• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linkage of Aromatic Ring Structures in Saturates, Aromatics, Resins and Asphaltenes Fractions of Vacuum Residues Determined by Collision-Induced Dissociation Technology

    2016-03-22 05:16:38
    中國(guó)煉油與石油化工 2016年1期

    (SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    Linkage of Aromatic Ring Structures in Saturates, Aromatics, Resins and Asphaltenes Fractions of Vacuum Residues Determined by Collision-Induced Dissociation Technology

    Wang Wei; Liu Yingrong; Liu Zelong; Hou Huandi; Tian Songbai

    (SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    The linkage of aromatic ring structures in vacuum residues was important for the re fi ning process. The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with collision-induced dissociation (CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions (SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a signi fi cant amount of archipelago-type structures.

    FT-ICR MS; vacuum residues; SARA; collision-induced dissociation (CID)

    1 Introduction

    Heavy oils have been widely applied in the re fi ning process, and it is necessary to have a better comprehension of detailed chemical structure information on heavy oils. Vacuum residues with boiling points higher than 540 ℃ are considered as the heaviest fractions of crude oils. Typically, vacuum residues are separated into saturates, aromatics, resins and asphaltenes (SARA) fractions according to their solubility and polarity. The SARA fractions are measured by elemental analysis, IR, and NMR, resulting in the general information about their chemical compositions.

    The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been used in the analysis of vacuum residues[1-14]. Thousands of peaks can be obtained in the mass spectra and most of the peaks can be assigned with a given chemical formula by the ultra-high mass power resolution and mass accuracy of FT-ICR MS[15-16]. The structural differences of SARA fractions in crude oils have also been studied by FT-ICR MS[17-19]. Typically, the double-bond equivalence (DBE) distribution and the carbon number distribution are used to describe the different composition of the fractions. However, the DBE distribution could not be used to distinguish the different types of aromatic structures, such as the island and archipelago structures.

    Several analytical methods were developed to investigate the detailed structures of asphaltene fractions, including the laser-induced acoustic desorption/electron ionization (LIAD/EI)[20]and the thin fi lm pyrolysis[21]. The collisioninduced dissociation (CID) combined with mass spectrometry was a powerful tool for determining the structure of organic molecules[22-23]. The structures of several compounds obtained from the SARA fractions of bitumen were identified by the low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS)[24]. The CID technique combined with FT-ICR MS was also applied in the measurement of vacuum gas oil[25](VGO) and vacuum residue[26](VR). Dealkylation of single-core structures[25]and cracking of the linkage of multi-core structures[26]were observed in the petroleum samples, revealing the structural information of petroleum molecules. The CID technique was further used to investigate the molecular structures of basic nitrogen compounds inasphaltene[27]. However, the differences of the aromatic structures in SARA fractions have not been discussed with respect to vacuum residues.

    In this work, several model compounds and the SARA fractions of vacuum residues were characterized by CID FT-ICR MS. The collision energy was carefully tuned by the change of the collision voltage. The model compounds with the island- and archipelago-type structures behaved differently when the collision voltage increased. Then, the corresponding CID behavior of SARA fractions of vacuum residues can be used to distinguish the different aromatic structures.

    2 Experimental

    2.1 Model compounds

    Several model compounds are listed in Table 1. The structures of compounds 1 and 2 were of the island-type, while the structures of compounds 3 and 4 were of the archipelago-type. Compound 5 was a polystyrene with an average molecular weight of 972 Da, which also belonged to an archipelago-type structure. Compounds 1 to 4 were synthesized and the model compound 5 was purchased from the Sigma-Aldrich Corporation.

    Table 1 Model compounds with island- and archipelagotype structures

    2.2 Mass spectrometry analysis

    Two vacuum residues (VR-1 and VR-2, as shown in Table 2) were separated into SARA fractions by liquid column chromatograph according to ASTM method D4124-97. The SARA fractions were dissolved in the HPLC-grade toluene (Dikma Corp.) at a concentration of 1.0 mg/mL. The prepared samples were injected into FT-ICR MS at a rate of 360 μL/h by a syringe pump (Hamilton Corp.). Analyses were conducted on a 9.4 T Bruker Apex FT-ICR MS. The positive mode atmospheric pressure photo ionization (APPI) was used as the ionization source. Nitrogen served as the drying gas and nebulizing gas. The drying gas fl ow rate was 4.0 L/min at a temperature of 200 ℃. The nebulizing gas fl ow rate was 1.0 L/min and the APPI temperature was 400 ℃. The collision gas was helium. Them/zranges of the SARA fractions were from 300 Da to 1200 Da. The CID experiments were operated by tuning the collision voltage from 0V to -42V for the model compounds and SARA fractions of vacuum residues.

