• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有線性微分算子的分?jǐn)?shù)階微分方程積分邊值問題

    2016-04-07 02:25:25李萌萌賈梅蘇小鳳
    關(guān)鍵詞:賈梅上海理工大學(xué)邊值問題

    李萌萌,賈梅,蘇小鳳

    (上海理工大學(xué)理學(xué)院,上?!?00093)

    ?

    具有線性微分算子的分?jǐn)?shù)階微分方程積分邊值問題

    李萌萌,賈梅,蘇小鳳

    (上海理工大學(xué)理學(xué)院,上海200093)

    摘要:研究一類具有分?jǐn)?shù)階線性微分算子的非線性微分方程積分邊值問題解的存在性與唯一性.利用Schauder不動(dòng)點(diǎn)定理及壓縮映射原理,建立并證明了邊值問題解的存在性定理和唯一性定理,并給出兩個(gè)例子以說明所得結(jié)論.

    關(guān)鍵詞:分?jǐn)?shù)階線性微分算子;積分邊值問題; Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù);不動(dòng)點(diǎn)定理

    1 引言

    由于分?jǐn)?shù)階微積分在科學(xué)研究和工程技術(shù)等領(lǐng)域具有廣泛的應(yīng)用,近年來分?jǐn)?shù)階微分方程的理論研究取得了一系列研究成果[1-4].邊值問題是微分方程理論研究的重要課題,許多學(xué)者對(duì)分?jǐn)?shù)階微分方程邊值問題解的存在性與唯一性進(jìn)行了大量研究[512].在對(duì)具有Riemann-Liouville導(dǎo)數(shù)分?jǐn)?shù)階微分方程邊值問題的研究中,較多是假設(shè)未知函數(shù)在左端點(diǎn)的值為零, 即x(0) = 0的情況,例如參考文獻(xiàn)[7-10].本文在文獻(xiàn)[7]基礎(chǔ)上,在不假設(shè)x(0) = 0情況下,利用Schauder不動(dòng)點(diǎn)定理和壓縮映射原理,研究了如下一類具有分?jǐn)?shù)階線性微分算子的非線性微分方程積分邊值問題:

    的解的存在性及唯一性,其中

    n為非負(fù)整數(shù), r∈R, Dα和Dβ均為標(biāo)準(zhǔn)的Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù), f : [0,1]×R→R滿足L1-Carathe′odory條件, gi∈C[0,1], i = 1,2.

    函數(shù)f : [0,1]×R→R稱為滿足L1-Carathe′odory條件,如果

    (1)對(duì)任意的x∈R,函數(shù)f(·,x) : [0,1]→R是可測(cè)的;

    (2)對(duì)幾乎處處的t∈[0,1],函數(shù)f(t,·) : R→R是連續(xù)的;

    (3)對(duì)任意γ>0,存在?γ∈L1[0,1],使得當(dāng)|x|≤γ時(shí),對(duì)幾乎處處t∈[0,1] 有|f(t,tα?2x)|≤?γ(t).

    2 預(yù)備知識(shí)

    有關(guān)Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)和積分定義可參見參考文獻(xiàn)[1-2].

    引理2.1[2]設(shè)α>0, 0≤γ<1,γ≤α,則分?jǐn)?shù)階積分算子Iα: C0γ[0,1]→C[0,1].

    引理2.2[5]若α>0, 0<β<1,β≤α, I1?βx(t)|t=0= 0, n為非負(fù)整數(shù),則

    引理2.3對(duì)任意的h∈L1[0,1],邊值問題

    在X中等價(jià)于下面的積分方程:

    證明因?yàn)棣?β?1>0,所以根據(jù)引理2.1可得,對(duì)任意x∈X, I1?βx(t)|t=0= 0.

    由引理2.2可以得到

    其中c1,c2∈R.將邊界條件代入上式,解之得

    因此,將c1和c2代入(2)式,可得

    其中G(t,s), Hk(t,s),φ(t,s)即為上面形式.

    由引理2.3、函數(shù)G(t,s)和Hk(t,s),k = 0,1,2,···,n的表達(dá)式易得下面引理2.4、引理2.5和引理2.6.

