• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REVIEW Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications?

    2016-04-08 06:35:28WenkaiZhangCenterforAdvancedQuantumStudiesDepartmentofPhysicsBeijingNormalUniversityBeijing100875China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Wen-kai Zhang?Center for Advanced Quantum Studies,Department of Physics,Beijing Normal University,Beijing 100875,China

    ?

    REVIEW Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications?

    Wen-kai Zhang?
    Center for Advanced Quantum Studies,Department of Physics,Beijing Normal University,Beijing 100875,China

    (Dated:Received on December 1,2015;Accepted on December 28,2015)

    Polarization dependent time-resolved infrared(TRIR)spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process.The angular information of transient species is obtainable in this measurement,which makes it a valuable technique for the investigation of electron distribution,molecular structure,and conformational dynamics.In this review,we brie fl y introduce the principles and applications of polarization dependent TRIR spectroscopy.We mainly focused on the following topics:(i)an overview of TRIR spectroscopy,(ii)principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques,(iii)examples that use polarization dependent TRIR spectroscopy to probe a variety of chemical and dynamical phenomena including protein conformational dynamics,excited state electron localization,and photoisomerization,(iv)the limitations and prospects of TRIR spectroscopy.

    Key words:Ultrafast spectroscopy,Infrared spectroscopy,Polarization,Time-resolved infrared spectroscopy

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: wkzhang@bnu.edu.cn

    I.INTRODUCTION

    Femtosecond resolution studies of photochemical dynamics have the potential to detect the critical nuclear motions in real time from which a reaction mechanism can be constructed,understood,and ideally controlled[1?5].After the ultrashort UV/visible pulse excites a molecule,the subsequent evolution of the excited species can be followed by time-resolved fl uorescence[6?8],transient absorption in the UV/visible and infrared regions[9?11],X-ray di ff raction[12?14]and spectroscopy[15?18],and electron di ff raction[19,20]. Even though X-ray and electron probe can provide more insights into the structural dynamics,the technical diffi culties limit them to very few labs and research facilities and prevent their accessibility to the larger research community.On the other hand,transient electronic absorption spectroscopy has been intensively used to study the ultrafast dynamics in chemistry,physics and biology for decades.But electronic spectroscopy is typically very broad and relatively featureless,which makes structure determination extremely challenging.However,vibrational spectroscopy can identify the absorbing species more precisely than electronic spectroscopy because the absorption bands of vibrational transitions are narrower and less overlapped.Furthermore,because vibrational transitions are more spatially localized than electronic transitions,time-resolved vibrational spectroscopy can provide more insights into the structural dynamics[21?23].In the case where speci fi c vibrational modes correlate with speci fi c vibrational motions, one can directly obtain a structural information of the photo-induced reaction by inspecting the changes in vibrational absorption.Two primary vibrational spectroscopy methods,time-resolved Raman[24?29]and infrared spectroscopy[30?37],have been extensively used to study photochemical dynamics.

    When the vibrational mode of interest is a local mode, one can directly link the transition dipole moment with the particular chemical bond that is modulated by the vibration.For instance,in the fi rst notable application of polarization dependent time-resolved infrared (TRIR)spectroscopy,Hochstrasser and coworkers examined the orientation of bound CO to myoglobin by detaching CO from carboxy myoglobin(MbCO)with polarized laser pulses and investigated its recombination to the active center by infrared absorption[38]. The authors extracted the angle of the CO in the protein frame of MbCO by monitoring the bleaching signal under di ff erent excitation conditions.They concluded that the Fe?C bond tilts to the heme normal and the Fe?C?O angle di ff ered signi fi cantly from 180?.Recently,An fi nrud and coworkers showed that this deviation is less than 7?by carefully controlling the experimental variables[39].Since then,polarization dependent TRIR spectroscopy has been extensively utilizedto reveal the orientational dynamics of the CO and NO ligands in myoglobin and hemoglobin,either bound to the heme iron or in the heme pockets[40?46].It is worth noting that the assumption that the transition dipole moment lies along the CO bond vector is incorrect in most cases.

    Green fl uorescent protein(GFP)and its chromophore 4′-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI)provide another notable example.The HBDI chromophore in solution has an excited state lifetime of 1.2 ps and a fl uorescence quantum yield of only 10?3 [47?49]while the same chromophore has a fl uorescence lifetime of~3 ns and quantum yield approaching 0.8 in wild-type GFP[50?53].Theoretical calculations suggested that the fl exibility of room temperature solvent leads to bond isomerization and ultrafast excited state quenching for the HBDI chromophore [54].Usman et al.measured the TRIR anisotropy of a localized CO stretching mode in HBDI[55]. They observed an upshifted broadband(with fwhm of~50 cm?1)excited state absorption(ESA)feature at~1750 cm?1in natural HBDI.Their experiment indicated a di ff erent excited state behavior from the formation of a charge transfer state,provided an angle of 70?between the electronic transition dipole moment and CO vibrational transition dipole moment,and concluded that structural change in HBDI is due to an isomerization by a single twist or a hula twist [55].Later,van Thor and coworkers showed that the HBDI isomerization is signi fi cantly reduced in the GFP excited state due to the constraint of the protein environment[52].There are more examples that employed TRIR anisotropy measurements including the isomerization reaction of photoactive yellow protein (PYP)[56,57],phytochrome holoprotein[58],and the structural response of an enzyme to a photo-excited inhibitor[59].It has also been used to determine the three-dimensional orientation of electronic transition dipole moment[60?62]and to follow the photo-induced transfer dynamics and the structural evolution of the charge separated states[63,64].

    Even though the TRIR spectroscopy has been extensively used to study the structural dynamics of the photochemistry process,the di ffi culties in robustly interpreting femtosecond resolution measurements reduce its ability to determine photochemical reaction mechanisms.As a consequence,the TRIR spectroscopy and its application in the chemical reaction dynamics have been underutilized.Within this context,we believe there is a need to introduce the principle of polarization dependent TRIR spectroscopy and summarize its applications in structural dynamics to a larger research community.In this review,we fi rst give an overview of the TRIR spectroscopy and describe its advantages in resolving structural dynamics.We then present examples of using anisotropy measurements to study electron localization dynamics in charge transfer excited states and bond isomerization dynamics in a push-pull donorphenyl-accepter system.We show that the recent improvements in ultrafast laser technology,continuous advances in experimental methodology,and the advent of a common language for the interpretation of measurements,have assisted the study of chemical dynamics. We then brie fl y describe the challenges of ultrafast infrared spectroscopy in biological applications and conclude with a future outlook.

    II.PRINCIPLES OF POLARIZATION DEPENDENT TRIR SPECTROSCOPY

    The TRIR spectroscopy employs a pump-probe methodology,where the pump pulse is typically in the UV/visible region and the probe pulse is in the midinfrared(mid-IR)region for most photochemistry studies.Femtosecond mid-IR pulses are generated through a di ff erence frequency generation process after optical parametric ampli fi er[65].Experimentally,TRIR spectroscopy is performed in a spectrally-resolved con fi guration.The pump-induced absorbance changes are then measured with a mercury cadmium telluride(MCT)detector after spectral dispersion using a monochromator. A side e ff ect is that the ground state bleach(GSB)signals appear to grow at negative time delay,which is the so-called perturbed free induction decay.It is a common feature when the dephasing time of bleached transitions is much longer than the cross-correlation time between the pump and probe pulse,which is about 100?200 fs [66?68].