    Table 2 Bulk properties of the vacuum residues

    2.3 Mass calibration and data analysis

    The spectra obtained by APPI FT-ICR MS were internally calibrated by Tuning Mix (Agilent Corp.). The peaks with a relative abundance greater than six standard deviations of baseline RMS noise (6σ) were selected for the data analysis. Chemical formulas (CcHhNnOoSs) were calculated according to them/zvalues within ±1 ×10-6.

    3 Results and Discussion

    3.1 CID behavior of model compounds

    The CID mass spectra of model compounds 1 to 5 at different collision voltages are illustrated in Figures 1—5. As regards compounds 1 and 2 with the island-type structures, only the cracking of side-chains was observedwhen the collision voltage was higher than -18 V. As a result, the DBE of the fragment ions were the same as the parent ions. However, for the archipelago-type compound 3, both the rearrangement of the aromatic rings and the cracking of the bridged linkage took place when the collision voltages were above -18 V. The breaking of the bridged linkage in compound 3 resulted in a significant reduction of DBE, from 20 for the parent ion to 10 for the fragment ion. Compound 4 behaved similarly with compound 3 under CID conditions, but breaking of the linkage became more dominant in compound 4 as it had a C2-linkage which was longer and softer than the C1-linkage in compound 3.

    Unlike compounds 1 to 4, the compound 5 was a polymer which gave a series of parent ions in the mass spectra. The distribution of the parent ions shifted to the low molecular weight direction when the collision voltage increased from 0 V to -18 V. The average DBE of compound 5 also reduced a lot when the collision voltage increased, because the central peaks changed fromn=10 ton=8. The much lower collision voltage required for breaking the structure of compound 5 may be ascribed to the larger molecular weight and longer linkage in compound 5, which was more sensitive to the collision voltage[28]. This explanation could also be supported by the dramatic reduction of the ion peaks which contained more repeating units, such asn=10 to 14. Moreover, some of the fragment ions of compound 5 were not detected.

    Figure 1 APPI FT-ICR MS spectra of model compound 1 at different collision voltages and the suggested mechanism for the generation of fragment ions

    Figure 2 APPI FT-ICR MS spectra of model compound 2 at different collision voltages and the suggested mechanism for the generation of fragment ions

    Figure 3 APPI FT-ICR MS spectra of model compound 3 at different collision voltages and the suggested mechanism for the generation of fragment ions

    One of the possible reasons was that these fragment ions of polystyrene would be much smaller than the parent ions[29-30]and they could hardly transmit the ion tunnels in FT-ICR MS.3.2 CID behavior of SARA fractions of vacuum residues

    Figure 4 APPI FT-ICR MS spectra of model compound 4 at different collision voltages and the suggested mechanism for the generation of fragment ions

    Figure 5 APPI FT-ICR MS spectra of model compound 5 at different collision voltages. The peaks marked with stars were considered as impurities

    Figure 6 APPI FT-ICR MS spectra of SARA fractions of VR-2: (a) saturates, (b) aromatics, (c) resins, and (d) asphaltenes at different collision voltages

    The SARA fractions of VR-1 and VR-2 were characterized by CID APPI FT-ICR MS. The CID mass spectra of SARA fractions of VR-2 are illustrated in Figure 6. Theoretically, the saturated hydrocarbons could not besufficiently ionized in APPI source[31]. However, strong signals were still detected in the saturates fractions. Detailed analysis according to the exact molecular weight of saturates fractions indicated the existence of aromatic hydrocarbons with low DBE and long side chains, such as C56H106(DBE=4) and C60H108(DBE=7). These kinds of aromatic hydrocarbons had similar polarity with the saturated hydrocarbons, which could not be fully removed from the saturated fractions in the course of separation.

