• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Absorption and Regeneration Performance of Novel Hybrid Solutions for CO2Capture

    2016-03-22 05:16:40GaoJieYinJunZhuFeifeiChenXinTongMingKangWanzhongZhouYanboLuJun
    中國(guó)煉油與石油化工 2016年1期

    Gao Jie; Yin Jun; Zhu Feifei; Chen Xin; Tong Ming; Kang Wanzhong; Zhou Yanbo; Lu Jun

    (1. Key Laboratory of Coal Gasi fi cation and Energy Chemical Engineering of Ministry of Education, East China University of Science & Technology, Shanghai 200237; 2. SINOPEC Ningbo Engineering Co., Ltd., Ningbo 315103)

    Study on Absorption and Regeneration Performance of Novel Hybrid Solutions for CO2Capture

    Gao Jie1; Yin Jun1; Zhu Feifei1; Chen Xin2; Tong Ming2; Kang Wanzhong2; Zhou Yanbo1; Lu Jun1

    (1. Key Laboratory of Coal Gasi fi cation and Energy Chemical Engineering of Ministry of Education, East China University of Science & Technology, Shanghai 200237; 2. SINOPEC Ningbo Engineering Co., Ltd., Ningbo 315103)

    Recently, a kind of hybrid solution MEA-methanol shows a better CO2capture performance over aqueous MEA solution. However, the vaporization of methanol is the biggest disadvantage that hinders its application, so it is necessary to minimize the vaporization of methanol during both the absorption and regeneration processes. In this work, two kinds of hybrid solutions were studied and compared with aqueous MEA solution and MEA-methanol solution, including MEA/TEA/methanol solution and MEA/glycerol/methanol solution. The absorption property of MEA/glycerol/methanol solution is better than aqueous MEA solution within a certain period of time and the absorption property of MEA/TEA/methanol solution is too poor to be used in CO2capture. By increasing the concentration of TEA and decreasing the concentration of MEA, the absorption rate, CO2capture ef fi ciency and absorption capacity all decreased. Upon adding glycerol, the cyclic capacity decreased and the generation temperature increased, and moreover, the density and viscosity also increased considerably. So after adding TEA and glycerol, the CO2capture performance of MEA-methanol solvent cannot be improved.

    CO2capture; MEA; methanol; glycerol; hybrid solvent

    1 Introduction

    Carbon capture and storage (CCS), speci fi cally the postcombustion capture (PCC) technologies, have been identi fi ed as a crucial and key strategy in the development and implementation of short to intermediate term carbon reduction strategies from coal-fired power generation[1]. A number of capture techniques have been demonstrated to successfully capture CO2using chemical absorption process. Absorption solvents can react with CO2to form carbamates, carbonates or hydrogen carbonates[2]. Once captured, the CO2is typically recovered by a reversal of the chemical reaction between amine and CO2, which is induced by a temperature increase, a reduction in pressure or both[3]. The use of aqueous solutions of amines is the most widespread technology in the gas treating process[4]. And a variety of solvents have been used in the CO2absorption process[5]. However, the conventional alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA),N-methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP) require very high regeneration energy cost. The regeneration energy of the aforementioned solvents is about 3.2—4.0 GJ/ton of CO2, which would decrease the generating efficiency of the fossil fuel-fired power plants[6]. Moreover, the aqueous MEA solution, which is widely used as a standard to evaluate the CO2absorption performance, has a low capacity and a high energy cost despite major improvements that have been made on the process side like lean vapor compression and intercooling[7-8]. So it is essential to find new efficient solvents, which are considered to have fast reaction kinetics, high absorption capacity, low regeneration energy, high stability and low corrosiveness to secure the economic feasibility of chemical absorption process[9].

    Numerous solvent systems aiming to address the underlying shortcomings with the absorption behavior and chemical robustness experienced with existing solvent systems have been proposed[10]. Blended amines such as MEA-MDEA, MEA-AMP, MEA-TEA, MEAPZ, AMP-PZ and MEA-MDEA[11-13], the newly developed amines such as 1-diethylamino-2-propanol (1DEA2P), 4-diethylamino-2-butanol (DEAB), diethylenetriamine (DETA), and inorganic solvents such as aqueous ammonia (NH3) and potassium carbonate (K2CO3) have been studied by many researchers[14-16]. One of the main benefits of these new solvents is that they combine the advantages of the fast kinetics of the primary amines and the high absorption capacity and low energy consumption for solvent regeneration of the tertiary amines, sterically hindered amines or inorganic solvents. However, the regeneration process of these solvents are carried out at elevated temperatures, typically over 373 K[16].