    的解.

    引理2.5函數(shù)G(t,s)滿足:

    (1) G(t,s)∈C([0,1]×[0,1]),且對(duì)于任意t,s∈(0,1)有G(t,s)>0;

    (2)當(dāng)t,s∈[0,1]時(shí),

    引理2.6對(duì)k = 0,1,2,···,n,函數(shù)Hk(t,s)滿足:

    (1) Hk(t,s)∈C([0,1]×[0,1]);

    (2)對(duì)于任意的t,s∈[0,1],有|Hk(t,s)|≤tα?1(1?s)α?β+k?1.

    定義算子T : X→X,

    引理2.7算子T : X→X是全連續(xù)的.

    證明設(shè){xn}?X, x∈X,滿足當(dāng)n→∞時(shí), ||xn?x||→0,故存在γ1>0,使得||xn||≤γ1, ||x||≤γ1,即對(duì)任意的t∈[0,1], |t2?αxn(t)|≤γ1, |t2?αx(t)|≤γ1,因此對(duì)幾乎處處s∈[0,1],有

    并且存在?γ1∈L1[0,1],當(dāng)s∈[0,1]時(shí), |f(s,xn(s))| = |f(s,sα?2s2?αxn(s))|≤?γ1(s).

    由Lebesgue控制收斂定理得

    所以, ||Txn?Tx||→0, (n→∞),故T : X→X是連續(xù)算子.

    設(shè)??X是任意一個(gè)有界集,則存在γ2>0,使得當(dāng)x∈?時(shí),有||x||≤γ2,即存在?γ2∈L1[0,1],對(duì)任意的x∈?,有

    所以T(?)是一致有界的.

    另外,對(duì)任意的x∈?,因?yàn)镠k(t,s)∈C([0,1]×[0,1]), gi∈C[0,1], i = 1,2,所以t2?αφ(t,s)∈C([0,1]×[0,1]),故t2?αφ(t,s)一致連續(xù).又G(t,s)∈C([0,1]×[0,1]),故G(t,s)一致連續(xù).因此易得對(duì)任意的ε>0,存在δ>0,對(duì)任意的t1,t2∈[0,1],當(dāng)|t1?t2|<δ時(shí),有所以T(?)是等度連續(xù)的,由Arzela-Ascoli定理知, T : X→X是相對(duì)緊的.

    綜上可得T : X→X是全連續(xù)的.

    3 解的存在性及唯一性

    則有?≥0.

    假設(shè): (H) 0≤?<1.

    (H1)存在非負(fù)函數(shù)p(t)∈L1[0,1], q(x)在R上連續(xù),使得|f(t,x)|≤p(t) + q(x),且

    (H2)存在非負(fù)函數(shù)t2α?3a(t)∈L1[0,1], b(t)∈L1[0,1],常數(shù)σ>0,使得對(duì)任意的t∈[0,1] 及x∈R,有|f(t,x)|≤a(t)|x|σ+ b(t).

    (H3)存在函數(shù)l(t)>0, t2α?3l(t)∈L1[0,1],使得當(dāng)t∈[0,1], x1,x2∈R時(shí),

    定理3.1假設(shè)條件(H), (H1)成立,且A = 0,則邊值問題(1)在X中至少存在一個(gè)解.

    證明取

    由(H1)知,存在d1>0,使得當(dāng)|x|>d1時(shí),

    則D為X中非空有界閉凸集.

    對(duì)任意的x∈D,有||x||≤d0.因此當(dāng)t∈(0,1]時(shí),

    所以T : D→D.

    又由引理2.7知T全連續(xù),故由Schauder不動(dòng)點(diǎn)定理, T在D中至少存在一個(gè)不動(dòng)點(diǎn),即邊值問題(1)在X中至少存在一個(gè)解.

    由(H1)知,存在d1>0,使得當(dāng)|x|≥d1時(shí), 0≤q(x)≤(A+ε)|x|.令對(duì)任意的x∈R,有0≤q(x)≤N + (A +ε)|x|.

    令D = {x|x∈X,||x||≤d0},則D為X中非空有界閉凸集.

    與定理3.1證明類似可證||Tx||≤d0,所以T : D→D.