    It was also noted that the CID behavior of the SARA fractions was close to that of the model compound 5. Signi ficant reduction of the molecular weight distribution was observed for each fraction when the collision voltage was below -18V. The reason was attributed to the large molecular size of the petroleum molecules.

    Figure 7 The average DBE of SARA fractions of VR-1 (a) and VR-2 (b) versus collision voltage

    The average DBE of the aromatic hydrocarbons in SARA fractions of VR-1 and VR-2 versus collision voltage are shown in Figure 7. It can be seen clearly that the average DBE increased from saturates fractions to asphaltenes fractions, which was consistent with the polarity of the SARA fractions. Moreover, the average DBE of saturates and aromatics fractions remained unchanged while that of resins and asphaltenes fractions reduced with the increase of collision voltage. The CID behavior of saturates/ aromatics fractions fi tted well with that of compounds 1 and 2 having the island-type structures. Meanwhile, the similar results of resins/asphaltenes fractions compared with model compounds 3—5 strongly indicated the existence of archipelago-type structures. As a result, the average molecular structures of the SARA fractions in VR-1 and VR-2 are suggested in Figure 8. The differences between the saturates/aromatics fractions and the resins/ asphaltenes fractions were not only in the DBE value but also in the linkage of the aromatic rings.

    Figure 8 The suggested average structures of SARA fractions according to CID results

    4 Conclusions

    This study applied the CID technology coupled with the FT-ICR MS to determine the aromatic ring structure of vacuum residues. For model compounds with the islandtype structures, only the cracking of side chains was observed, with the aromatic ring structures unchanged. However, for the archipelago-type model compounds, the breaking down of the linkage chains generated different aromatic ring structures. As a result, the CID mass spectra could be used to distinguish the diversity of aromatic compounds in vacuum residues. The average DBE of saturates and aromatics fractions remained almost unchanged, while that of resins and asphaltenes fractionsreduced with an increasing collision voltage. These results proved that most aromatic compounds in saturates/aromatics fractions were of the island-type structures and some aromatic compounds in resins/asphaltenes should be of the archipelago-type structures. This work reveals that the CID technique combined with FT-ICR MS is a hopeful way to obtain more compositional information about the petroleum samples, which is valuable for the re fi ning process of heavy oils.

    Acknowledgements: This work was supported by the Major State Basic Research Development Program of China (973 Program, No. 2012CB224801).

    [1] Comisarow M B, Marshall A G. Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy[J]. Chem Phys Lett, 1974, 26(4): 489-490

    [2] Wang Wei, Liu Yingrong, Liu Zelong, et al. Quantitative analysis using Fourier transform ion cyclotron resonance mass spectrometry and correlation between mass spectrometry data and sulfur content of crude oils[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(4): 71-80

    [3] Qian K, Rodgers R P, Hendrickson C L, et al. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil[J]. Energy Fuels, 2001, 15(2): 492-498

    [4] Qian K, Robbins W K, Hughey C A, et al. Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2001, 15(6): 1505-1511

    [5] Chen Xiaobo, Li Teng, Liu Yibin, et al. Characterization of nitrogen compounds in vacuum residue and their structure comparison with coker gas oil[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(3): 33-41

    [6] Schaub T M, Rodgers R P, Marshall A G. Speciation of aromatic compounds in petroleum refinery streams by continuous flow field desorption ionization FT-ICR mass spectrometry[J]. Energy Fuels, 2005, 19(4): 1566-1573

    [7] Liu Yingrong; Zhang Qundan; Wang Wei; et al. Changes of petroleum acid distribution characterized by FT-ICR MS in heavy acidic crude oil after true boiling point distillation[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(1): 8-12

    [8] Wang Xiaowei, Long Jun, Tian Songbai, et al. Study on side chains of aromatics in Tahe vacuum gas oil[J]. Petroleum Processing and Petrochemicals, 2015, 46(5): 1-6 (in Chinese)

