付天明 舒敏思
(1.成都市龍泉驛區(qū)婦幼保健院,四川 成都 610100;2.成都市龍泉驛區(qū)產(chǎn)前篩查中心,四川 成都 610100)
?
妊娠時(shí)間生物學(xué)的研究進(jìn)展*
付天明1,2△舒敏思1
(1.成都市龍泉驛區(qū)婦幼保健院,四川 成都610100;2.成都市龍泉驛區(qū)產(chǎn)前篩查中心,四川 成都610100)
與妊娠相關(guān)的時(shí)間生物學(xué)研究不斷涌現(xiàn),這些研究成果漸成系統(tǒng),催生了時(shí)間生物學(xué)新的亞領(lǐng)域妊娠時(shí)間生物學(xué)。本文從妊娠的各個(gè)時(shí)間段對(duì)眾多的研究成果加以綜述,并探討該領(lǐng)域前景及臨床可研究的方向。
時(shí)間生物學(xué);妊娠;節(jié)律基因
時(shí)間生物學(xué)(Chronobiology)是近年來(lái)發(fā)展異常迅速的新興學(xué)科[1-3],而隨著時(shí)間生物學(xué)研究成果的臨床結(jié)合與轉(zhuǎn)化,目前時(shí)間治療學(xué)(Chronotherapy)、腫瘤時(shí)間生物學(xué)(Cancer chronobiology)、時(shí)間藥理學(xué)(Chronopharmacology)牙髓時(shí)間生物學(xué)(Pulp chronobiology)、妊娠時(shí)間生物學(xué)(Pregnancy chronobiology)等亞學(xué)科相繼出現(xiàn)并蓬勃發(fā)展。時(shí)間生物學(xué)已使我們每個(gè)人置身其中,并對(duì)整個(gè)人類社會(huì)產(chǎn)生深遠(yuǎn)的影響。筆者在此就對(duì)頻頻沖擊我們的妊娠時(shí)間生物學(xué)研究動(dòng)態(tài)做一綜述,同時(shí)對(duì)未來(lái)的臨床工作做出些許思考。
自1985年第一個(gè)與生物鐘相關(guān)的基因Period從果蠅體內(nèi)被成功克隆以來(lái),一系列節(jié)律基因如Clock、Rigui、Bmal1、Timeless、Cry、Frq、Vvd、Noc、Kai等陸續(xù)被發(fā)現(xiàn)[1,2]。他們?cè)谠S多基本生物功能,包括體溫、呼吸、睡眠、進(jìn)食、血壓等諸多穩(wěn)態(tài)中發(fā)揮著關(guān)鍵作用[3-10]。最近的研究指出節(jié)律基因在血糖調(diào)節(jié)、脂肪代謝、內(nèi)環(huán)境穩(wěn)態(tài)、生殖、免疫與衰老等生理過(guò)程中作用特殊[11-15]。時(shí)間生物學(xué)的研究在全世界范圍內(nèi)正經(jīng)歷一場(chǎng)空前的繁榮,近日節(jié)律與疾病的關(guān)系正受到前所未有的關(guān)注。大量研究已經(jīng)發(fā)現(xiàn)節(jié)律基因參與了多種疾病發(fā)生發(fā)展,目前已經(jīng)較為明確肥胖、糖尿病、高血脂、高血壓疾病、胰腺炎、腫瘤、季節(jié)性情感障礙、產(chǎn)后抑郁等疾病的發(fā)生及病情惡化與節(jié)律基因功能紊亂息息相關(guān)[3-18]。2012年英國(guó)劍橋大學(xué)Addenbrooke醫(yī)院Edgar RS博士最新的研究更是推測(cè)生物鐘形成于25億年前[19]。雖然目前研究對(duì)于生物節(jié)律總體發(fā)展演變的歷史長(zhǎng)河而言,只是激起的點(diǎn)點(diǎn)浪花,但這些珍貴的發(fā)現(xiàn)足以讓人鼓舞而執(zhí)著探索,力求找到破解生命現(xiàn)象諸多謎團(tuán)、攻克眾多復(fù)雜疾病的新突破口。妊娠是人類社會(huì)繁衍生息的最基本活動(dòng),但妊娠活動(dòng)中的諸多細(xì)節(jié)仍然是醫(yī)學(xué)界的未解之謎。諸如受精、胚胎著床及發(fā)育、流產(chǎn)、分娩發(fā)動(dòng)等[20,21]。目前諸多研究均已證明節(jié)律基因在生殖系統(tǒng)的穩(wěn)態(tài)、胚胎正常發(fā)育、生育節(jié)律的維持等功能活動(dòng)中都發(fā)揮著異常重要的作用[22,23]。