    又由引理2.7知T全連續(xù),故由Schauder不動(dòng)點(diǎn)定理, T在D中至少存在一個(gè)不動(dòng)點(diǎn),即邊值問題(1)在X中至少存在一個(gè)解.

    定理3.3假設(shè)條件(H), (H2)成立,且0<σ<1,則邊值問題(1)在X中至少存在一個(gè)解.

    選取

    令D = {x|x∈X,||x||≤r1},則D為X中非空有界閉凸集.?x∈D,有與定理3.1證明類似可證||Tx||≤r1,即T(D)?D.又由引理2.7知T全連續(xù),故由Schauder不動(dòng)點(diǎn)定理, T在D中至少存在一個(gè)不動(dòng)點(diǎn),即邊值問題(1)在X中至少存在一個(gè)解.

    定理3.4假設(shè)條件(H), (H2)成立,且

    則邊值問題(1)在X中至少存在一個(gè)解.

    證明取

    則有r2>0.

    令D = {x|x∈X,||x||≤r2},則D為X中非空有界閉凸集.對(duì)任意的x∈D,易得||Tx||≤r2,即T(D)?D.又由引理2.7知T全連續(xù),故由Schauder不動(dòng)點(diǎn)定理, T在D中至少存在一個(gè)不動(dòng)點(diǎn),即邊值問題(1)在X中至少存在一個(gè)解.

    定理3.5假設(shè)條件(H3)成立,且

    則邊值問題(1)在X中存在唯一的解.

    證明對(duì)任意的x,y∈X, t∈[0,1],

    所以,

    由于

    故T : X→X是壓縮映射,利用壓縮映射原理可得, T在X中有唯一不動(dòng)點(diǎn),即邊值問題(1) 在X中存在唯一的解.

    4 應(yīng)用舉例

    例4.1考慮邊值問題

    例4.2考慮邊值問題

    其中

    故由定理3.5可得,邊值問題(4)存在唯一解.

    參考文獻(xiàn)

    [1] Podlubny I. Fractional Differential Equations [M]. New York: Academic Press, 1999.

    [2] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science Ltd, 2006.

    [3] Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: Wiley, 1993.

    [4]白占兵.分?jǐn)?shù)階微分方程邊值問題理論及應(yīng)用[M].北京:中國科學(xué)技術(shù)出版社, 2012.

    [5] Babakhani A. Existence and uniqueness of solution for class of fractional order differential equations on an unbounded domain [J]. Advances in Difference Equations, 2012,2012,41:1-8.

    [6]劉帥,賈梅,秦小娜,等.帶積分邊值條件的分?jǐn)?shù)階微分方程解的存在性和唯一性[J].上海理工大學(xué)學(xué)報(bào), 2014,36(5):409-415.

    [7]吳貴云,劉錫平,楊浩.具有微分算子的分?jǐn)?shù)階微分方程邊值問題解的存在性與唯一性[J].上海理工大學(xué)學(xué)報(bào), 2015,37(3):205-209.

    [8] Liu Xiping, Wu Guiyun. Existence of positive solutions for integral boundary value problem of fractional differential equations [J]. Journal of Shanghai Normal University, 2014,43(5):496-505.

    [9] Jiang Daqing, Yuan Chengjun. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application [J]. Nonlinear Analysis, 2010,72(2):710-719.

    [10] Cabada A, Hamdi Z. Nonlinear fractional differential equations with integral boundary value conditions [J]. Applied Mathematics and Computation, 2014,228(1):251-257.

    [11]張海斌,賈梅,陳強(qiáng).一類半無窮區(qū)間上分?jǐn)?shù)階非線性微分方程邊值問題多個(gè)正解的存在性[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2014,52(6):1145-1150.

    [12]桂旺生,劉利斌.分?jǐn)?shù)階微分方程m點(diǎn)邊值共振問題解的存在性[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué), 2015,31(1):1-11.