    [9] Wang Naixin, Liu Zelong, Zhu Xinyi, et al. Boiling range distributions of hydrocarbon molecular compositions in diesel by gas chromatography-time of fl ight mass spectrometry[J]. Petroleum Processing and Petrochemicals, 2015, 46(1): 89-95 (in Chinese)

    [10] Panda S K, Schrader W, al-Hajjj A, et al. Distribution of polycyclic aromatic sulfur heterocycles in three Saudi Arabian crude oils as determined by Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2007, 21(2): 1071-1077

    [11] Purcell J M, Juyal P, Kim D, et al, Hendrickson C L, Marshall A G. Sulfur speciation in petroleum: Atmospheric pressure photoionization or chemical derivatization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2007, 21(5): 2869-2874

    [12] Shi Q, Zhao S, Xu Z, et al. Distribution of acids and neutral nitrogen compounds in a Chinese crude oil and its fractions: Characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2010, 24(7): 4005-4011

    [13] Zhang L, Xu Z, Shi Q, et al. Molecular characterization of polar heteroatom species in Venezuela Orinoco petroleum vacuum residue and its supercritical fl uid extraction subfractions[J]. Energy Fuels, 2012, 26(9): 5795-5803

    [14] Gaspar A, Zellermann E, Lababidi S, et al. Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry[J]. Anal Chem, 2012, 84(12): 5257-5267

    [15] Marshall A G, Hendrickson C L, Jackson G S. Fourier transform ion cyclotron resonance mass spectrometry: A primer[J]. Mass Spectrom Rev, 1998, 17(1): 1-35

    [16] Marshall A G, Hendrickson C L. Fourier transform ion cyclotron resonance detection: Principles and experimental configurations[J]. Int J Mass Spectrom, 2002, 215(1-3): 59-75

    [17] Cho Y, Kim Y H, Kim S. Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenesfractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry[J]. Anal Chem, 2011, 83(15): 6068-6073

    [18] Cho Y, Na J G, Nho N S, et al. Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization[J]. Energy Fuels, 2012, 26(5): 2558-2565

    [19] Gaspar A, Zellermann E, Lababidi S, et al. Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2012, 26(6): 3481-3487

    [20] Borton II D, Pinkston D S, Hurt M R, et al. Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry[J]. Energy Fuels, 2010, 24(10): 5548-5559

    [21] Karimi A, Qian K, Olmstead W N, et al. Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis[J]. Energy Fuels, 2011, 25(8): 3581-3589

    [22] Chawla R, Shukla A, Futrell J. Collision-induced dissociation of nitrobenzene molecular cations at low energies by crossed-beam tandem mass spectrometry[J]. J Phys Chem A, 2001, 105(2): 349-353

    [23] Muntean F, Armentrout P B. Modeling kinetic shifts and competition in threshold collision-induced dissociation. Case study: n-Butylbenzene cation dissociation[J]. J Phys Chem A, 2003, 107(38): 7413-7422

    [24] Tachon N, Jahouh F, Delmas M, et al. Structural determination by atmospheric pressure photoionization tandem mass spectrometry of some compounds isolated from the SARA fractions obtained from bitumen[J]. Rapid Commun Mass Spectrom, 2011, 25(18): 2657-2671

    [25] Zhang L, Hou Z, Horton S R, et al. Molecular representation of petroleum vacuum resid[J]. Energy Fuels, 2014, 28(3): 1736-1749

    [26] Qian K, Edwards K E, Mennito A S, et al. Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry[J]. Anal Chem, 2012, 84(10): 4544-4551

    [27] Mullins O C. The modified Yen model[J]. Energy Fuels, 2010, 24(4): 2179-2207

    [28] Penn S G, Cancilla M T, Lebrilla C B. Collision-induced dissociation of branched oligosaccharide ions with analysis and calculation of relative dissociation thresholds[J]. Anal Chem, 1996, 68(14): 2331-2339

    [29] Zhang Z, Hirose T, Nishio S, et al. Chemical recycling of waste polystyrene into styrene over solid acids and bases[J]. Ind Eng Chem Res, 1995, 34(12): 4514-4519

    [30] Kruse T M, Wong H, Broadbelt L J. Modeling the evolution of the full polystyrene molecular weight distribution during polystyrene pyrolysis[J]. Ind Eng Chem Res, 2003, 42(12): 2722-2735

    [31] McKenna A M, Purcell J M, Rodgers R P, et al. Heavy petroleum composition. 1. Exhaustive compositional analysis of Athabasca bitumen HVGO distillates by Fourier transform ion cyclotron resonance mass spectrometry: A de fi nitive test of the Boduszynski model[J]. Energy Fuels, 2010, 24(5): 2929-2938

    Received date: 2015-11-25; Accepted date: 2015-12-29.