受精是妊娠成功的開始,現(xiàn)有的研究顯示節(jié)律基因影響著妊娠的結(jié)局。早在2007年,衛(wèi)生部時(shí)間生物學(xué)重點(diǎn)實(shí)驗(yàn)室王正榮教授課題組就研究發(fā)現(xiàn)Clock基因影響雄性小鼠精子頂體酶活性,從而影響受精,該課題組采用clock干擾質(zhì)粒使小鼠睪丸CLOCK蛋白的表達(dá)明顯下調(diào),從而頂體酶活性明顯下降[24]。美國(guó)華盛頓大學(xué)兒科學(xué)系Ratajczak CK對(duì)Bmal1基因敲除(Bmal1-/-)小鼠的研究發(fā)現(xiàn),雌性小鼠孕酮的表達(dá)減少,并導(dǎo)致不孕的出現(xiàn)[25]。
目前學(xué)界較為認(rèn)同節(jié)律基因在子宮及胎盤組織中發(fā)揮作用,而節(jié)律性變化是正常胎盤的重要特征[26,27]。西澳大利亞大學(xué)Waddell BJ教授一項(xiàng)研究顯示在胎盤組織,眾多節(jié)律基因諸如Clock、Bmal1、Per1、Per2、Per3、Cry1及Cry2等均有表達(dá),傳統(tǒng)轉(zhuǎn)錄-翻譯反饋環(huán)路(Transcriptional-translational feedback loops)的節(jié)律基因表達(dá)機(jī)制在此表現(xiàn)并不強(qiáng)烈,也欠缺協(xié)調(diào)性[28]。而胎盤組織的節(jié)律基因表達(dá)及其在妊娠期間的具體功能還不明朗,且其在不同物種之間的差異需要更深層次的研究,這將有利于揭示與妊娠相關(guān)的許多事件。意大利費(fèi)拉拉大學(xué)進(jìn)化生物學(xué)家Lunghi L等指出節(jié)律基因Per2、Dec1等在絨毛外人滋養(yǎng)層細(xì)胞參與母體血管重建過(guò)程中發(fā)揮著重要作用[29,30],這些都有利于為胚胎組織提供有利的環(huán)境。Uchikawa M的研究具有相似觀點(diǎn)[31]。
捷克科學(xué)院(Academy of Sciences of the Czech Republic, ASCR)一項(xiàng)研究顯示節(jié)律基因Per1、Per2和立早基因c-fos在Wistar大鼠子代早期視網(wǎng)膜發(fā)育及光感形成中作用特殊[32]。而美國(guó)休斯頓大學(xué)視光學(xué)院Fox DA研究指出妊娠期鉛暴露(Gestational lead exposure, GLE)將導(dǎo)致妊娠小鼠暗視視網(wǎng)膜電圖(Electroretinograms,ERG)呈現(xiàn)出超日節(jié)律改變,并將影響到子代[33]。
俄羅斯圣彼得堡國(guó)立大學(xué)Chernysheva MP教授等實(shí)驗(yàn)揭示PER1蛋白表達(dá)與催產(chǎn)素釋放之間存在正反饋現(xiàn)象,PER1對(duì)于調(diào)節(jié)催產(chǎn)素與γ-氨基丁酸(Gamma-aminobutyric acid,GABA)之間的平衡關(guān)系具有重要作用,借助Western-Blot,學(xué)者發(fā)現(xiàn)通過(guò)視黃醇代謝產(chǎn)物維甲酸相關(guān)孤核受體α(Retinoid acid receptor related orphan receptor α,RORα)的調(diào)節(jié),妊娠雌鼠下丘腦視上核細(xì)胞胞漿中PER1呈現(xiàn)高表達(dá),而胚胎細(xì)胞細(xì)胞核中PER1表達(dá)量增加明顯,且其胞漿中的催產(chǎn)素受體(Oxytocin receptor,OXTR)顯著增加,相反GABA的表達(dá)量顯著下降。