    Recently, hybrid solutions which are formed by blending chemical solvents and physical solvents have been proposed for CO2absorption such as aniline in ethanol, and 3-amino-1-propanol in methanol and ethanol. These studies showed that hybrid solutions have significant advantages over corresponding chemical solvents. Methanol is the most widely used physical solvent for CO2capture from natural gas and synthesis gas due to its high physical solubility of CO2and low heat consumption in the regeneration process and the hybrid of MEA and methanol has showed a better performance over aqueous MEA solutions. However, vaporization of methanol is the biggest disadvantage that hinders its application due to the high vapor pressure of methanol, so it is necessary to minimize the vaporization in the absorption and regeneration processes[17-18].

    In this work, triethanolamine (TEA) and glycerol were added into the MEA-methanol solution, respectively, to study their performance in minimizing the vaporization of methanol. Also the absorption performance, regeneration performance and physical performance of new hybrid solutions were studied in comparison with aqueous MEA solution and MEA-methanol solution to evaluate their performance for CO2capture.

    2 Experimental

    2.1 Materials

    CO2and N2gases with mole fractions of 0.999 and 0.999 were supplied by the Shanghai Shenkai Gas Company. Analytically pure grade MEA (with a purity>99.9%), TEA (with a purity>78%), glycerol (with a purity >98%) and methanol (with a purity >99%) were all used as purchased without further purification. The aqueous solution was prepared using distilled water.

    2.2 CO2absorption experiments

    A semi-batch absorption apparatus which was used to measure the absorption performance of different solutions is shown in Figure 1. This experimental apparatus consisted mainly of three parts: gas supply, absorption reactor and gas detection. Detailed operating conditions of different solvents are summarized in Table 1.

    Figure 1 Experimental apparatus for CO2absorption

    Table 1 Absorption operating parameters

    Firstly, the solution with a volume of 500 mL was put into the reactor at the desired temperature. Then the gas fl ow rates of N2and CO2gases were controlled by mass fl ow controllers before being remixed, while the total flow rate was controlled at 0.8 L/min. The flue gas was thenrouted through the by-pass tube and tested by the fl ue gas analyzer to maintain the CO2concentration at 15%. As the desired temperature of the reactor and concentration of CO2were achieved, the valve was opened to inject the flue gas into the reactor to start the absorption experiment. The fl ow rate of in fl uent gas and ef fl uent gas from the reactor, the pH value of the solution and the CO2concentration released from the reactor were measured and recorded. When the solution was saturated, the absorption process would be stopped. The CO2absorption rate was then determined from the difference between the flow rates of the influent and effluent gas based on the following formula:

    whereRVis the CO2mole absorption rate, the unit of which is mol/s, P is the atmospheric pressure,VinandVoutrepresent the volume fl ow rate of inlet gas and outlet gas, respectively, andTis the reaction temperature.

    whereYinandYoutare CO2concentration of inlet and outlet gas, respectively[19].

    2.3 CO2regeneration experiments

    In the course of thermal regeneration, the temperature of the oil bath was heated from room temperature to 140 ℃, which was then maintained at this level for all the solutions. A three-necked fl ask placed in the oil bath was fed with 500 mL of saturated solution. Two condensers were connected to the flask to minimize the evaporation loss of the solution. The temperature of the solution during the regeneration process was measured through a thermometer. The released gas was led to a bottle full of water to knock out the aqueous vapor before the outlet fl ow rate was measured. The temperature of the solution and the outlet gas, as well as the gas flow rate were measured and recorded every minute simultaneously.

    2.4 Density and viscosity

    Density and viscosity are very important factors in evaluating the performance of different solutions for CO2capture. The density of solutions was measured using a pycnometer. Before the density measurements, volume of the pycnometer was measured with distilled water. In each run, the pycnometer containing the solution was put in a water bath at the desired temperature. The density data are the average of three measurements.

    The viscosity of different solutions was measured with a Ukrainian-style viscometer. For each measurement, the viscometer was placed in a water bath to maintain the desired temperature. A sample was put into the viscometer and was allowed to fl ow through the capillary tube, while the time was measured by a stopwatch. Each viscosity data are the average of three measurements.