    2010 MSC: 34B15, 26A33

    The integral boundary value problem for fractional differential equations with linear differential operator

    Li Mengmeng , Jia Mei , Su xiaofeng
    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Abstract:In this paper, we study the existence and uniqueness of solutions for a class of integral boundary value problem of differential equation with fractional linear differential operator. By using Schauder fixed point theorem and Banach contraction principle, the theorems of the existence and the uniqueness of solutions for the boundary value problem are obtained and proved. And we give two examples to illustrate the results.

    Key words:fractional linear differential operator, integral boundary value problem, Riemann-Liouville fractional derivative,fixed point theorem

    通訊作者:賈梅(1963-),碩士,副教授,研究方向:常微分方程理論與應(yīng)用.

    作者簡介:李萌萌(1990-),碩士生,研究方向:常微分方程理論與應(yīng)用.

    基金項(xiàng)目:國家自然科學(xué)基金(11171220);滬江基金(B14005).

    收稿日期:2015-08-31.

    DOI:10.3969/j.issn.1008-5513.2016.01.011

    中圖分類號(hào):0175.8

    文獻(xiàn)標(biāo)識(shí)碼:A

    文章編號(hào):1008-5513(2016)01-0075-09

    猜你喜歡
    賈梅上海理工大學(xué)邊值問題
    非線性n 階m 點(diǎn)邊值問題正解的存在性
    《上海理工大學(xué)學(xué)報(bào)》征稿簡則
    上海理工大學(xué)
    讀讀《女女生生賈賈梅梅》后后感感
    帶有積分邊界條件的奇異攝動(dòng)邊值問題的漸近解
    岡前總統(tǒng)卷走千萬美元?
    非線性m點(diǎn)邊值問題的多重正解
    一類非線性向量微分方程無窮邊值問題的奇攝動(dòng)
    十二年的溫暖
    亚洲丝袜综合中文字幕| 精品久久久久久久久亚洲| 午夜视频国产福利| 久久99热6这里只有精品| 国产av不卡久久| 亚洲成人久久性| 美女被艹到高潮喷水动态| 欧美丝袜亚洲另类| 亚洲国产欧美人成| 国产三级在线视频| 桃色一区二区三区在线观看| 一区福利在线观看| 国产一级毛片七仙女欲春2| 国产精品野战在线观看| 成年女人毛片免费观看观看9| 天天躁日日操中文字幕| 欧美性猛交╳xxx乱大交人| 中文字幕熟女人妻在线| 99热只有精品国产| 亚洲精品亚洲一区二区| 欧美激情久久久久久爽电影| 久久久a久久爽久久v久久| 亚洲人与动物交配视频| 狠狠狠狠99中文字幕| av福利片在线观看| 国产aⅴ精品一区二区三区波| 国产成人影院久久av| 麻豆国产97在线/欧美| 99国产极品粉嫩在线观看| 白带黄色成豆腐渣| 99精品在免费线老司机午夜| 99热全是精品| 亚洲精品影视一区二区三区av| 天堂动漫精品| 色在线成人网| 久久精品91蜜桃| 国产成人freesex在线 | 午夜日韩欧美国产| 校园春色视频在线观看| 精品欧美国产一区二区三| 国产黄色小视频在线观看| 丰满人妻一区二区三区视频av| 