    The signal contribution in the UV/visible pump mid-IR probe TRIR spectroscopy is much simpler than conventional transient absorption spectroscopy.As we know,there are three distinct sources of signals in the transient absorption measurements as illustrated by the energy diagram in Fig.1(a).The GSB and stimulated emission(SE)lead to an increase in signal transmission while the ESA reduces the signal transmission. The potential spectral overlap between GSB,ESA,and SE prevents the application of the transient absorption spectroscopy to many interesting problems,and the situation can be even worse in the transition metal related systems.However,there is no SE contribution in UV/visible pump mid-IR probe TRIR spectroscopy since the frequency of the mid-IR probe is signi fi cantly lower than the pump frequency and the possible electronic excited state emission as shown in Fig.1(b),which will remarkably reduce the di ffi culty in distinguishing the signal from di ff erent contributions.

    Polarization dependent TRIR spectroscopy measures the frequency dependent isotropic,Iiso(ω,t),and the anisotropic,r(ω,t),signals from the parallel and perpendicular polarization measurements[69],

    where I‖and I⊥represent the changes in probe transmission induced by a pump pulse when the pump and probe pulses have parallel and perpendicular polarizations.The experimental and theoretical framework developed for the conventional polarization dependent time-resolved spectroscopy method can be easily applied to the polarization dependent TRIR spectroscopy [70?79].For example,the TRIR anisotropy provides insights into the relative angles between the electronic and infrared transition dipole moments[80,81].Under the most common circumstances,a low concentration of chromophores with non-degenerate excited states will have an anisotropy that ranges from?0.2 to 0.4,where the decay of the anisotropy results from the rotation of excited state molecules.In next section,we will present a detailed example of using TRIR anisotropy measurement to study electron localization dynamics in charge transfer excited states.

    III.ELECTRON LOCALIZATION IN CHARGE TRANSFER EXCITED STATES

    E ffi cient energy migration and charge separation are essential steps in molecularly based light-harvesting materials[82,83].Charge transfer excited states of a high symmetry coordination complex have either an electron or a hole residing in one of the degenerate molecular orbitals.For the idealized degenerate case,the coupling between degenerate molecular orbitals leads to delocalization of the excited state,while static and dynamic disorder will reduce the symmetry and eliminate the energetic degeneracy that provide a mechanism for electron localization.For these reasons,the time-dependent charge transfer excited states in high symmetry coordination complexes provide a particular example of assessing how fundamental molecular properties control excited state electronic structure and charge separation.

    A lot of experimental and theoretical studies have emphasized the importance of time-resolved anisotropy in the structural dynamics of the electronic excited state for high symmetry molecules[84?89].When the pump pulse excites degenerate states,the initial value of the anisotropy re fl ects the molecular symmetry and the decay of the anisotropy re fl ects multiple dynamical processes.Molecules with three-fold degeneracy will have initial anisotropy r(0)=1.0 while molecules with twofold degeneracy will have initial anisotropy r(0)=0.7 [85].A schematic of the relevant processes for twofold degenerate system appears in Fig.2.The dynamical phenomena that govern the loss of anisotropy for the two-fold degenerate states can be expressed as three rates re fl ecting three distinct processes for an overdamped superposition of excited states[89],

    Dephasing due to inter-and intra-molecular fl uctuations occurs with a γ rate and leads to localization of the charge transfer excited state to a single molecular orbital and reduction in anisotropy to r=0.4.Incoherent electron transfer between degenerate localized charge transfer excited states occurs with a Γ rate and further reduces the anisotropy to r=0.1 for two-fold degenerate states.Excited state bond rotation can also lead to changes in the anisotropy[90],though not for the charge transfer systems discussed in this case.For dilute excitation,where excitation transfer between molecules does not occur,molecular rotation with the rate D causes the fi nal loss of anisotropy.

    The contradictory interpretations of anisotropy measurementsforthemetal-to-ligandchargetransfer (MLCT)excited state of ruthenium-tris-bipyridine highlight the challenges in interpreting time-resolved anisotropy results[86?88].The photoexcitation leads to two-fold degenerate electronic excited states with orthogonal transition dipole moments.The biggest problem for anisotropy measurement occurs when the ESA spectrally overlaps with either the GSB or the SE. When signals of opposite sign spectrally overlap,the anisotropy extracted from Eq.(2)can range from?∞to+∞which makes the measurement meaningless[88]. Here we show that these di ffi culties in experimental interpretation can be partially addressed by a change in experimental design.We have used polarization dependent transient mid-IR absorption spectroscopy to study the electron localization dynamics of Fe(CN)63?[69]. Using the TRIR spectrum of CN-stretch vibration to track the dynamics of electronic excited states has the following advantages.The simplicity of CN-stretch vi-brational lineshapes allow us to distinguish clearly the ESA from the GSB signal,and the recorded transient vibrational spectrum does not have an SE contribution. The CN-stretch modes have transition dipole moments parallel to the CN bonding axes in this system,which greatly simpli fi es the interpretation of the anisotropy measurements.

    FIG.2 A sketch of the electronic excited state relaxation processes for a two-fold degenerate system.γ is the rate of the decoherence,Γ is the rate of the incoherent electron transfer,and D is the rate of molecular rotation.This fi gure is adapted with permission from Zhang et al.[18],copyright(2015),American Chemical Society.

    FIG.3 TRIR spectroscopy for[Fe(CN)6]3?dissolved in dimethyl sulfoxide.(a)The isotropic(red points)and S‖?S⊥di ff erence(blue traces)transient spectra are shown for a 0.2 ps time delay.The solid red line is the fi t of isotropic transient spectra.(b)Isotropic transient spectra as a function of mid-IR probe time delay and frequency.These fi gures are adapted with permission from Zhang et al.[18],copyright(2012)American Chemical Society.

    We generate a ligand to metal charge transfer (LMCT)excited state and probe the electronic excited state dynamics with mid-IR pulses polarized parallel and perpendicular to the UV pump polarization.The octahedral Fe(CN)63?complex only has a three-fold degenerate T1uCN stretch mode in the mid-IR region.As shown in Fig.3(a),strong inter-ligand electronic coupling in the LMCT excited state preserves the octahedral symmetry and leads to a single T1uCN-stretch ESA band at 2050 cm?1with no anisotropy by a 0.2 ps time delay.With a solvent dependent rate,we observed this ESA converts to two ESA peaks appearing at 2079 and 2095 cm?1with a 5 ps time constant as shown in Fig.3(b).The original ESA at short time delays and the absence of anisotropy demonstrate that the ligand hole in the LMCT electronic excited state hops very quickly from ligand to ligand,making the excited state look delocalized on the vibrational time scale.This observation also implies that the measurement lacks su fficient temporal resolution to observe the initial dephasing and intra-ligand charge transfer rates represented by γ and Γ in Eq.(3).The eventual appearance of two distinct vibrational transitions with the same rise and decay time constants suggests a reduction in molecular symmetry associated with a localized excited state. As shown in Fig.3,the loss in symmetry causes two CN-stretch absorption peaks split by 20 cm?1.To experimentally resolve this 20 cm?1shift,a time resolution greater than 1 ps is needed.Otherwise,the two transitions will motionally narrow into a single transition that makes the vibrational spectroscopy insensitive to the ligand hole localization.This sub-picosecond loss of anisotropy found for degenerate electronic ex-cited states agrees with the tetraphenyl porphyrin results measured by Hochstrasser and co-workers[89]and ruthenium-tris-bipyridine results obtained by Hammerstr¨om and coworkers[88].But it is hard to apply directly the TRIR anisotropy measurements to ruthenium tris-bipyridine since there are no vibrational transitions in this molecule that can be easily mapped onto the charge transfer coordinates.Vibrational labeling with local vibrational modes,such as cyano groups,may help to solve this problem[91].

