频精品福利| 黄色丝袜av网址大全| 少妇裸体淫交视频免费看高清| 两个人的视频大全免费| 亚洲国产中文字幕在线视频| 听说在线观看完整版免费高清| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲av高清不卡| 久久精品国产99精品国产亚洲性色| 国产成人福利小说| 黄色日韩在线| av片东京热男人的天堂| 长腿黑丝高跟| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产亚洲精品| www.999成人在线观看| 国语自产精品视频在线第100页| 99热6这里只有精品| 欧美黑人欧美精品刺激| 免费无遮挡裸体视频| 午夜激情福利司机影院| 男女床上黄色一级片免费看| 白带黄色成豆腐渣| 免费在线观看成人毛片| 亚洲av成人av| 一级黄色大片毛片| 欧美3d第一页| 亚洲国产欧美人成| 亚洲电影在线观看av| 亚洲男人的天堂狠狠| 久久久精品欧美日韩精品| 三级国产精品欧美在线观看 |