    3 Results and Discussions

    3.1 Absorption performance of novel hybrid solutions

    In order to evaluate the absorption performance of novel hybrid solutions (including 20% MEA/10 % TEA/ 70% methanol, 10% MEA/20 % TEA/ 70% methanol, and 30% MEA/30% glycerol/ 40% methanol), the 30 % MEA/70% H2O solution and the 30% MEA/70% methanol solution were also studied in a semi-batch absorption apparatus separately. Figure 2 shows the absorption rate (a), CO2capture efficiency (b), absorption capacity (c) and pH value (d) curves of different solutions. It can be observed that the initial absorption rate of all the hybrid solutions is higher than that of 30 % MEA aqueous solution which shows the advantage of hybrid solutions. As the reaction time increases, the absorption rates of all solutions decrease, while after about 125 min the absorption rate of 10% MEA/20% TEA/70% methanol decreases to 1×10-5mol/s; and after about 175 min the absorption rate of 20% MEA/10% TEA/70% methanol decreases to 1×10-5mol/s. However, a reaction duration of 230 min, 250 min and 280 min is needed for reducing the absorption rate of 30% MEA/70% methanol, 30% MEA/30% glycerol/40% methanol, and 30% MEA/70% H2O, respectively, to 1×10-5mol/s. So it can be known that with the increase of TEA concentration and the decrease of MEA concentration, the absorption rate decreases more quickly because the tertiary amine is unable to react with CO2in the absence of water[18]. And upon adding glycerol, the reaction time of the solution increases, but the absorption rate decreases compared to that of the MEA/methanol solution. Figure 2(b) shows the same tendency with absorption rate curve and it canbe seen that within 160 min, the capture efficiency of 30% MEA/30% glycerol/40% methanol is above 80%, which is perfect for CO2capture. Figure 2(c) shows that the absorption capacity of 30% MEA/30% glycerol/40% methanol is almost the same with 30% MEA/70% methanol, and the absorption capacity of MEA/TEA/methanol solvent is too low to be used in CO2capture. Also it can be seen from Figure 2(d) that a high pH value represents a high absorption rate.

    Figure 2 Changes in CO2absorption rate (a), CO2capture ef fi ciency (b), CO2absorption capacity (c), and pH value (d) of different solutions with reaction time

    Therefore, the absorption property of MEA/glycerol/methanol solution is better than aqueous MEA solution in a certain period of time and the absorption property of MEA/TEA/methanol solution is too poor to be used in CO2capture.

    3.2 Regeneration performance of novel hybrid solutions

    The regeneration temperature is directly associated with the energy required to regenerate solvents and is an important factor for selecting solvents[20]. Figure 3 shows the regeneration rates of different solvents changing with the different regeneration temperature. It can be observed that the regeneration rates increase with an increasing temperature, and the maximum regeneration rates of MEA/methanol,MEA/TEA/methanol, MEA/glycerol/methanol and MEA/H2O solutions are achieved at 60 ℃, 65 ℃, 70 ℃, and 100 ℃, respectively. Although the regeneration temperature can be increased by adding glycerol, still the regeneration temperature of MEA/glycerol/methanol is much lower than that of the aqueous MEA solution.

    Figure 3 CO2regeneration rates of different solvents changing with regeneration temperatures

    3.3 Cyclic absorption performance of novel hybrid solutions

    Because of the needs for repeated use of solvents in the industry, the cyclic absorption capacity becomes a very important factor in evaluating a solvent for the industrial use[21]. The CO2absorption capacity of the fresh solvents (first cycle), the solvents after being subject to regeneration once (second cycle), and solvents after being subject to regeneration twice (third cycle) was studied in this work, when these solvents were used in the absorption operation over the same reaction duration. The results are shown in Figure 4. It can be observed that after the second cycle, the absorption capacity of 20% MEA/10% TEA/70% methanol, 10% MEA/20% TEA/70% methanol, 30% MEA/30% glycerol/40% methanol, 30% MEA/70% H2O, and 30% MEA/70% methanol decreases by 0.278 7 mol CO2/mol amine, 0.045 4 mol CO2/mol amine, 0.429 5 mol CO2/mol amine, 0.358 5 mol CO2/mol amine, and 0.297 1 mol CO2/mol amine, respectively, as compared to that of the fresh solvents in the fi rst cycle. And after the third cycle, the absorption capacity decreases by 0.057 1 mol CO2/mol amine, 0.043 0 mol CO2/mol amine, 0.118 3 mol CO2/mol amine, 0.018 3 mol CO2/mol amine, and 0.020 0 mol CO2/mol amine, respectively, compared to that of solutions after the second cycle. Based on these data, we can know that TEA has a better cyclic absorption property than MEA and the cyclic absorption capacity decreases after adding glycerol.

    Figure 4 CO2cyclic absorption capacities of different solvents

    3.4 Density and viscosity

    The overall assessment of a solvent for CO2capture requires the knowledge of its physical properties. And the density and viscosity data are very important physical properties which are associated with the pumping energy cost of the circulating solvent in the absorptionregeneration system[22].

    The density and viscosity of lean and rich solutions composed of 30% MEA/70% H2O operating at 40 ℃, and 20% MEA/10% TEA/70% methanol, 10% MEA/20% TEA/70% methanol, 30% MEA/30% glycerol/40% methanol, and 30% MEA/70% methanol operating at 298 K were measured. The detailed results are shown in Table 2 and Figure 5 in order to compare these data more clearly. Based on these data, we can know that the rich solution of MEA/TEA/methanol has a relatively low density and viscosity resulting in its low CO2absorption capacity, while the rich MEA/glycerol/methanol solution has the highest density and viscosity which will consume a lot of energy.