    IV.PHOTO-INDUCED BOND ISOMERIZATION DYNAMICS

    Photoisomerization process depends sensitively on the reaction environment.The di ff erences between liquid and protein solvated chromophores represent the most striking demonstration of photochemical sensitivity to local environment.In bacteriorhodopsin,retinal isomerizes around the C13=C14 double bond with a quantum yield of 0.6[92,93],while retinal isomerizes around multiple double bonds with signi fi cantly lower quantum yield in solution[94,95].As we discussed above,the photochemistry of HBDI chromophore also strongly depends on its surrounding environment[48?51].We believe that the detailed understanding of the relationship between reaction environment and the photochemical outcome has wideranging application including designing and directing light-driven materials and molecular sensors.Here,we show an example that uses TRIR anisotropy measurement to characterize the isomerization dynamics of julolidine malononitrile(JDMN),as illustrated in Fig.4,dissolved in dimethylsulfoxide(DMSO).Photoisomerization of a similar molecular system has been extensively studied which include the stilbene bond isomerization [96]and the twisted intramolecular charge transfer (TICT)proposed for the dual fl uorescence of 4-(N,N-dimethylamino)-benzonitrile(DMABN)[97].Previous investigations demonstrated the sensitivity of the photochemical dynamics to the details of the reaction environment,including the viscoelastic e ff ects and solvent electrostatic e ff ects[98?103].But a detailed understanding of the excited state isomerization dynamics in response to the environmental properties is still lacking.

    As we mentioned above,the TRIR anisotropy can provide the relative angle between the electronic and vibrational transition dipole moments when molecular rotation can be ignored[38?42].As shown in Fig.5, photo-induced bond isomerization will change the relative angle θ.We place the rotational axis?R along the z-axis since it is invariant in the molecular frame during the photoisomerization process.The relative angles θ between the electronic transition dipole momentμeand the vibrational transition dipole momentμvcan be correlated to the molecular structure through the following relationship:cosθ=cosθecosθv?sinθesinθvcos?, where ?=?e??vis the dihedral angle between the?Rμeand the?Rμvplanes.So one can determine the bond rotation angle,?,by measuring the angle θ and calculating the two tilt angles,θeand θv,from the combined experimental and computational studies.

    FIG.4Molecular structures of julolidine malononitrile (JDMN).The electronic transition dipole and the torsional angles potentially involved in the electronic excited state relaxation dynamics are also shown.These fi gures are adapted with permission from Zhang et al.[23],copyright(2012) American Chemical Society.

    FIG.5 Schematic view of how the photo-induced change in the torsional angle?? can be extracted from the polarization dependent TRIR spectroscopy.This fi gure is adapted with permission from Zhang et al.[23],copyright(2012) American Chemical Society.

    The detailed assignment and analysis of photoinduced dynamics of JDMN in DMSO can be found in Ref.[23].In short,we have modeled the electronic excited state decay kinetics with two parallel relaxation channels each involving two sequential relaxation steps [23].Isotropic dynamics fi ts at three di ff erent central frequencies:2210 cm?1(GSB),2155 cm?1(ESA),and 2115 cm?1(ESA)with this kinetic model can be found in Fig.6(a).Figure 6(b)shows the time-dependent anisotropy measured at these three frequencies.The GSB has an initial anisotropy of 0.31±0.04 that does not have any decay in the 50 ps time window demonstrates that JDMN molecule rotation occurs on a time scale much slower than 50 ps,which suggests that the anisotropy values at long time delay can be used to as-sess the structural dynamics of the long-lived excited state.

    FIG.6(a)Time-dependent change in transmission for the isotropic pump-probe signal.Population dynamics for the GSB measured at 2210 cm?1(?),the ESA band measured at 2155 cm?1(□),and the ESA band measured at 2115 cm?1(?)of JDMN measured in DMSO.(b)Timedependent anisotropy for JDMN in DMSO at three different spectra range:2210 cm?1(*),2155 cm?1(□)and 2115 cm?1(?).These fi gures are adapted with permission from Zhang et al.[23],copyright(2012)American Chemical Society.

    The ESA anisotropy measured at 2115 cm?1shows an initial value of 0.04±0.03 with no measurable time dependence,indicating the two electronic excited states have very similar anti-symmetric CN stretch anisotropies.However,the ESA anisotropy measured at 2155 cm?1has an initial value of 0.39±0.05 decaying to 0.13±0.03 which corresponds to a weighted sum of the two anisotropies[23].If both anisotropies were time independent,the time constant of the overall anisotropy would follow the 12.3 ps excited state population decay time constant.But this anisotropy decay occurs much faster than 12.3 ps strongly indicates that the anisotropy of long-lived excited state has a time-dependent decay.We have fi t it to a single exponential with an o ff set,r=Aexp(?t/τ)+C,which gives τ=2.6±0.7 ps,A=0.21±0.04,and C=0.18±0.03.

    As shown in Fig.5,to correlate the measured relative transient dipole angle to the bond rotation,we need to calculate the tilt angles,θeand θv.TDDFT/CAMB3LYP calculations predict the presence of one structure minimum on the excited state potential energy surface(PES)near the Frank-Condon region that is consistent with no bond isomerization.The calculated PES energy varies weakly with torsion of bond b and bond c that is in line with the orientational dynamics observed for the excited state.A conical intersection is reached when bond c twists to τc≈80??90?[98,104].We then searched the excited state PES and identi fi ed two di ff erent minima using TDDFT calculations.One minimum occurs in the Frank-Condon region and cannot account for the long-lived excited state that we labeled as an S1state.The second minimum occurs at τb=80?that we labeled as Sbstate and corresponds to a rotational angle??=80?for bond b rotation[23].The Sbelectronic dipole moment exceeds that of S1by 6.2 Debye,which originates from the transfer of charge from the julolidine to the malononitrile π electron system.So the Sbstate can be assigned to a TICT state since it involves electron transfer between decoupled molecular orbitals [23,97].In short,we demonstrate that the combination of measurements and TDDFT calculations has confi rmed the photoisomerization of JDMN generates a metastable TICT excited state.We have to emphasize that there are two critical attributes to determine the success of this experiment.(i)To follow the structural dynamics using anisotropy measurement,it is necessary that the bond rotation changes the projection of the vibrational transition dipole moment onto the electronic transition dipole moment.(ii)The structural change in the laboratory frame and molecular frame needs to be similar.This requirement can be satis fi ed when the isomerizing bond separates the molecule into two components with very di ff erent moments of inertia,which is met by JDMN,but not by stilbene or azobenzene.V.FUTURE PROMISE

    TRIR spectroscopy is particularly valuable in the study of systems containing CO or CN vibration mode since their frequencies and bandwidths sensitivities to electronic and molecular structure are well-established. But their extension to the larger biological system is still facing a lot of challenges,the major limitations being their low sensitivity and site-selectivity[105].The low site-selectivity is the consequence of the delocalized backbone vibrational mode and the possible frequent overlap with bu ff er solution.To improve the site-selectivity,researchers have developed various extrinsic vibrational probes and incorporated them into biological molecules to study their site-speci fi cal structural and environmental properties.These extrinsic vibrational probes have played an essential role in the study of a wide variety of structure and dynamics of proteins and peptides and the advancements in this rapidly growing research area have been inten-sively reviewed recently[106?108].The low sensitivity of the TRIR spectroscopy is the result of the low cross sections of vibrational transitions which are more than two orders of magnitude lower than those of the electronic transitions.Combining this low sensitivity with the strong absorption of water in the mid-IR region,biological samples need to be highly concentrated,which is not favorable for most of the larger proteins.However,there is a signi fi cant sensitivity gain when we move to the two-dimensional infrared(2DIR)spectroscopy.First,the detection can be background free when using the so-called box-CARS geometry.Second,the 2D-IR signal strength quadratically depends on the extinction coe ffi cient[105].For example,for a medium strong IR absorber with an extinction coe ffi cient of 500(mol/L)?1cm?1at 2120 cm?1in a cuvette of 10-micron thickness,an absorption band with 0.5 mOD is expected at 1 mmol/L concentration.The D2O background at the same condition is expected to be 100 mOD since the extinction coe ffi cient is 1.8(mol/L)?1cm?1at 2120 cm?1for D2O.So the signal ratio between the IR label and water background is 1:500 for linear spectroscopy,which is expected to be improved to 1:2.3 for 2D-IR measurement since the reason of the enormous water background is its massive concentration(~56 mol/L)[105].Combined with the development of other light-induced triggering,we expect the time-resolved 2D-IR spectroscopy will serve as a critical tool in providing new mechanistic insights into photo-induced biological problems[109,110].