国产乱人视频| 婷婷精品国产亚洲av| 精品久久久久久久人妻蜜臀av| 亚洲久久久久久中文字幕| 99在线视频只有这里精品首页| 俄罗斯特黄特色一大片| 国产精品久久久久久精品电影| 又粗又爽又猛毛片免费看| 在线a可以看的网站| 中国美白少妇内射xxxbb| 亚洲第一电影网av| 最近的中文字幕免费完整| 国产精品久久视频播放| 亚洲精品日韩av片在线观看| 黄色配什么色好看| 青春草视频在线免费观看| 免费大片18禁| 欧美又色又爽又黄视频| 91狼人影院| 人妻丰满熟妇av一区二区三区| 久久草成人影院| 久久久国产成人免费| 日韩av在线大香蕉| 亚洲国产欧美人成| 日日撸夜夜添| 日韩欧美精品v在线| 午夜福利在线在线| 亚洲成人av在线免费| 成人欧美大片| 精品午夜福利视频在线观看一区| 国产精华一区二区三区| 欧美在线一区亚洲| 嫩草影院精品99| 欧美一区二区国产精品久久精品| 国产成人福利小说| 美女黄网站色视频| 99热网站在线观看| 日本色播在线视频| 久久欧美精品欧美久久欧美| 成年女人看的毛片在线观看| 在线a可以看的网站| 一个人看视频在线观看www免费| 少妇的逼水好多| 国内精品久久久久精免费| 又爽又黄a免费视频| 精品日产1卡2卡| 久久久久性生活片| 热99re8久久精品国产| 国产亚洲精品久久久com| 美女cb高潮喷水在线观看| 美女内射精品一级片tv| 国产成人a∨麻豆精品| 夜夜爽天天搞| 亚洲欧美日韩卡通动漫| 亚洲性夜色夜夜综合| 日韩在线高清观看一区二区三区| 久久久久久久亚洲中文字幕| 亚洲图色成人| 国产中年淑女户外野战色| 精品人妻熟女av久视频| 一本久久中文字幕| 少妇猛男粗大的猛烈进出视频 | 亚洲av成人精品一区久久| 高清毛片免费看| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮的动态| 夜夜夜夜夜久久久久| 夜夜爽天天搞| 18禁在线无遮挡免费观看视频 | 天堂影院成人在线观看| 亚洲av成人精品一区久久| 搡老熟女国产l中国老女人| 国产熟女欧美一区二区| 亚洲精品日韩av片在线观看| 国产成年人精品一区二区| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 欧美色视频一区免费| 国产人妻一区二区三区在| 亚洲成人久久爱视频| av女优亚洲男人天堂| 毛片女人毛片| 国产麻豆成人av免费视频| 如何舔出高潮| 啦啦啦啦在线视频资源| 美女 人体艺术 gogo| av女优亚洲男人天堂| 99在线视频只有这里精品首页| 亚洲精品久久国产高清桃花| 亚洲最大成人手机在线| 18禁在线无遮挡免费观看视频 | 成人一区二区视频在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲欧美成人精品一区二区| 看十八女毛片水多多多| 九九在线视频观看精品| 三级经典国产精品| 人人妻人人澡人人爽人人夜夜 | 国产中年淑女户外野战色| 国产中年淑女户外野战色| 亚洲一区高清亚洲精品| 国产成人a区在线观看| 国产免费男女视频| 在线观看66精品国产| 亚洲欧美日韩东京热| 久久久久免费精品人妻一区二区| 赤兔流量卡办理| 欧美日本视频| 久久久久久久久久成人| 国产成人一区二区在线| 色5月婷婷丁香| 波多野结衣巨乳人妻| 国产在线男女| 熟妇人妻久久中文字幕3abv| 人人妻人人澡人人爽人人夜夜 | 如何舔出高潮| 别揉我奶头 嗯啊视频| 天堂影院成人在线观看| 青春草视频在线免费观看| 在线国产一区二区在线| 熟妇人妻久久中文字幕3abv| 国产精品1区2区在线观看.| 亚洲电影在线观看av| 国产高清视频在线播放一区| 久久人人精品亚洲av| 久久这里只有精品中国| 黑人高潮一二区| 亚洲无线在线观看| 天美传媒精品一区二区| 国产精品久久视频播放| 成人性生交大片免费视频hd| 国产日本99.