    Table 2 Density and viscosity of different solvents

    Figure 5 Density and Viscosity of different solvents

    4 Conclusions

    The CO2absorption performance, regeneration performance, cyclic absorption performance and physical properties of novel hybrid solutions, including 20% MEA/10% TEA/70% methanol, 10% MEA/20% TEA/70% methanol and 30% MEA/30% glycerol/40% methanol were studied compared with 30 % MEA/70% H2O and 30 % MEA/70% methanol solvents. It was found that by increasing the concentration of TEA and decreasing the concentration of MEA, the absorption rate, CO2capture efficiency and absorption capacity all decreased. Upon adding glycerol, the cyclic capacity decreased and regeneration temperature increased, and moreover, the density and viscosity increased considerably. Judging from the overall experiments, it can be concluded that tertiary amines should not be used in non-aqueous solution and addition of glycerol cannot improve the performance of MEA-methanol solution and more studies are needed to minimize the methanol vaporization in the absorption and regeneration processes.

    Acknowledgement: This work was supported by the Sinopec Ningbo Engineering Co., Ltd. (No. 14850000-14-ZC0609-0003, H8XY-0032).

    [1] Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies [J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443

    [2] Wang M, Lawal A, Stephenson P. Post-combustion CO2capture with chemical absorption: a state-of-the-art review [J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624

    [3] Ludovic D, Colin S, Geoff S. Puri fi cation of aqueous amine solvents used in post combustion CO2capture: A review [J]. International Journal of Greenhouse Gas Control, 2012, 10: 443-455

    [4] Nathalie J M C, Penders-van E, Sylvie F. Effect of pKa on the kinetics of carbon dioxide absorption in aqueous alkanolamine solutions containing carbonic anhydrase at 298 K [J]. Chemical Engineering Journal, 2015, 259(1): 682-691

    [5] Marcin S, Adam T, Lucyna W. Pilot plant results for advanced CO2capture process using amine scrubbing at the Jaworzno power plant in Poland [J]. Fuel, 2015, 151(1): 50-56

    [6] Jeon S B, Cho S W, Lee S W. Absorption characteristics of carbon dioxide into an O/W emulsion absorbent containing N-methylcyclohexylamine/2,6-dimethylpiperidine [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2673-2680

    [7] Plaza J M, Chen E, Rochelle G T. Absorber intercooling in CO2absorption by piperazine-promoted potassium carbonate [J]. AIChE Journal, 2010, 56: 905-914

    [8] Hari P M, Hans, H. Pilot plant study of two new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to monoethanolamine [J]. Chemical Engineering Science, 2011, 66(22): 5512-5522

    [9] Kazuya G, Hiromichi O, Firoz A C. Development of novel solvents for CO2capture from blast furnace gas [J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1214-1219

    [10] William C, Yaser B, Gilles R. Rapid CO2absorption into aqueous benzylamine (BZA) solutions and its formulations with monoethanolamine (MEA), and 2-amino-2-methyl-1-propanol (AMP) as components for post combustion capture processes [J]. Chemical Engineering Journal, 2015, 264(15): 954-961

    [11] Puxty G, Rowland R. Modeling CO2mass transfer in amine mixtures: PZ-AMP and PZ-MDEA [J]. Environmental Science and Technology, 2011, 45: 2398-2405

    [12] Sema T, Naami A, Fu K. Comprehensive mass transfer and reaction kinetics studies of CO2absorption into aqueous solutions of blended MDEA-MEA [J]. ChemicalEngineering Journal, 2012, 209(15): 501-512

    [13] Sema T, Naami A, Fu K. Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2[J]. Chemical Engineering Science, 2013, 100(30): 183-194

    [14] Zhang X, Fu K, Liang Z. Experimental studies of regeneration heat duty for CO2desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing [J]. Fuel, 2014, 136(15): 261-267

    [15] Kim G H, Park S Y, You J K. CO2absorption kinetics in a CO2free and partially loaded aqueous ammonia solution [J]. Chemical Engineering Journal, 2014, 250(15): 83-90

    [16] Zhao B T, Su Y X, Tao W W. Post-combustion CO2capture by aqueous ammonia: a state-of-the-art review [J]. International Journal of Greenhouse Gas Control, 2012, 9: 355-371

    [17] Fu K Y, Wong W R, Liang Z W. Experimental analyses of mass transfer and heat transfer of post-combustion CO2absorption using hybrid solvent MEA-MeOH in an absorber [J]. Chemical Engineering Journal, 2015, 260(15): 11-19

    [18] Barzagli F, Lai S, Mani F. Novel non-aqueous amine solvents for reversible CO2capture [J]. Energy Procedia, 2014, 63: 1795-1804