    Recently,high-intensity continuum mid-IR pulse has been demonstrated and used to study water hydrogen bonding related phenomenon[111?114].This advancement makes the TRIR more similar to the transient absorption experiment where the supercontinuum is commonly used.The extinction ratio of commercial mid-IR polarizer has also been dramatically improved which allows the researchers to detect extremely weak chiral signals on top of large achiral background contributions[115,116].The advancement of the 2D area detector has opened the opportunity to study the nonlinear infrared imaging of the heterogeneous samples with micron resolution[117].With all these technology and methodology developments,the structural dynamics study in the chemical and biological system using the ultrafast infrared methods will be furthered.

    VI.ACKNOWLEDGMENTS

    This work was supported by the“Thousand Plan”Youth Program and Beijing Normal University.

    [1]S.Woutersen,U.Emmerichs,and H.J.Bakker,Science 278,658(1997)

    [2]A.H.Zewail,J.Phys.Chem.A 104,5660(2000).

    [3]N.A.Anderson and T.Q.Lian,Annual Rev.Phys. Chem.Palo Alto,491(2005).

    [4]A.Rosspeintner,B.Lang,and E.Vauthey,Annual Review of Physical Chemistry,Vol.64,M.A.Johnson and T.J.Martinez,Eds.,Palo Alto:Annual Reviews, 247(2013).

    [5]R.J.D.Miller,Science 343,1108(2014).

    [6]J.R.Lakowicz,Principles of Fluorescence Spectroscopy,Springer,(2006).

    [7]P.Mukherjee,Ultrafast Fluorescence Spectroscopy Used as a Probe to Explore Excited State Photophysics of Biologically and Environmentally Relevant Systems, Proquest:Umi Dissertation Publishing,(2011).

    [8]Y.X.Weng and H.L.Chen,Ultrafast Spectroscopyrinciples and Techniques(Chinese Edition),Beijing: Chemical Industry Press,(2013).

    [9]G.R.Fleming,Chemical ApplicationsofUltrafast Spectroscopy,Oxford:Oxford University Press, (1986).

    [10]P.Hannaford,FemtosecondLaserSpectroscopy, Springer,(2005).

    [11]M.D.Fayer,Ultrafast Infrared Vibrational Spectroscopy,New York:CRC Press,(2013).

    [12]F.Schotte,H.S.Cho,V.R.I.Kaila,H.Kamikubo,N. Dashdorj,E.R.Henry,T.J.Graber,R.Henning,M. Wul ff,G.Hummer,M.Kataoka,and P.A.An fi nrud, Proc.Nat.Acad.Sci.USA 109,19256(2012).

    [13]Y.O.Jung,J.H.Lee,J.Kim,M.Schmidt,K.Mo ff at, V.Srajer,and H.Ihee,Nature Chem.5,212(2013).

    [14]K.H.Kim,J.G.Kim,S.Nozawa,T.Sato,K.Y. Oang,T.Kim,H.Ki,J.Jo,S.Park,C.Song,T. Sato,K.Ogawa,T.Togashi,K.Tono,M.Yabashi, T.Ishikawa,J.Kim,R.Ryoo,J.Kim,and H.Ihee, Nature 518(2015).

    [15]H.T.Lemke,C.Bressler,L.X.Chen,D.M.Fritz,K. J.Ga ff ney,A.Galler,W.Gawelda,K.Haldrup,R.W. Hartsock,H.Ihee,J.Kim,K.H.Kim,J.H.Lee,M. M.Nielsen,A.B.Stickrath,W.Zhang,D.Zhu,and M.Cammarata,J.Phys.Chem.A 117,735(2013).

    [16]W.Zhang,R.Alonso-Mori,U.Bergmann,C.Bressler, M.Chollet,A.Galler,W.Gawelda,R.G.Hadt,R. W.Hartsock,T.Kroll,K.S.Kjaer,K.Kubicek,H. T.Lemke,H.W.Liang,D.A.Meyer,M.M.Nielsen, C.Purser,J.S.Robinson,E.I.Solomon,Z.Sun,D. Sokaras,T.B.van Driel,G.Vanko,T.C.Weng,D. Zhu,and K.J.Ga ff ney,Nature 509,345(2015).

    [17]P.Wernet,K.Kunnus,I.Josefsson,I.Rajkovic,W. Quevedo,M.Beye,S.Schreck,S.Grubel,M.Scholz, D.Nordlund,W.Zhang,R.W.Hartsock,W.F. Schlotter,J.J.Turner,B.Kennedy,F.Hennies,F. M.F.de Groot,K.J.Ga ff ney,S.Techert,M.Odelius, and A.Fohlisch,Nature 520,78(2015).

    [18]W.Zhang and K.J.Ga ff ney,Account.Chem.Res.48, 1140(2015).

    [19]B.J.Siwick,J.R.Dwyer,R.E.Jordan,and R.J.D. Miller,Science 302,1382(2003).

    [20]A.H.Zewail,Annual Review of Physical Chemistry. Palo Alto:Annual Reviews,65(2006).

    [21]M.B.Ji,M.Odelius,and K.J.Ga ff ney,Science 328, 1003(2010).

    [22]D.Y.Vorobyev,C.H.Kuo,J.X.Chen,D.G.Kuroda, J.N.Scott,J.M.Vanderkooi,and R.M.Hochstrasser,J.Phys.Chem.B 113,15382(2009).

    [23]W.K.Zhang,Z.G.Lan,Z.Sun,and K.J.Ga ff ney, J.Phys.Chem.B 116,11527(2012).

    [24]D.McMorrow and W.T.Lotshaw,J.Phys.Chem.95, 10395(1991).

    [25]A.M.Weiner,D.E.Leaird,G.P.Wiederrecht,and K.A.Nelson,J.Opt.Soc.Am.B 8,1264(1991).

    [26]H.Hamaguchi,An.Rev.Phys.Chem.45,593(1994). [27]L.Dhar,J.A.Rogers,and K.A.Nelson,Chem.Rev. 94,157(1994).

    [28]M.Schmitt,G.Knopp,A.Materny,and W.Kiefer, Chem.Phys.Lett.270,9(1997).

    [29]P.Kukura,D.W.McCamant,and R.A.Mathies,Annual Review of Physical Chemistry,Palo Alto:Annual Reviews,461(2007).

    [30]J.R.Schoonover and G.F.Strouse,Chem.Rev.98, 1335(1998).

    [31]M.W.George and J.J.Turner,Coordination Chem. Rev.177,201(1998).

    [32]E.T.J.Nibbering,H.Fidder,E.Pines,Annual Review of Physical Chemistry,Palo Alto:Annual Reviews, 337(2005).