免费观看| 男人狂女人下面高潮的视频| 一级av片app| 精品久久久久久成人av| 亚洲精品乱码久久久v下载方式| 久久久久精品国产欧美久久久| 精品久久久久久久久久免费视频| 国产高清三级在线| 国产成人a区在线观看| 淫妇啪啪啪对白视频| 色尼玛亚洲综合影院| 精品人妻一区二区三区麻豆 | 可以在线观看毛片的网站| 国产精品野战在线观看| 真人做人爱边吃奶动态| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av天美| АⅤ资源中文在线天堂| 九九热线精品视视频播放| 少妇的逼好多水| 精品久久久久久久久av| 日韩三级伦理在线观看| 久久人人爽人人爽人人片va| av天堂在线播放| 国产精品,欧美在线| 91在线精品国自产拍蜜月| 51国产日韩欧美| av在线老鸭窝| 国产大屁股一区二区在线视频| 日本在线视频免费播放| av在线老鸭窝| 国产精品电影一区二区三区| 波多野结衣巨乳人妻| 国产精品99久久久久久久久| 免费无遮挡裸体视频| 国产午夜福利久久久久久| 国产乱人视频| 久久国产乱子免费精品| 国产伦精品一区二区三区视频9| 免费电影在线观看免费观看| 国产av不卡久久| 久久久精品欧美日韩精品| 国产精品女同一区二区软件| 欧美激情在线99| 麻豆成人午夜福利视频| 可以在线观看的亚洲视频| 少妇熟女欧美另类| 如何舔出高潮| 真实男女啪啪啪动态图| 国产精品野战在线观看| 国产精品99久久久久久久久| 网址你懂的国产日韩在线| 亚洲第一区二区三区不卡| 国产乱人视频| 欧美bdsm另类| 精品乱码久久久久久99久播| 淫秽高清视频在线观看| 亚洲aⅴ乱码一区二区在线播放| av卡一久久| 99在线视频只有这里精品首页| 一级av片app| 老师上课跳d突然被开到最大视频| 亚洲丝袜综合中文字幕| 国产精品99久久久久久久久| 欧美最新免费一区二区三区| 一进一出抽搐gif免费好疼| 99国产极品粉嫩在线观看| 最新中文字幕久久久久| 国产成年人精品一区二区| 听说在线观看完整版免费高清| 嫩草影院入口| 亚洲成a人片在线一区二区| 亚洲图色成人| 美女被艹到高潮喷水动态| 少妇熟女aⅴ在线视频| 永久网站在线| 精品人妻视频免费看| 国产成年人精品一区二区| 天美传媒精品一区二区| 午夜精品在线福利| 一级av片app| 午夜久久久久精精品| 成人鲁丝片一二三区免费| 别揉我奶头 嗯啊视频| 中文字幕av在线有码专区| 欧美另类亚洲清纯唯美| 中文字幕人妻熟人妻熟丝袜美| 99久久成人亚洲精品观看| 欧美日韩国产亚洲二区| 两个人的视频大全免费| 久久婷婷人人爽人人干人人爱| 噜噜噜噜噜久久久久久91| 禁无遮挡网站| aaaaa片日本免费| 又爽又黄a免费视频| 国产精品乱码一区二三区的特点| 99视频精品全部免费 在线| 成人国产麻豆网| 欧美一区二区亚洲| 国内精品宾馆在线| 午夜精品国产一区二区电影 | 国产一区二区三区av在线 | 国产精品久久久久久精品电影| 亚洲av一区综合| 日韩亚洲欧美综合| 国产乱人偷精品视频| 成人高潮视频无遮挡免费网站| 成人毛片a级毛片在线播放| 欧美bdsm另类| 我要看日韩黄色一级片| 别揉我奶头~嗯~啊~动态视频| 国产69精品久久久久777片| 天堂网av新在线| 亚洲中文字幕日韩| 婷婷六月久久综合丁香| 日本a在线网址| 久久久久性生活片| 一级毛片aaaaaa免费看小| av天堂中文字幕网| 亚洲欧美日韩无卡精品| 有码 亚洲区| 一边摸一边抽搐一进一小说| 色综合色国产| 大香蕉久久网| 人人妻人人澡欧美一区二区| 亚洲国产欧洲综合997久久,| 69人妻影院| 特大巨黑吊av在线直播| 午夜视频国产福利| 国产视频一区二区在线看| 亚洲自拍偷在线| 久久精品国产清高在天天线| 日韩高清综合在线| 真实男女啪啪啪动态图| 伦理电影大哥的女人| 亚洲综合色惰| 国产精品久久久久久av不卡| 男插女下体视频免费在线播放| 亚洲欧美精品综合久久99| 欧美日韩国产亚洲二区| av天堂在线播放| 一级毛片电影观看 | 久久久国产成人免费| 老师上课跳d突然被开到最大视频| 白带黄色成豆腐渣| 久久人人精品亚洲av| 国产av不卡久久| 国产亚洲av嫩草精品影院| 别揉我奶头 嗯啊视频| 色综合色国产| 色在线成人网| 深爱激情五月婷婷| 欧美中文日本在线观看视频| 天堂av国产一区二区熟女人妻| .