從而人們推斷PER1促進(jìn)內(nèi)源性催產(chǎn)素及其受體的釋放,并調(diào)節(jié)抑制性介質(zhì)GABA的分泌減少和活性降低可能是分娩發(fā)動(dòng)的機(jī)制之一[34]。美國(guó)華盛頓大學(xué)分子細(xì)胞生物學(xué)家Ratajczak CK教授研究也顯示在人類和嚙齒類動(dòng)物中,節(jié)律基因?qū)τ谡7置渚哂兄匾饔?。一?xiàng)關(guān)于選擇性子宮基層Bmal1基因敲除小鼠和未敲除小鼠的對(duì)比研究顯示在分娩時(shí)間窗(妊娠第19天下午5點(diǎn)至19.5天上午9點(diǎn))內(nèi)對(duì)照組92%的雌性小鼠順利分娩,而基因敲除組僅有64%的雌性小鼠分娩。研究顯示Bmal1對(duì)于小鼠正常妊娠時(shí)間的記憶與維持具有重要作用,Bmal1基因的突變或缺失會(huì)導(dǎo)致延期妊娠或分娩失敗[35]。
美國(guó)印第安納州普渡大學(xué)Casey T博士系統(tǒng)研究了節(jié)律基因?qū)γ谌榈挠绊慬36]。其中一項(xiàng)研究顯示超重狀態(tài)所誘導(dǎo)的核心節(jié)律基因表達(dá)改變導(dǎo)致大鼠妊娠流產(chǎn)及死胎的比率增加,并導(dǎo)致母鼠泌乳減少[37]。該團(tuán)隊(duì)另一項(xiàng)有關(guān)奶牛乳腺細(xì)胞系的體外研究實(shí)驗(yàn)顯示外在刺激與節(jié)律基因的表達(dá)同步,諸如核心節(jié)律基因Bmal1受到催乳素的誘導(dǎo)。Clock/clock基因突變的雌性小鼠由于晝夜節(jié)律被打破,最終導(dǎo)致無(wú)法分泌充足的乳汁滿足幼仔成長(zhǎng)的需要[38]。學(xué)者推測(cè)在從妊娠到分娩后環(huán)境及生理信號(hào)的變化包括光照時(shí)間調(diào)節(jié)著節(jié)律基因的表達(dá),通過(guò)對(duì)奶牛的觀察研究發(fā)現(xiàn)干燥氣候和(或)泌乳期光照時(shí)間的長(zhǎng)短影響著奶牛乳汁的多少。也許光暗周期對(duì)乳汁分泌的影響是間接的,而中樞節(jié)律基因接受光暗刺激信號(hào)并調(diào)控乳汁分泌是影響乳汁分泌的直接因素。這些中樞節(jié)律基因調(diào)節(jié)了乳腺部位外周節(jié)律基因的表達(dá)水平,從而導(dǎo)致了乳汁的分泌并可能調(diào)節(jié)乳汁的具體合成環(huán)節(jié)[39]。
法國(guó)國(guó)家科學(xué)研究院(French National Center for Scientific Research,CNRS)Mairesse J課題組對(duì)于一項(xiàng)關(guān)于治療抑郁癥的新藥阿戈美拉汀(Agomelatine,褪黑素類藥)的研究揭示妊娠期間的睡眠/覺(jué)醒周期障礙將導(dǎo)致子代的精神疾病。該組人員通過(guò)一項(xiàng)有關(guān)評(píng)估阿戈美拉汀對(duì)妊娠大鼠產(chǎn)前束縛應(yīng)激(Prenatal restraint stress,PRS)反應(yīng)晝夜節(jié)律調(diào)節(jié)的研究顯示,在妊娠的最后10天向孕鼠加以產(chǎn)前束縛應(yīng)激,結(jié)果其子代成年后的慢波睡眠(Slow wave sleep,SWS)持續(xù)時(shí)間明顯縮短,而快速動(dòng)眼睡眠(Rapid eye movement sleep,REMS) 持續(xù)時(shí)間明顯延長(zhǎng),并且晝夜循環(huán)的黑夜相到來(lái)之前活動(dòng)變得頻繁,同時(shí)成年后大鼠海馬部位主反應(yīng)基因c-Fos的轉(zhuǎn)錄水平明顯增加。