    [33]J.M.Butler,M.W.George,J.R.Schoonover,D.M. Dattelbaum,and T.J.Meyer,Coordination Chem. Rev.251,492(2007).

    [34]R.D.Pensack,K.M.Banyas,L.W.Barbour,M. Hegadorn,and J.B.Asbury,Phys.Chem.Chem. Phys.11,2575(2009).

    [35]H.J.Bakker and J.L.Skinner,Chem.Rev.110,1498 (2010).

    [36]P.Hamm,Chimia 65,313(2011).

    [37])M.D.Fayer and N.E.Levinger,Annual Review of Analytical Chemistry,Vol.3.E.S.Yeung and R.N. Zare Eds.,Palo Alto:Annual Reviews,89(2010).

    [38]J.N.Moore,P.A.Hansen,and R.M.Hochstrasser, Proc.Nat.Acad.Sci.USA 85 5062(1988).

    [39]M.Lim,T.A.Jackson,and P.A.An fi nrud,Science 269,962(1995).

    [40]P.A.Hansen,J.N.Moore,and R.M.Hochstrasser, Chem.Phys.131,49(1989).

    [41]M.H.Lim,T.A.Jackson,and P.A.An fi nrud,J. Chem.Phys.102,4355(1995).

    [42]M.H.Lim,T.A.Jackson,and P.A.An fi nrud,Nature Struct.Bio.4,209(1997).

    [43]P.A.An fi nrud,C.Han,and R.M.Hochstrasse,Proc. Nat.Acad.Sci.USA 86,8387(1989).

    [44]D.E.Sagnella,J.E.Straub,T.A.Jackson,M.Lim, and P.A.An fi nrud,Proce.Nat.Acad.Sci.USA 96, 14324(1999).

    [45]M.H.Lim,Bull.Korean Chem.Soc.23,865(2002). [46]T.Zemojtel,M.Rini,K.Heyne,T.Dandekar,E.T.J. Nibbering,and P.M.Kozlowski,J.Am.Chem.Soc. 126,1930(2004).

    [47]H.Niwa,S.Inouye,T.Hirano,T.Matsuno,S.Kojima, M.Kubota,M.Ohashi,and F.I.Tsuji,Proc.Nat. Aca.Sci.USA 93,13617(1996).

    [48]K.B.Bravaya,B.L.Grigorenko,A.V.Nemukhin, and A.I.Krylov,Acc.Chem.Res.45,265(2012).

    [49]L.M.Tolbert,A.Baldridge,J.Kowalik,and K.M. Solntsev,Acc.Chem.Res.45,171(2012).

    [50]R.Y.Tsien,Annual Rev.Biochem.67,509(1998).

    [51]R.Y.Tsien,Angew.Chem.Int.Ed.48,5612(2009). [52]J.J.van Thor,K.L.Ronayne,M.Towrie,and J.T. Sage,Biophys.J.95,1902(2008).

    [53]J.J.van Thor,Chem.Soc.Rev.38,2935(2009).

    [54]A.M.Virshup,C.Punwong,T.V.Pogorelov,B.A. Lindquist,C.Ko,and T.J.Martinez,J.Phys.Chem. B 113,3280(2009).

    [55]A.Usman,O.F.Mohammed,E.T.J.Nibbering,J. Dong,K.M.Solntsev,and L.M.Tolbert,J.Am. Chem.Soc.127,11214(2005).

    [56]K.Heyne,O.F.Mohammed,A.Usman,J.Dreyer, and E.T.J.Nibbering,J.Am.Chem.Soc.127,18100 (2005).

    [57]A.Usman,O.F.Mohammed,K.Heyne,J.Dreyer, and E.T.J.Nibbering,Chem.Phys.Lett.401,157 (2005).

    [58]Y.Yang,M.Linke,T.von Haimberger,J.Hahn,R. Matute,L.Gonzalez,P.Schmieder,and K.Heyne,J. Am.Chem.Soc.134,1408(2012).

    [59]S.K.Jha,M.B.A.Ji,K.J.Ga ff ney,and S.G.Boxer, Proc.Nat.Acad.Sci.USA 108,16612(2011).

    [60]M.Linke,A.Lauer,T.von Haimberger,A.Zacarias, and K.Heyn,J.Am.Chem.Soc.130,14904(2008). [61]M.Linke,M.Theisen,T.von Haimberger,M.E. A.Madjet,A.Zacarias,H.Fidder,and K.Heyne, ChemPhysChem 11,1283(2010).

    [62]M.Theisen,M.Linke,M.Kerbs,H.Fidder,M.E.A. Madjet,A.Zacarias,and K.Heyne,J.Chem.Phys. 131,8(2009).

    [63]C.F.Wang,B.K.Mohney,B.B.Akhremitchev,and G.C.Walker,J.Phys.Chem.A 104,4314(2000).

    [64]I.V.Rubtsov,N.P.Redmore,R.M.Hochstrasser,and M.J.Therien,J.Am.Chem.Soc.126,2684(2004). [65]R.A.Kaindl,M.Wurm,K.Reimann,P.Hamm,A. M.Weiner,and M.Woerner,J.Opt.Soc.Am.B 17, 2086(2000).

    [66]K.Wynne and R.M.Hochstrasser,Chem.Phys.193, 211(1995).

    [67]P.Hamm,Chem.Phys.200,415(1995).

    [68]M.Chachisvilis,H.Fidder,and V.Sundstrom,Chem. Phys.Lett.234,141(1995).

    [69]W.K.Zhang,M.B.Ji,Z.Sun,and K.J.Ga ff ney,J. Am.Chem.Soc.134,2581(2012).

    [70]R.Jimenez,S.N.Dikshit,S.E.Bradforth,and G.R. Fleming,J.Phys.Chem.100,6825(1996).

    [71]C.Sissa,A.Painelli,M.Blanchard-Desce,and F. Terenziani,J.Phys.Chem.B 115,7009(2011).

    [72]D.M.Jonas,M.J.Lang,Y.Nagasawa,T.Joo,and G.R.Fleming,J.Phys.Chem.100,12660(1996).

    [73]K.Wynne,S.M.Lecours,C.Galli,M.J.Therien, and R.M.Hochstrasser,J.Am.Chem.Soc.117,3749 (1995).

    [74]R.Kumble,S.Palese,V.S.Y.Lin,M.J.Therien,and R.M.Hochstrasser,J.Am.Chem.Soc.120,11489 (1998).

    [75]C.K.Min,T.Joo,M.C.Yoon,C.M.Kim,Y. N.Hwang,D.Kim,N.Aratani,N.Yoshida,and A. Osuka,J.Chem.Phys.114,6750(2001).

    [76]W.Qian and D.M.Jonas,J.Chem.Phys.119,1611 (2003).

    [77]D.A.Farrow,E.R.Smith,W.Qian,and D.M.Jonas, J.Chem.Phys.129,20(2008).

    [78]O.Schalk and A.N.Unterreiner,Phys.Chem.Chem. Phys.12,655(2010).

    [79]E.R.Smith and D.M.Jonas,J.Phys.Chem.A 115,4101(2011).

    [80]A.J.Van Tassle,M.A.Prantil,and G.R.Fleming, J.Phys.Chem.B 110,18989(2006).

    [81]J.Rehault,V.Zanirato,M.Olivucci,and J.Helbing, J.Chem.Phy.134,10(2011).

    [82]G.S.Engel,T.R.Calhoun,E.L.Read,T.K.Ahn, T.Mancal,Y.C.Cheng,R.E.Blankenship,and G. R.Fleming,Nature 446,782(2007).