    [19] Chen H Y, Chuang S T. Mixed alkanolamines with low regeneration energy for CO2capture in a rotating packed bed [J]. Energy Procedia, 2013, 37: 455-460

    [20] Kim Y E, Moon S J, Yoon I Y. Heat of absorption and absorption capacity of CO2in aqueous solutions of amine containing multiple amino groups [J]. Separation and Puri fi cation Technology, 2014, 122(10): 112-118

    [21] Zhang J F, Misch R, Tan Y. Novel thermomorphic biphasic amine solvents for CO2absorption and low-temperature extractive regeneration [J]. Chemical and Engineering Technology, 2011, 9: 1481-1489

    [22] Muraleedlharan R, Mondal A, Mandal B. Absorption of carbon dioxide into aqueous blends of 2-amino-2-hydroxymethyl-1,3-propanediol and monoethanolamine [J]. Separation and Puri fi cation Technology, 2012, 94(19): 92-96

    Received date: 2015-10-14; Accepted date: 2015-11-25.

    Prof. Lu Jun, Telephone: +86-021-64252443, Fax: +86-021-64252737; E-mail: lujun@ecust.edu.cn.

    精华霜和精华液先用哪个| 日韩欧美 国产精品| 成人一区二区视频在线观看| 国产成人a∨麻豆精品| 免费观看a级毛片全部| 免费看a级黄色片| 国产三级中文精品| 欧美+亚洲+日韩+国产| 亚洲精品成人久久久久久| 亚洲国产欧美人成| 美女 人体艺术 gogo| 男女那种视频在线观看| 亚洲图色成人| 精华霜和精华液先用哪个| 夜夜看夜夜爽夜夜摸| 中国美白少妇内射xxxbb| 天堂影院成人在线观看| 极品教师在线视频| 国产91av在线免费观看| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影小说 | 国产精品,欧美在线| 日日摸夜夜添夜夜爱| 欧美3d第一页| 欧美激情久久久久久爽电影| 久久亚洲精品不卡| 亚洲精品国产av成人精品| 别揉我奶头 嗯啊视频| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 我要搜黄色片| 久久久久网色| 18+在线观看网站| 欧美精品一区二区大全| 床上黄色一级片| 99在线视频只有这里精品首页| 久久久久久久亚洲中文字幕| av天堂中文字幕网| 中文资源天堂在线| 亚洲av免费在线观看| 国产极品精品免费视频能看的| 国产成人精品久久久久久| 精品熟女少妇av免费看| 免费无遮挡裸体视频| 国产精品乱码一区二三区的特点| 成人美女网站在线观看视频| 国产 一区 欧美 日韩| 精品久久久噜噜| 国产伦在线观看视频一区| 午夜福利在线在线| 日本爱情动作片www.在线观看| 色视频www国产| 中国美白少妇内射xxxbb| 只有这里有精品99| 亚洲av一区综合| 啦啦啦啦在线视频资源| 成年版毛片免费区| 精品国产三级普通话版| 丝袜美腿在线中文| 亚洲图色成人| 全区人妻精品视频| 亚洲18禁久久av| 日韩亚洲欧美综合| 日韩大尺度精品在线看网址| 久久精品人妻少妇| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 亚洲七黄色美女视频| 中出人妻视频一区二区| 欧美日韩综合久久久久久| 久久精品国产清高在天天线| 麻豆国产av国片精品| 美女被艹到高潮喷水动态| 日韩人妻高清精品专区| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 日韩欧美三级三区| 亚洲国产色片| 亚洲国产日韩欧美精品在线观看| 男人舔女人下体高潮全视频| 亚洲精品国产av成人精品| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 国产成人福利小说| 国产精品一二三区在线看| 成人永久免费在线观看视频| 国产伦精品一区二区三区视频9| 亚洲婷婷狠狠爱综合网| 黄色欧美视频在线观看| 男人舔奶头视频| 青春草亚洲视频在线观看| 久久精品久久久久久久性| 一个人看视频在线观看www免费| www日本黄色视频网| 免费搜索国产男女视频| 日韩欧美国产在线观看| 欧美一区二区精品小视频在线| 久久精品综合一区二区三区| 免费看日本二区| 国产精品国产高清国产av| 婷婷六月久久综合丁香| 久久久久网色| 不卡视频在线观看欧美| 国产高清激情床上av| 国产成人影院久久av| 99热这里只有是精品50| 