国产精品久久| 一a级毛片在线观看| 18禁在线播放成人免费| 韩国av在线不卡| 成人精品一区二区免费| 久久热精品热| 天堂动漫精品| 18禁裸乳无遮挡免费网站照片| 免费人成视频x8x8入口观看| 亚洲av熟女| 日日干狠狠操夜夜爽| 91在线精品国自产拍蜜月| 18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看| 久久久国产成人免费| 国产单亲对白刺激| 成年女人毛片免费观看观看9| 亚洲欧美精品综合久久99| 亚洲成a人片在线一区二区| 亚洲精品456在线播放app| 一卡2卡三卡四卡精品乱码亚洲| 一级av片app| 免费看av在线观看网站| 亚洲精品乱码久久久v下载方式| 中文字幕免费在线视频6| 亚洲国产精品久久男人天堂| 精品久久久久久成人av| 十八禁国产超污无遮挡网站| 久久精品91蜜桃| 国产高清视频在线观看网站| 久久国内精品自在自线图片| 国内久久婷婷六月综合欲色啪| 欧美区成人在线视频| 高清日韩中文字幕在线| 毛片女人毛片| 亚洲在线观看片| 你懂的网址亚洲精品在线观看 | 国产单亲对白刺激| 大香蕉久久网| 男女下面进入的视频免费午夜| 六月丁香七月| 精品久久久久久久久久久久久| 国产老妇女一区| 天堂动漫精品| 国产麻豆成人av免费视频| 午夜免费男女啪啪视频观看 | 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 91在线精品国自产拍蜜月| 99久国产av精品| 亚洲专区国产一区二区| 亚洲18禁久久av| av女优亚洲男人天堂| 国产精品人妻久久久久久| 3wmmmm亚洲av在线观看| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av天美| 黄色日韩在线| 免费电影在线观看免费观看| 插阴视频在线观看视频| 又黄又爽又刺激的免费视频.| 免费在线观看影片大全网站| 一级毛片电影观看 | 99久久精品一区二区三区| 欧美又色又爽又黄视频| 日韩成人av中文字幕在线观看 | 久久这里只有精品中国| 国产成人aa在线观看| 国产午夜精品论理片| 亚洲熟妇熟女久久| 久久久国产成人精品二区| 全区人妻精品视频| 亚洲无线在线观看| 校园春色视频在线观看| 亚洲成人久久性| 日韩欧美三级三区| 国产日本99.免费观看| 亚洲色图av天堂| 精品乱码久久久久久99久播| 欧美色欧美亚洲另类二区| 一级黄色大片毛片| 国产精品女同一区二区软件| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 变态另类丝袜制服| 少妇人妻精品综合一区二区 | 一级黄片播放器| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区成人| 欧美高清性xxxxhd video| 在线观看免费视频日本深夜| 亚州av有码| 51国产日韩欧美| 欧美+日韩+精品| 久久亚洲精品不卡| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 国产一区二区亚洲精品在线观看| 久久午夜亚洲精品久久| 国产在线男女| 深夜a级毛片| 欧美成人a在线观看| 国产探花在线观看一区二区| 午夜影院日韩av| 亚洲七黄色美女视频| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 国产欧美日韩精品亚洲av| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 日本 av在线| 亚洲欧美日韩高清专用| 日韩成人伦理影院| 国产不卡一卡二| 亚洲最大成人手机在线| 日韩欧美在线乱码| 婷婷色综合大香蕉| 国产成人影院久久av| 啦啦啦韩国在线观看视频| 人人妻人人澡欧美一区二区| 夜夜爽天天搞| 黄色欧美视频在线观看| 亚洲精品日韩在线中文字幕 | 麻豆国产97在线/欧美| 欧美中文日本在线观看视频| 成人av一区二区三区在线看| 一夜夜www| 黄色欧美视频在线观看| 男女下面进入的视频免费午夜| 简卡轻食公司| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区 | 亚洲性久久影院| 欧美性猛交黑人性爽| 亚洲av成人av| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 欧美激情在线99| 成人综合一区亚洲| 亚洲精品日韩av片在线观看| videossex国产| 国产精品人妻久久久久久| 国内揄拍国产精品人妻在线| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 久久精品综合一区二区三区| 亚洲图色成人| 色在线成人网| 午夜爱爱视频在线播放| av天堂中文字幕网| 