    [83]E.Collini and G.D.Scholes,Science 323,369(2009). [84]R.S.Knox and D.Gulen,Photochem.Photobiol. 57,40(1993).

    [85]K.Wynne and R.M.Hochstrasser,J.Raman Spectro. 26,561(1995).

    [86]R.A.Malone and D.F.Kelley,J.Chem.Phys.95, 8970(1991).

    [87]A.T.Yeh,C.V.Shank,and J.K.McCusker,Science 289,935(2000).

    [88]S.Wallin,J.Davidsson,J.Modin,and L.Hammarstrom,J.Phys.Chem.A 109,4697(2005).

    [89]C.Galli,K.Wynne,S.M.Lecours,M.J.Therien, and R.M.Hochstrasser,Chem.Phys.Lett.206,493 (1993).

    [90]R.J.Sension,S.T.Repinec,A.Z.Szarka,and R.M. Hochstrasser,J.Chem.Phys.98,6291(1993).

    [91]C.E.McCusker and J.K.McCusker,Inorg.Chem. 50,1656(2011).

    [92]R.A.Mathies,S.W.Lin,J.B.Ames,and W.T.Pollard,Annual Rev.Biophys.Biophys.Chem.20,491 (1991).

    [93]R.Neutze,E.Pebay-Peyroula,K.Edman,A.Royant, J.Navarro,and E.M.Landau,Biochim.Et Biophys. Acta-Biomembr.1565,144(2002).

    [94]P.Hamm,M.Zurek,T.Roschinger,H.Patzelt,D. Oesterhelt,and W.Zinth,Chem.Phys.Lett.263,613 (1996).

    [95]P.Hamm,M.Zurek,T.Roschinger,H.Patzelt,D.S. Oesterhelt,and W.Zinth,Chem.Phys.Lett.268,180 (1997).

    [96]D.H.Waldeck,Chem.Rev.91,415(1991).

    [97]Z.R.Grabowski,K.Rotkiewicz,and W.Rettig, Chem.Rev.103,3899(2003).

    [98]C.Swalina and M.Maroncelli,J.Phys.Chem.C 114, 5602(2010).

    [99]H.Jin,M.Liang,S.Arzhantsev,X.Li,and M.Maroncelli,J.Phys.Chem.B 114,7565(2010).

    [100]B.D.Allen,A.C.Benniston,A.Harriman,S.A.Rostron,and C.F.Yu,Phys.Chem.Chem.Phys.7,3035 (2005).

    [101]A.Y.Jee,E.Bae,and M.Lee,J.Phys.Chem.B 113, 16508(2009).

    [102]K.I.Gutkowski,M.L.Japas,and P.F.Aramendia, Chem.Phys.Lett.426,329(2006).

    [103]A Paul and A Samanta,J.Phys.Chem.B 112,16626 (2008).

    [104]Z.G.Lan,Y.Lu,O.Weingart,and W.Thiel,J.Phys. Chem.A 116,1510(2012).

    [105]K.L.Koziol,P.J.M.Johnson,B.Stucki-Buchli,S. A.Waldauer,and P.Hamm,Curr.Opin.Struct.Biol. 34,1(2015).

    [106]M.M.Waegele,R.M.Culik,and F.Gai,J.Phys. Chem.Lett.2,2598(2011).

    [107]H.Kim and M.Cho,Chem.Rev.113,5817(2013).

    [108]J.Q.Ma,I.M.Pazos,W.K.Zhang,R.M.Culik,and F.Gai,Annual Review of Physical Chemistry,Vol 66, M.A.Johnson and T.J.Martinez,Eds.,Palo Alto: Annual Reviews,357(2015).

    [109]M.J.Tucker,M.Abdo,J.R.Courter,J.X.Chen,S. P.Brown,A.B.Smith,and R.M.Hochstrasser,Proc. Natl.Acad.Sci.USA 110,17314(2013).

    [110]A.A.Deeg,M.S.Rampp,A.Popp,B.M.Pilles,T. E.Schrader,L.Moroder,K.Hauser,and W.Zinth, Chem.Eur.J.20,694(2014).

    [111]A.B.Myers and R.M.Hochstrasser,J.Chem.Phys. 85,6301(1986).

    [112]P.B.Petersen and A Tokmako ff,Opt.Lett.35,1962 (2010).

    [113]L.De Marco,M.Thamer,M.Reppert,and A.Tokmako ff,J.Chem.Phys.141,10(2014).

    [114]M.Thamer,L.De Marco,K.Ramasesha,A.Mandal, and A.Tokmako ff,Science 350,78(2015).

    [115]M.Bonmarin and J.Helbing,Chirality 21,E298 (2009).

    [116]H.J.Rhee,Y.G.June,J.S.Lee,K.K.Lee,J.H Ha, Z.H.Kim,S.J.Jeon,and M.H.Cho,Nature 458, 310(2009).

    [117]C.R.Baiz,D.Schach,and A.Tokmako ff,Opt.Express 22,18724(2014).