日韩av不卡免费在线播放| 国产精品国产三级国产av玫瑰| 22中文网久久字幕| 国产精品一区二区性色av| 欧美人与善性xxx| 国产伦在线观看视频一区| 久久久欧美国产精品| 午夜精品一区二区三区免费看| 欧美日韩国产亚洲二区| 日本成人三级电影网站| 国产一区二区三区av在线 | 国内精品久久久久精免费| 天天躁夜夜躁狠狠久久av| 中国国产av一级| 久久草成人影院| 黄色日韩在线| 亚洲国产欧美在线一区| 18禁在线无遮挡免费观看视频| 国产色爽女视频免费观看| 22中文网久久字幕| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 91午夜精品亚洲一区二区三区| 国产精品女同一区二区软件| 亚洲人成网站在线播| 亚洲人成网站在线播放欧美日韩| 国产成人福利小说| 老司机福利观看| 插逼视频在线观看| 嫩草影院精品99| 亚洲av不卡在线观看| 成人亚洲欧美一区二区av| 99在线人妻在线中文字幕| 夜夜夜夜夜久久久久| 伦理电影大哥的女人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久九九国产精品国产免费| 日韩精品有码人妻一区| 成人av在线播放网站| av在线亚洲专区| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 看十八女毛片水多多多| 色哟哟·www| 婷婷色av中文字幕| 欧美三级亚洲精品| 免费观看人在逋| av黄色大香蕉| 亚洲欧美精品专区久久| 99riav亚洲国产免费| 国产精品电影一区二区三区| 五月伊人婷婷丁香| 可以在线观看的亚洲视频| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 久久久久网色| 国产探花极品一区二区| 亚洲av成人av| 精品日产1卡2卡| 在线观看免费视频日本深夜| 狂野欧美激情性xxxx在线观看| 一级av片app| 网址你懂的国产日韩在线| 在线免费观看的www视频| 亚洲人与动物交配视频| 国产精品1区2区在线观看.| 亚洲内射少妇av| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 欧美激情在线99| 久久久精品大字幕| 色噜噜av男人的天堂激情| 给我免费播放毛片高清在线观看| 久久久欧美国产精品| 久久亚洲精品不卡| 午夜激情福利司机影院| 在线a可以看的网站| 亚洲内射少妇av| 日韩一区二区三区影片| 高清午夜精品一区二区三区 | 尾随美女入室| 最好的美女福利视频网| 男人的好看免费观看在线视频| 一级毛片久久久久久久久女| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 欧美性猛交黑人性爽| 国产美女午夜福利| 久久这里有精品视频免费| 日本-黄色视频高清免费观看| 亚洲美女视频黄频| 两个人视频免费观看高清| 国产单亲对白刺激| 91精品一卡2卡3卡4卡| 欧美人与善性xxx| 欧美最新免费一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 高清毛片免费观看视频网站| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 美女被艹到高潮喷水动态| 插逼视频在线观看| 我的女老师完整版在线观看| 一边摸一边抽搐一进一小说| 欧美高清性xxxxhd video| www.av在线官网国产| www日本黄色视频网| 国产老妇伦熟女老妇高清| 国产成人freesex在线| 日韩三级伦理在线观看| 欧美另类亚洲清纯唯美| 自拍偷自拍亚洲精品老妇| 亚洲va在线va天堂va国产| 亚洲成av人片在线播放无| 日日撸夜夜添| 男人狂女人下面高潮的视频| 免费观看在线日韩| 性插视频无遮挡在线免费观看| 午夜视频国产福利| 国产精品,欧美在线| 性欧美人与动物交配| 日本黄色视频三级网站网址| 卡戴珊不雅视频在线播放| av专区在线播放| 国产精品av视频在线免费观看| 久久人人爽人人片av| 高清午夜精品一区二区三区 | 变态另类成人亚洲欧美熟女| 亚洲七黄色美女视频| 美女被艹到高潮喷水动态| 草草在线视频免费看| 精品无人区乱码1区二区| 女同久久另类99精品国产91| 听说在线观看完整版免费高清| 国产精品久久视频播放| 国产精品不卡视频一区二区| 99热只有精品国产| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 一本一本综合久久| 精品不卡国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 国产成人91sexporn| 日本黄色片子视频| 2022亚洲国产成人精品| 国产黄色视频一区二区在线观看 | 我的女老师完整版在线观看| 精品久久久久久成人av| 人人妻人人澡欧美一区二区| 最近2019中文字幕mv第一页| 1000部很黄的大片| 日本欧美国产在线视频| 女同久久另类99精品国产91| 精品久久久久久久末码| 91精品一卡2卡3卡4卡| avwww免费| 日本欧美国产在线视频| 精品久久久久久久久久久久久| 亚洲国产欧美人成| 日韩 亚洲 欧美在线| 精品久久久久久久人妻蜜臀av| 五月伊人婷婷丁香| 日韩欧美精品免费久久| 成人美女网站在线观看视频| 久久人人精品亚洲av| 国产成人影院久久av| 久久久欧美国产精品| 国产三级在线视频| 