99九九线精品视频在线观看视频| 国产综合懂色| 国产精品无大码| 久久精品国产亚洲网站| 在线a可以看的网站| 亚洲av熟女| 小蜜桃在线观看免费完整版高清| 丰满的人妻完整版| 91精品国产九色| 中文字幕av成人在线电影| 中国美女看黄片| 亚洲最大成人中文| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av在线| 美女cb高潮喷水在线观看| 免费看光身美女| a级毛片a级免费在线| 人妻丰满熟妇av一区二区三区| 少妇丰满av| 秋霞在线观看毛片| 在线观看免费视频日本深夜| 亚洲无线在线观看| 真实男女啪啪啪动态图| 久久国产乱子免费精品| 久久久国产成人免费| 国产白丝娇喘喷水9色精品| 淫秽高清视频在线观看| 午夜久久久久精精品| 亚洲美女黄片视频| 男插女下体视频免费在线播放| 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 国产在线精品亚洲第一网站| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免| 国产精品久久久久久亚洲av鲁大| 一本久久中文字幕| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 日韩在线高清观看一区二区三区| 国产成年人精品一区二区| 午夜精品国产一区二区电影 | 国产成人福利小说| 别揉我奶头 嗯啊视频| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| av视频在线观看入口| 日日摸夜夜添夜夜添av毛片| 99在线人妻在线中文字幕| 国产又黄又爽又无遮挡在线| 国产蜜桃级精品一区二区三区| 成人亚洲精品av一区二区| 亚洲真实伦在线观看| 国产成人aa在线观看| 18禁在线播放成人免费| 国产色婷婷99| 久久久久久伊人网av| 人妻久久中文字幕网| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看| 亚洲欧美日韩东京热| 超碰av人人做人人爽久久| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 99热精品在线国产| 久久精品影院6| 欧美一级a爱片免费观看看| 国产成人91sexporn| 日本在线视频免费播放| 99热网站在线观看| 久久人妻av系列| 色吧在线观看| 国产在视频线在精品| 亚洲综合色惰| 精品人妻一区二区三区麻豆 | 俄罗斯特黄特色一大片| 午夜视频国产福利| 男女边吃奶边做爰视频| 欧美一级a爱片免费观看看| 日韩欧美三级三区| 中文在线观看免费www的网站| 久久精品国产亚洲av香蕉五月| 精品99又大又爽又粗少妇毛片| 色在线成人网| 国产69精品久久久久777片| 日产精品乱码卡一卡2卡三| 成年免费大片在线观看| 人人妻,人人澡人人爽秒播| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 男人和女人高潮做爰伦理| 中文亚洲av片在线观看爽| 亚洲婷婷狠狠爱综合网| 色综合色国产| 日日摸夜夜添夜夜爱| 亚洲国产精品合色在线| 女人十人毛片免费观看3o分钟| 熟妇人妻久久中文字幕3abv| 久久综合国产亚洲精品| 色5月婷婷丁香| 一级毛片久久久久久久久女| 日韩国内少妇激情av| 女人十人毛片免费观看3o分钟| 欧美激情国产日韩精品一区| 观看美女的网站| 国产免费男女视频| 日韩av在线大香蕉| 国产亚洲精品久久久久久毛片| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲一级av第二区| 国产片特级美女逼逼视频| 国产av在哪里看| 亚洲久久久久久中文字幕| 最新中文字幕久久久久| 日本一本二区三区精品| 久久精品影院6| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 久久精品国产亚洲av涩爱 | videossex国产| 免费在线观看影片大全网站| 亚洲成a人片在线一区二区| 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 国产精品野战在线观看| 日本免费a在线| 亚洲经典国产精华液单| 毛片女人毛片| 欧美三级亚洲精品|