所有的這些異常都可通過(guò)飲食中添加2000 ppm的阿戈美拉汀得到扭轉(zhuǎn)。而阿戈美拉汀的療效可被MT1/MT2型褪黑素受體抑制劑S22153大大消弱,而S22153可導(dǎo)致似PRS的睡眠紊亂。從而預(yù)示阿戈美拉汀在治療產(chǎn)褥期抑郁癥(Postpartum depression,PPD)方面的巨大前景[40]。美國(guó)密蘇里大學(xué)婦產(chǎn)科與婦女衛(wèi)生系Schlitt JM等專家的實(shí)驗(yàn)揭示孕期對(duì)母親的飲食限制不利于后代的發(fā)育與成長(zhǎng),將會(huì)導(dǎo)致諸如肥胖、心血管等疾病發(fā)生,而早孕期是影響后代的關(guān)鍵階段。研究發(fā)現(xiàn)隨意限制50%進(jìn)食,將使妊娠(孕期11.5天)及非妊娠小鼠血漿中的瘦素表達(dá)水平顯著降低。但妊娠小鼠的內(nèi)臟脂肪中瘦素前體物質(zhì)明顯增多,而非妊娠小鼠皮下脂肪中的瘦素前體物質(zhì)增加更為明顯。瘦素的分泌與聚集對(duì)時(shí)間及進(jìn)食存在依賴性。當(dāng)下午進(jìn)食與取樣時(shí),進(jìn)食組與限制進(jìn)食組血漿瘦素表達(dá)水平差異顯著,而對(duì)于早晨進(jìn)食與取樣的小鼠,血漿瘦素水平并無(wú)明顯差異[41]。而Lavebratt C等的研究也同樣表明節(jié)律基因通過(guò)對(duì)下游基因的調(diào)節(jié)參與子代飲食習(xí)慣及肥胖的發(fā)生[42]。美國(guó)路易斯安那州彭寧頓生物醫(yī)學(xué)研究中心(Pennington Biomedical Research Center,PBRC)Sutton GM博士等研究發(fā)現(xiàn)對(duì)妊娠期間的C57BL/6J小鼠加以蛋白質(zhì)限制,將導(dǎo)致妊娠小鼠節(jié)律系統(tǒng)紊亂,從而導(dǎo)致胎兒宮內(nèi)發(fā)育遲緩(Intrauterine growth retardation,IUGR),并可能導(dǎo)致子代糖尿病的出現(xiàn)[43]。
縱觀國(guó)內(nèi)外妊娠時(shí)間生物學(xué)研究成果,節(jié)律基因功能發(fā)揮伴隨妊娠活動(dòng)始末是可以肯定的,但人類妊娠活動(dòng)的節(jié)律特點(diǎn)依然缺乏系統(tǒng)的分析及梳理。作為臨床醫(yī)務(wù)工作者,我們整日面臨著病人的妊娠活動(dòng)[21],但我們細(xì)想分娩前后的生物節(jié)律是否存在差異?不同分娩方式對(duì)生物節(jié)律是否存在影響?衛(wèi)生部時(shí)間生物學(xué)重點(diǎn)實(shí)驗(yàn)室王正榮課題組曾對(duì)腦出血開顱病人的心率加以分析,結(jié)果術(shù)后7天內(nèi)心率的近日節(jié)律消失,而后恢復(fù),而節(jié)律恢復(fù)較慢的病員預(yù)后大多較差[52]。作為溫和應(yīng)激的順產(chǎn)及較強(qiáng)應(yīng)激的剖宮產(chǎn),是否也將并同等程度導(dǎo)致體溫、脈搏、血壓等生理參數(shù)的近日節(jié)律紊亂?顯然這些日常工作中再常見(jiàn)不過(guò)的現(xiàn)象,卻需要我們借助臨床資料及分子生物學(xué)技術(shù),探明其深層的機(jī)制及規(guī)律。
1王正榮. 時(shí)間生物學(xué)[M]. 北京: 人民衛(wèi)生出版社, 2008, 1-215.