免费大片18禁| 久久精品国产亚洲av天美| 成人毛片a级毛片在线播放| av又黄又爽大尺度在线免费看 | 69人妻影院| 尤物成人国产欧美一区二区三区| 日本黄大片高清| 国产蜜桃级精品一区二区三区| 免费观看人在逋| 亚洲国产精品久久男人天堂| 两个人的视频大全免费| 中国国产av一级| 男人狂女人下面高潮的视频| 尾随美女入室| 免费观看a级毛片全部| 亚洲五月天丁香| 国产亚洲av片在线观看秒播厂 | 精品久久久久久久末码| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看 | 欧美性猛交黑人性爽| 成年免费大片在线观看| 国产精品不卡视频一区二区| 成人三级黄色视频| 性插视频无遮挡在线免费观看| 欧美日本视频| 青春草亚洲视频在线观看| 午夜精品一区二区三区免费看| 热99在线观看视频| 特大巨黑吊av在线直播| 国产不卡一卡二| 麻豆乱淫一区二区| 在线观看av片永久免费下载| 国产黄色视频一区二区在线观看 | 亚洲av.av天堂| 亚洲欧美精品综合久久99| 国产高潮美女av| 日韩高清综合在线| 在线观看免费视频日本深夜| 精品久久久久久久末码| 不卡视频在线观看欧美| 校园人妻丝袜中文字幕| 内射极品少妇av片p| 久久精品综合一区二区三区| 联通29元200g的流量卡| 久久精品影院6| 亚洲不卡免费看| 亚洲自拍偷在线| 一夜夜www| 亚洲无线观看免费| 国产精品女同一区二区软件| 97超碰精品成人国产| av免费在线看不卡| 亚洲av成人精品一区久久| 热99在线观看视频| 人妻久久中文字幕网| 边亲边吃奶的免费视频| 亚洲欧美中文字幕日韩二区| 国产女主播在线喷水免费视频网站 | 欧美bdsm另类| 人妻系列 视频| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 国产精品久久久久久久电影| 国产成人a∨麻豆精品| 特级一级黄色大片| 亚洲七黄色美女视频| 中国美白少妇内射xxxbb| 成年女人永久免费观看视频| 国产在线男女| 国产精品精品国产色婷婷| 99精品在免费线老司机午夜| 久久人人爽人人爽人人片va| 成人一区二区视频在线观看| 一边亲一边摸免费视频| 成人美女网站在线观看视频| 国产亚洲91精品色在线| 天堂av国产一区二区熟女人妻| 亚洲国产欧美在线一区| 黄色欧美视频在线观看| 97在线视频观看| 联通29元200g的流量卡| 99在线人妻在线中文字幕| 99热精品在线国产| 国产成人精品婷婷| 中文字幕久久专区| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 亚洲国产欧美在线一区| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 日韩大尺度精品在线看网址| 久久人人爽人人爽人人片va| 亚洲丝袜综合中文字幕| 日韩强制内射视频| 亚洲欧美成人精品一区二区| 日本av手机在线免费观看| 欧美+日韩+精品| 美女xxoo啪啪120秒动态图| 18+在线观看网站| 乱人视频在线观看| 中国美白少妇内射xxxbb| or卡值多少钱| 成人永久免费在线观看视频| 亚洲欧美日韩卡通动漫| 白带黄色成豆腐渣| 亚洲婷婷狠狠爱综合网| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看| 人体艺术视频欧美日本| 午夜精品在线福利| 国内精品美女久久久久久| 一本久久中文字幕| 身体一侧抽搐| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 一区二区三区免费毛片| 国内精品美女久久久久久| 日本欧美国产在线视频| 两个人的视频大全免费| 免费在线观看成人毛片| 神马国产精品三级电影在线观看| 日韩一区二区三区影片| 国产 一区精品| 午夜福利成人在线免费观看| 国产高清激情床上av| 亚洲图色成人| 亚洲国产欧洲综合997久久,| 成人综合一区亚洲| 精品一区二区免费观看| 免费观看a级毛片全部| 18禁裸乳无遮挡免费网站照片| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 秋霞在线观看毛片| 免费观看在线日韩| 91久久精品国产一区二区三区| 欧美高清性xxxxhd video| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 久久久久久伊人网av| 熟女人妻精品中文字幕| 中文资源天堂在线| 久久这里只有精品中国| 久久午夜亚洲精品久久| 如何舔出高潮| 日本黄大片高清| 精品久久久久久久末码| 天堂av国产一区二区熟女人妻| 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有是精品在线观看| 精品熟女少妇av免费看| 91在线精品国自产拍蜜月| 亚洲第一电影网av| 免费观看a级毛片全部| 久久国内精品自在自线图片| 国产在线精品亚洲第一网站| 九九久久精品国产亚洲av麻豆| 精品久久久久久成人av| 神马国产精品三级电影在线观看| 老司机影院成人| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 国产成人a区在线观看| 中文欧美无线码| 一级毛片我不卡| 亚洲成人av在线免费| 国产伦精品一区二区三区四那| av在线观看视频网站免费| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 