    久久精品国产亚洲av涩爱 | 免费观看a级毛片全部| 国产精品久久电影中文字幕| 91久久精品国产一区二区成人| 最近中文字幕高清免费大全6| 亚洲精品日韩av片在线观看| 神马国产精品三级电影在线观看| 波多野结衣巨乳人妻| 亚洲精品456在线播放app| 99久久无色码亚洲精品果冻| av在线播放精品| av视频在线观看入口| 国产高潮美女av| 亚洲精品亚洲一区二区| 91狼人影院| 国产精品一区二区三区四区免费观看| 久久久久久久久久久免费av| 婷婷精品国产亚洲av| 成人亚洲欧美一区二区av| 亚洲电影在线观看av| 欧美+亚洲+日韩+国产| 亚洲精品日韩av片在线观看| 国产高清激情床上av| 国产亚洲5aaaaa淫片| 久久99精品国语久久久| 国产 一区精品| 欧美激情久久久久久爽电影| 亚洲精华国产精华液的使用体验 | 亚洲自偷自拍三级| 美女国产视频在线观看| 久久久成人免费电影| 免费av毛片视频| 国产成年人精品一区二区| 国产精品三级大全| 色综合站精品国产| av在线天堂中文字幕| 亚洲最大成人av| 99国产精品一区二区蜜桃av| 日韩高清综合在线| 插阴视频在线观看视频| 国产成人a∨麻豆精品| 男人和女人高潮做爰伦理| 久99久视频精品免费| 日本撒尿小便嘘嘘汇集6| 极品教师在线视频| 亚洲美女搞黄在线观看| 欧美一级a爱片免费观看看| a级一级毛片免费在线观看| 特级一级黄色大片| 国产精品.久久久| 亚洲色图av天堂| 一级黄色大片毛片| 99视频精品全部免费 在线| 永久网站在线| 精品一区二区三区人妻视频| 久久热精品热| 91aial.com中文字幕在线观看| 少妇人妻一区二区三区视频| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 亚洲av成人av| 亚洲最大成人av| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频| 国产精品久久久久久av不卡| 18禁裸乳无遮挡免费网站照片| av女优亚洲男人天堂| 久久久色成人| 成年免费大片在线观看| 晚上一个人看的免费电影| 国产大屁股一区二区在线视频| 99热这里只有是精品50| 久久久久久久久中文| 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放 | 精品少妇黑人巨大在线播放 | 欧美一区二区精品小视频在线| 亚洲自拍偷在线| 国产三级中文精品| 成人三级黄色视频| 爱豆传媒免费全集在线观看| a级毛片免费高清观看在线播放| 国产一区二区激情短视频| 偷拍熟女少妇极品色| 免费人成视频x8x8入口观看| 日本一二三区视频观看| 国产精品久久久久久精品电影小说 | 赤兔流量卡办理| 日韩av在线大香蕉| 欧美在线一区亚洲| 国产亚洲av嫩草精品影院| 久久精品国产99精品国产亚洲性色| 久久精品国产鲁丝片午夜精品| 久久久久久久久中文| 一个人看视频在线观看www免费| 大香蕉久久网| 免费观看在线日韩| 国产三级中文精品| 99久久精品热视频| 亚洲国产欧美人成| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 99热6这里只有精品| 女的被弄到高潮叫床怎么办| 别揉我奶头 嗯啊视频| 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 日本黄大片高清| 黄片wwwwww| 亚洲真实伦在线观看| 丰满的人妻完整版| 床上黄色一级片| 一夜夜www| 亚洲最大成人手机在线| 美女高潮的动态| 国产在视频线在精品| 赤兔流量卡办理| 国产精品.久久久| 在线观看av片永久免费下载| 成人三级黄色视频| 免费不卡的大黄色大毛片视频在线观看 | 一本久久精品| a级毛色黄片| 国产av一区在线观看免费| 日韩欧美在线乱码| 黄色日韩在线| 国产乱人视频| 97人妻精品一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 变态另类丝袜制服| 亚洲aⅴ乱码一区二区在线播放| 国产片特级美女逼逼视频| 精品人妻熟女av久视频| 麻豆精品久久久久久蜜桃| 亚洲天堂国产精品一区在线| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 久久人人精品亚洲av| 草草在线视频免费看| 欧美性猛交╳xxx乱大交人| 亚洲aⅴ乱码一区二区在线播放| 在线观看午夜福利视频| 人妻系列 视频| 久久久久久久久久久丰满| 久久久久久久久中文| 夫妻性生交免费视频一级片| 国产精品福利在线免费观看| 亚洲av成人av| 欧美zozozo另类| 亚洲av免费高清在线观看| 成人鲁丝片一二三区免费| 国产 一区 欧美 日韩| 内射极品少妇av片p| 国内精品美女久久久久久| 精品人妻视频免费看| 久久99热这里只有精品18| 一边亲一边摸免费视频| 欧美zozozo另类| 一级毛片我不卡| 啦啦啦啦在线视频资源| 真实男女啪啪啪动态图| 色5月婷婷丁香| 亚洲第一区二区三区不卡| 精品人妻偷拍中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | 日韩人妻高清精品专区| www日本黄色视频网| 色吧在线观看| 成人午夜高清在线视频| 成人av在线播放网站| 午夜久久久久精精品| 九草在线视频观看| 身体一侧抽搐| 国产不卡一卡二| 亚洲高清免费不卡视频| 国产单亲对白刺激| 波多野结衣巨乳人妻| 1000部很黄的大片| 看非洲黑人一级黄片| 又粗又硬又长又爽又黄的视频 | 精品人妻一区二区三区麻豆| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 色吧在线观看| 美女内射精品一级片tv| 国产视频内射| 久久精品国产亚洲av天美| 亚洲性久久影院| 91久久精品电影网| 亚洲av.av天堂| 69av精品久久久久久| 最近的中文字幕免费完整| 国产大屁股一区二区在线视频| 赤兔流量卡办理| 在线观看免费视频日本深夜| 五月伊人婷婷丁香| 精品人妻熟女av久视频| 国产精品.久久久| av天堂在线播放| 长腿黑丝高跟| 日本免费a在线| 最近手机中文字幕大全| 青春草国产在线视频 | 人人妻人人看人人澡| 亚洲欧美精品自产自拍| 男女做爰动态图高潮gif福利片| 我要搜黄色片| av女优亚洲男人天堂| 亚洲天堂国产精品一区在线| 国产精品99久久久久久久久| 天堂中文最新版在线下载 | 精品国内亚洲2022精品成人| 国产探花极品一区二区| 欧美又色又爽又黄视频| 深夜精品福利| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 亚洲av电影不卡..在线观看| 赤兔流量卡办理| 久久精品91蜜桃| 久久亚洲精品不卡| 成人漫画全彩无遮挡| 免费观看的影片在线观看| 欧美另类亚洲清纯唯美| 国产成人精品一,二区 | 国产成人福利小说| 18禁裸乳无遮挡免费网站照片| 精品99又大又爽又粗少妇毛片| 免费观看精品视频网站| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 青青草视频在线视频观看| 在线免费观看不下载黄p国产| 日韩大尺度精品在线看网址| 变态另类成人亚洲欧美熟女| 日韩中字成人| 一级毛片久久久久久久久女| 午夜激情福利司机影院| 免费观看精品视频网站| 免费观看在线日韩| 日韩欧美一区二区三区在线观看| 国产黄片视频在线免费观看| 性欧美人与动物交配| 久久精品国产亚洲av涩爱 | 麻豆成人午夜福利视频| 亚洲欧美日韩高清在线视频| 日本黄大片高清| 国产亚洲91精品色在线| 国产精品嫩草影院av在线观看| 国产又黄又爽又无遮挡在线| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲| 狠狠狠狠99中文字幕| 晚上一个人看的免费电影| 天天一区二区日本电影三级| 欧美日韩精品成人综合77777| 观看美女的网站| 亚洲成a人片在线一区二区| 亚洲欧美成人精品一区二区| 国产女主播在线喷水免费视频网站 | 美女内射精品一级片tv| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放 | 久久人人精品亚洲av| 久久综合国产亚洲精品| 久久人人爽人人片av| 国产亚洲精品av在线| 人人妻人人澡欧美一区二区| 国产一区二区三区在线臀色熟女| 少妇熟女欧美另类| 99久久精品一区二区三区| 99久久久亚洲精品蜜臀av| av又黄又爽大尺度在线免费看 | 国产精品一区二区三区四区久久| 午夜免费激情av| 国产亚洲av片在线观看秒播厂 | 亚洲av成人av| 免费观看的影片在线观看| 久久久精品大字幕| 国产精品久久久久久久电影| 日韩欧美一区二区三区在线观看| 99久久无色码亚洲精品果冻| 亚洲久久久久久中文字幕| 婷婷亚洲欧美| 精品国产三级普通话版| 搡老妇女老女人老熟妇| 国产精品伦人一区二区| 免费看光身美女| 男女下面进入的视频免费午夜| 夜夜爽天天搞| 欧美高清性xxxxhd video| 人体艺术视频欧美日本| 久久久久久伊人网av| 国内精品宾馆在线| 中文字幕久久专区| 国产女主播在线喷水免费视频网站 | 一本久久精品| 尤物成人国产欧美一区二区三区| 插逼视频在线观看| 国产精品国产三级国产av玫瑰| 精品一区二区三区视频在线| 亚洲av中文字字幕乱码综合| 国产av在哪里看| 精品人妻熟女av久视频| 丝袜喷水一区| 国产女主播在线喷水免费视频网站 | 在线免费十八禁| 国产探花在线观看一区二区| 悠悠久久av| 综合色av麻豆| 国产精品一二三区在线看| 国产伦在线观看视频一区| 国产av在哪里看| 久久韩国三级中文字幕| 