2王正榮. 時(shí)間生物學(xué)[M]. 北京: 科學(xué)出版社, 2006, 1-305.
3陳善廣,王正榮. 空間時(shí)間生物學(xué)[M]. 北京: 科學(xué)出版社, 2009, 1-400.
4Conti B, Sanchez-Alavez M, Winsky-Sommerer R, et al. Transgenic mice with a reduced core body temperature have an increased life span[J]. Science, 2006, 314(5800): 825-828.
5Williams JA, Su HS, Bernards A, et al. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK[J]. Science, 2001, 293(5538): 2251-2256.
6Mignot E, Takahashi JS. A circadian sleep disorder reveals a complex clock[J]. Cell, 2007, 128(1): 22-23.
7Fuller PM, Lu J, Saper CB. Differential rescue of light and food entrainable circadian rhythms[J]. Science, 2008, 320(5879): 1074-1077.
8Woon PY, Kaisaki PJ, Bragan?a J, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes[J]. PNAS, 2007, 104(36): 14412-14417.
9Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer[J]. J Natl Cancer Inst, 2001, 93 (20): 1557-1562.
10Fu L, Pelicano H, Liu J. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[J]. Cell, 2002, 111(1): 41-50.
11Hirota T, Lee JW, St John PC, et al. Identification of small molecule activators of cryptochrome[J]. Science, 2012, 337(6098): 1094-1097.
12Bugge A, Feng D, Everett LJ, et al. Rev-erb α and Rev-erb β coordinately protect the circadian clock and normal metabolic function[J]. Genes Dev, 2012, 26(7): 657-667.
13Negoro H, Kanematsu A, Doi M, et al. Involvement of urinary bladder Connexin43 and the circadian clock in coordination of diurnal micturition rhythm[J]. Nat Commun, 2012, 3: 809.
14Silver AC,Arjona A, Walker WE, The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity[J]. Immunity, 2012, 36(2): 251-261.
15Chen Z,Yoo SH, Park YS, et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening[J]. Proc Natl Acad Sci U S A, 2012, 109(1): 101-106.
16Cho H, Zhao X,Hatori M. Regulation of circadian behavior and metabolism by REV-ERB-α and REV-ERB-β[J]. Nature, 2012, 485(7396): 123-127.
17Li J, Lu WQ,Beesley S, et al. Lithium impacts on the amplitude and period of the molecular circadian clockwork[J]. PLoS One, 2012, 7(3): e33292.
18Song YH, Smith RW, To BJ, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science, 2012, 336(6084): 1045-1049.
19Edgar RS, Green EW, Zhao Y, et al.Peroxiredoxins are conserved markers of circadian rhythms[J]. Nature, 2012, 485(7399): 459-464.
20Cunningham FG, Leveno KJ, Bloom SL, et al. Williams Obstetrics. 23rd ed [M]. Columbus: McGraw-Hill Companies, 2009, 603-1404.
21Olcese J. Circadian aspects of mammalian parturition: a review[J]. Mol Cell Endocrinol, 2012, 349(1): 62-67.
22Torres-Farfan C, Mendez N, Abarzua-Catalan L, et al. A circadian clock entrained by melatonin is ticking in the rat fetal adrenal[J]. Endocrinology, 2011, 152(5): 1891-1900.
23Kennaway DJ, Boden MJ, Varcoe TJ. Circadian rhythms and fertility[J]. Mol Cell Endocrinol, 2012, 349(1): 56-61.
24蔣小輝,張路,汪宇輝,等. 節(jié)律基因Clock干擾對(duì)小鼠精子受精能力的影響[J]. 四川大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2008, 39(6): 929-932.
25Ratajczak CK, Boehle KL, Muglia LJ. Impaired steroidogenesis and implantation failure in Bmal1-/-mice[J]. Endocrinology, 2009, 150(4): 1879-1885.
26Wharfe MD, Mark PJ, Waddell BJ. Circadian variation in placental and hepatic clock genes in rat pregnancy[J]. Endocrinology, 2011, 152(9): 3552-3560.
27Akiyama S, Ohta H, Watanabe S, et al. The uterus sustains stable biological clock during pregnancy[J]. Tohoku J Exp Med, 2010, 221(4): 287-298.