国产三级在线视频| 午夜福利视频1000在线观看| 免费av观看视频| 久久久久久久久久黄片| 午夜激情欧美在线| h日本视频在线播放| 免费观看人在逋| av专区在线播放| 男人舔奶头视频| 国产亚洲精品久久久com| 精品久久久久久久久久免费视频| 国产高潮美女av| 国产精品一及| 欧美成人一区二区免费高清观看| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区三区四区免费观看| or卡值多少钱| 国产黄片美女视频| 丝袜美腿在线中文| 黄色配什么色好看| a级毛片a级免费在线| 最近最新中文字幕大全电影3| 欧美日本亚洲视频在线播放| 亚洲精品国产成人久久av| 极品教师在线视频| 国产精品一区二区在线观看99 | 一级av片app| 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 国产白丝娇喘喷水9色精品| 青青草视频在线视频观看| 啦啦啦韩国在线观看视频| 亚洲综合色惰| 成人二区视频| 国产精品一区二区性色av| 中文字幕精品亚洲无线码一区| 精品久久久久久久久亚洲| 99久久成人亚洲精品观看| 亚洲av成人av| 久久久久久久久久成人| 久久久精品欧美日韩精品| a级一级毛片免费在线观看| 99久久中文字幕三级久久日本| 久久99热6这里只有精品| 悠悠久久av| 久久6这里有精品| 亚洲最大成人中文| 少妇裸体淫交视频免费看高清| 麻豆成人av视频| 国产精品爽爽va在线观看网站| 又爽又黄a免费视频| 久久国产乱子免费精品| 在线免费十八禁| 一级黄色大片毛片| 丝袜美腿在线中文| 国产午夜精品论理片| 哪里可以看免费的av片| 日韩欧美国产在线观看| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 日本黄大片高清| 99riav亚洲国产免费| 亚洲最大成人中文| 欧美性感艳星| 麻豆一二三区av精品| 亚洲欧洲日产国产| 又黄又爽又刺激的免费视频.| 亚洲成人精品中文字幕电影| 精品一区二区三区视频在线| 黄色日韩在线| 一本久久精品| 高清午夜精品一区二区三区 | 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 国产色爽女视频免费观看| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 国产av在哪里看| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 性色avwww在线观看| 美女脱内裤让男人舔精品视频 | 一级av片app| 亚洲中文字幕日韩| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 嫩草影院新地址| 在线播放无遮挡| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验 | 日韩视频在线欧美| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲综合色惰| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 如何舔出高潮| 亚洲成人中文字幕在线播放| 久久久久性生活片| 久久精品国产自在天天线| 极品教师在线视频| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 亚洲av中文av极速乱| 三级毛片av免费| 此物有八面人人有两片| 麻豆乱淫一区二区| av免费观看日本| 亚洲欧美日韩高清在线视频| 国产黄色小视频在线观看| 三级国产精品欧美在线观看| 亚洲人成网站在线播| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 午夜激情欧美在线| 免费电影在线观看免费观看| 中国美白少妇内射xxxbb| 禁无遮挡网站| 久久国产乱子免费精品| 成人欧美大片| 天天躁日日操中文字幕| 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 中国国产av一级| 午夜福利在线观看免费完整高清在 | 亚洲色图av天堂| 熟女人妻精品中文字幕| 人人妻人人澡欧美一区二区| 一卡2卡三卡四卡精品乱码亚洲| 99热网站在线观看| 91精品国产九色| 国产精品野战在线观看| 少妇的逼好多水| 亚洲天堂国产精品一区在线| 亚洲精品色激情综合| 国产精品野战在线观看| 91在线精品国自产拍蜜月| 插逼视频在线观看| 夜夜爽天天搞| 国产成人精品久久久久久| 国产麻豆成人av免费视频| 蜜臀久久99精品久久宅男| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产三级国产av玫瑰| 国产欧美日韩精品一区二区| 国产黄色小视频在线观看| 一级黄色大片毛片| 人妻少妇偷人精品九色| av国产免费在线观看| 国产综合懂色| 亚洲无线在线观看| 伦理电影大哥的女人| 午夜精品在线福利| 亚洲乱码一区二区免费版| 欧美高清性xxxxhd video| 亚洲18禁久久av| 欧美日韩国产亚洲二区| 18禁在线无遮挡免费观看视频| 国产爱豆传媒在线观看| 亚洲精品456在线播放app| 99热网站在线观看| 国产成人午夜福利电影在线观看| 岛国在线免费视频观看|