国产又黄又爽又无遮挡在线| av福利片在线观看| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频| 久久久精品大字幕| 国产三级中文精品| av在线播放精品| 国产91av在线免费观看| 在线观看66精品国产| 五月玫瑰六月丁香| 一本一本综合久久| 日韩一区二区视频免费看| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 最好的美女福利视频网| 亚洲精品国产成人久久av| 亚洲成a人片在线一区二区| 久久久久久久久久成人| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 真实男女啪啪啪动态图| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 久久久久久久久久成人| 欧美bdsm另类| 亚洲五月天丁香| 亚洲av成人精品一区久久| 永久网站在线| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 人妻制服诱惑在线中文字幕| 久久婷婷人人爽人人干人人爱| 午夜老司机福利剧场| av专区在线播放| 国产亚洲5aaaaa淫片| 最近中文字幕高清免费大全6| 久久久国产成人精品二区| 又爽又黄a免费视频| 国产69精品久久久久777片| 免费观看的影片在线观看| 男女视频在线观看网站免费| 爱豆传媒免费全集在线观看| 人妻夜夜爽99麻豆av| 久久久久久久久久成人| 国产爱豆传媒在线观看| 99久久中文字幕三级久久日本| 能在线免费看毛片的网站| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站 | 午夜精品在线福利| 成人欧美大片| 黄片无遮挡物在线观看| 99国产精品一区二区蜜桃av| 99久久成人亚洲精品观看| 1000部很黄的大片| 免费大片18禁| 精品久久久久久成人av| 国产高潮美女av| 18禁在线播放成人免费| 校园春色视频在线观看| 美女脱内裤让男人舔精品视频 | 日韩高清综合在线| 免费人成在线观看视频色| 91av网一区二区| 一个人观看的视频www高清免费观看| 最近最新中文字幕大全电影3| 日韩一本色道免费dvd| 精品免费久久久久久久清纯| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 日本免费a在线| 久久久精品大字幕| 午夜福利在线在线| 欧美zozozo另类| 天堂影院成人在线观看| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 干丝袜人妻中文字幕| 在线观看66精品国产| 97在线视频观看| 高清毛片免费看| av.在线天堂| 日韩强制内射视频| 日本在线视频免费播放| 91久久精品电影网| 最近中文字幕高清免费大全6| 午夜久久久久精精品| 久久热精品热| 欧美在线一区亚洲| 亚洲av成人精品一区久久| 最好的美女福利视频网| 国产成人影院久久av| 看黄色毛片网站| 神马国产精品三级电影在线观看| 国产黄片视频在线免费观看| 亚洲在线自拍视频| 亚洲成人精品中文字幕电影| 97热精品久久久久久| 国产伦理片在线播放av一区 | 国产黄色小视频在线观看| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 插阴视频在线观看视频| kizo精华| 国产精品国产三级国产av玫瑰| 国产视频内射| 在线天堂最新版资源| 久久精品综合一区二区三区| 如何舔出高潮| 不卡一级毛片| 免费观看人在逋| 国产在线精品亚洲第一网站| 男女啪啪激烈高潮av片| 国产精品久久视频播放| 亚洲精华国产精华液的使用体验 | 欧美极品一区二区三区四区| 精品熟女少妇av免费看| 激情 狠狠 欧美| 日本在线视频免费播放| 精品人妻偷拍中文字幕| 一边亲一边摸免费视频| 成人亚洲精品av一区二区| 午夜福利高清视频| 少妇猛男粗大的猛烈进出视频 | 欧美日本视频| 男女下面进入的视频免费午夜| 毛片女人毛片| 欧美人与善性xxx| 五月玫瑰六月丁香| 久久久国产成人精品二区| av.在线天堂| 黄色视频,在线免费观看| 爱豆传媒免费全集在线观看| 日产精品乱码卡一卡2卡三| 一本久久精品| 黄色配什么色好看| 国产国拍精品亚洲av在线观看| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 久久久色成人| 伊人久久精品亚洲午夜| 精品久久久久久久久av| 国产久久久一区二区三区| 波多野结衣高清无吗| 欧美成人a在线观看| 麻豆精品久久久久久蜜桃| 午夜久久久久精精品| 日韩人妻高清精品专区| 免费人成视频x8x8入口观看| 国产日韩欧美在线精品| 久久精品国产自在天天线| 亚洲国产精品成人久久小说 | 亚洲精品成人久久久久久| 国产成人aa在线观看| 大香蕉久久网| 一级二级三级毛片免费看| 免费人成在线观看视频色| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 国产老妇女一区| 综合色av麻豆| 国产在线精品亚洲第一网站| 看非洲黑人一级黄片| 久久久久性生活片| 1000部很黄的大片| 精品久久久久久久末码| 中文字幕av在线有码专区| 色吧在线观看| 欧美成人免费av一区二区三区| 2022亚洲国产成人精品| 高清毛片免费观看视频网站| 日韩国内少妇激情av| 波多野结衣高清作品| 午夜久久久久精精品| 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 欧美最新免费一区二区三区| av在线天堂中文字幕| 波多野结衣巨乳人妻| 日韩欧美三级三区| 日韩欧美国产在线观看| 哪个播放器可以免费观看大片| 亚洲最大成人手机在线| 欧美最新免费一区二区三区| 欧美性感艳星| 99热精品在线国产| 精品国产三级普通话版| 一级黄片播放器| 国内少妇人妻偷人精品xxx网站| 卡戴珊不雅视频在线播放| 人妻制服诱惑在线中文字幕| 国产精品日韩av在线免费观看| 日本在线视频免费播放| 3wmmmm亚洲av在线观看| 亚洲国产色片| 特级一级黄色大片| 亚洲精品粉嫩美女一区| 成人综合一区亚洲| 男女做爰动态图高潮gif福利片| 亚洲av不卡在线观看| 国产亚洲5aaaaa淫片| 国产精品久久久久久精品电影小说 | 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| 国产欧美日韩精品一区二区| 黑人高潮一二区| 高清在线视频一区二区三区 | 久久久久国产网址| 亚洲无线在线观看| 青春草视频在线免费观看| 国产精品久久久久久精品电影| 国产91av在线免费观看| 亚洲av中文av极速乱| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 三级男女做爰猛烈吃奶摸视频| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| 九九热线精品视视频播放| 欧美潮喷喷水| 国产一区二区激情短视频| 久久久精品大字幕| 日韩欧美三级三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美成人综合另类久久久 | 老司机福利观看| 欧美bdsm另类| 麻豆av噜噜一区二区三区| 最好的美女福利视频网| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站 | 国产日本99.免费观看| 成年女人看的毛片在线观看| 亚洲高清免费不卡视频| 伊人久久精品亚洲午夜| 舔av片在线| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看 | 免费人成在线观看视频色| 精品国产三级普通话版| 如何舔出高潮| 日本色播在线视频| 久久精品国产99精品国产亚洲性色| 亚洲av中文av极速乱| 一级黄片播放器| 日韩人妻高清精品专区| 在现免费观看毛片| 在线观看66精品国产| 中国美女看黄片| 国产黄片美女视频| av在线播放精品| 搞女人的毛片| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 一级毛片电影观看 | 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 夜夜夜夜夜久久久久| 亚洲激情五月婷婷啪啪| 日韩 亚洲 欧美在线| 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看 | 国内精品美女久久久久久| 亚洲四区av| 欧美日韩综合久久久久久| 国产精品久久视频播放| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 白带黄色成豆腐渣| 色播亚洲综合网| 国产熟女欧美一区二区| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 在线观看午夜福利视频| 亚洲成人av在线免费| 亚洲五月天丁香| 亚洲av二区三区四区| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲五月天丁香| 亚洲经典国产精华液单| 日本一二三区视频观看| 你懂的网址亚洲精品在线观看 | 久久午夜福利片| 高清午夜精品一区二区三区 | 亚洲av二区三区四区| 插阴视频在线观看视频| av.在线天堂| 国产精品嫩草影院av在线观看| 日韩人妻高清精品专区| 一级黄片播放器| 国产亚洲5aaaaa淫片| 欧美xxxx性猛交bbbb| 久久人人精品亚洲av| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看|