28Waddell BJ, Wharfe MD, Crew RC, et al. A rhythmic placenta? Circadian variation, clock genes and placental function[J]. Placenta, 2012, 33(7): 533-539.
29Lunghi L, Frigato E, Ferretti ME, et al. Circadian variation of cell proliferation in HTR-8/SVneo cell line[J]. Hum Cell, 2011, 24(4): 161-164.
30Frigato E, Lunghi L, Ferretti ME, et al. Evidence for circadian rhythms in human trophoblast cell line that persist in hypoxia[J]. Biochem Biophys Res Commun, 2009, 378(1): 108-111.
31Uchikawa M, Kawamura M, Yamauchi N, et al. Down-regulation of circadian clock gene period 2 in uterine endometrial stromal cells of pregnant rats during decidualization[J]. Chronobiol Int, 2011, 28(1): 1-9.
32Mateju K, Sumová A, Bendová Z. Expression and light sensitivity of clock genes Per1 and Per2 and immediate-early gene c-fos within the retina of early postnatal Wistar rats[J]. J Comp Neurol, 2010, 518(17): 3630-3644.
33Fox DA, Hamilton WR, Johnson JE, et al. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice[J]. Toxicol Appl Pharmacol, 2011, 256(3): 258-267.
34Chernysheva MP, Romanova IV, Mikhrina AL. Effect of retinol on interaction of the protein period1, oxytocin, and GABA at the prenatal period of formation of the circadian clock-mechanism in rats[J]. Zh Evol Biokhim Fizio, 2012, 48(5): 481-486.
35Ratajczak CK, Asada M, Allen GC, et al. Generation of myometrium-specific Bmal1 knockout mice for parturition analysis[J]. Reprod Fertil, 2012, 24(5): 759-767.
36Casey T, Patel O, Dykema K, et al. Molecular signatures reveal circadian clocks may orchestrate the homeorhetic response to lactation[J]. PLoS One, 2009, 4(10): e7395.
37Casey T, Zakrzewska EI, Maple RL, et al. Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks[J]. Biol Open, 2012, 1(6): 570-581.
38Plaut K, Casey T. Does the circadian system regulate lactation[J]. Animal, 2012, 6(3): 394-402.
39Casey T, Plaut K. Lactation Biology Symposium: circadian clocks as mediators of the homeorhetic response to lactation[J]. J Anim Sci, 2012, 90(3): 744-754.
40Mairesse J, Silletti V, Laloux C, et al. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats[J]. Int J Neuropsychopharmacol, 2013, 16(2): 323-338.
41Schlitt JM, Schulz LC. The source of leptin, but not leptin depletion in response to food restriction, changes during early pregnancy in mice[J]. Endocrine, 2012, 41(2): 227-235.
42Lavebratt C, Almgren M, Ekstr?m TJ. Epigenetic regulation in obesity[J]. Int J Obes (Lond), 2012, 36(6): 757-765.
43Sutton GM, Centanni AV, Butler AA. Protein malnutrition during pregnancy in C57BL/6J mice results in offspring with altered circadian physiology before obesity[J]. Endocrinology, 2010, 151(4): 1570-1580.
44Guan J, Ding Y, Liu Y, et al. Circadian effects on outcome following surgery for intracerebral hemorrhage in humans?[J]. Brain Res, 2009, 1258(1): 78-85.
Research progress of pregnancy chronobiology*
Fu Tian-ming1,2△, Shu Min-si1
(1.Longquanyi District of Chengdu Maternity and Child Health Care Hospital, Sichuan Chengdu 610100;2.Longquanyi District Prenatal Screening Center of Chengdu, Sichuan Chengdu 610100)
成都市衛(wèi)生局青年基金(編號(hào):2012008);成都市龍泉驛區(qū)科技局社會(huì)發(fā)展基金(2013);成都市龍泉驛區(qū)醫(yī)學(xué)會(huì)科學(xué)技術(shù)帶頭人培養(yǎng)對(duì)象專項(xiàng)基金(2016)
付天明,男,主治醫(yī)師,主要從事母胎醫(yī)學(xué)臨床研究,Email:chronoscience@163.com。
2016-8-2)