    Dr. Wang Wei, Telephone: +86-10-82368443 ; E-mail: wangwei3.ripp@sinopec.com.

    日韩高清综合在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲少妇的诱惑av| 国产主播在线观看一区二区| 香蕉丝袜av| 真人一进一出gif抽搐免费| 国内久久婷婷六月综合欲色啪| 两性午夜刺激爽爽歪歪视频在线观看 | 又黄又粗又硬又大视频| 久久人人精品亚洲av| 久久香蕉国产精品| 午夜精品久久久久久毛片777| 国产高清videossex| 岛国在线观看网站| 一区福利在线观看| 亚洲精华国产精华精| 精品欧美一区二区三区在线| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看 | av国产精品久久久久影院| 亚洲三区欧美一区| 国产欧美日韩精品亚洲av| 一级,二级,三级黄色视频| 国产区一区二久久| 亚洲国产中文字幕在线视频| 婷婷丁香在线五月| 免费高清在线观看日韩| 亚洲国产精品sss在线观看 | 国产av一区二区精品久久| 日本免费一区二区三区高清不卡 | 成人影院久久| 老司机亚洲免费影院| 久久久久久人人人人人| 国产在线观看jvid| www.自偷自拍.com| 麻豆久久精品国产亚洲av | 日韩三级视频一区二区三区| 老司机在亚洲福利影院| 亚洲国产欧美网| 欧美大码av| 国产成人啪精品午夜网站| 麻豆国产av国片精品| 久久人妻熟女aⅴ| 美女大奶头视频| 老司机靠b影院| 欧美日韩av久久| 可以在线观看毛片的网站| 国产成人啪精品午夜网站| 久久午夜亚洲精品久久| 色综合站精品国产| 麻豆成人av在线观看| 啪啪无遮挡十八禁网站| 在线免费观看的www视频| 国产高清视频在线播放一区| 欧美激情久久久久久爽电影 | 日韩免费高清中文字幕av| 丰满饥渴人妻一区二区三| 韩国精品一区二区三区| 男女下面进入的视频免费午夜 | 国产精品偷伦视频观看了| 国产熟女午夜一区二区三区| 性少妇av在线| 在线观看一区二区三区激情| 成熟少妇高潮喷水视频| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址| 欧美av亚洲av综合av国产av| 又黄又爽又免费观看的视频| 最新在线观看一区二区三区| 女人精品久久久久毛片| 99久久综合精品五月天人人| 日本五十路高清| 免费久久久久久久精品成人欧美视频| 国产成人欧美| 91大片在线观看| 欧美日韩精品网址| 丰满的人妻完整版| 69精品国产乱码久久久| 亚洲国产欧美网| 99国产极品粉嫩在线观看| 成人免费观看视频高清| 午夜老司机福利片| 国产免费男女视频| av视频免费观看在线观看| 麻豆av在线久日| av天堂久久9| 亚洲 欧美 日韩 在线 免费| 久久香蕉国产精品| 久久久久国产一级毛片高清牌| 窝窝影院91人妻| 欧美一区二区精品小视频在线| avwww免费| 免费搜索国产男女视频| 久久久久精品国产欧美久久久| 麻豆成人av在线观看| 日韩欧美一区视频在线观看| 69av精品久久久久久| 国产精品久久电影中文字幕| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 精品熟女少妇八av免费久了| 超碰成人久久| 他把我摸到了高潮在线观看| 欧美色视频一区免费| 99精品在免费线老司机午夜| 乱人伦中国视频| 久久人妻福利社区极品人妻图片| 国产av一区在线观看免费| 亚洲熟女毛片儿| 天堂动漫精品| 色婷婷av一区二区三区视频| 黄色成人免费大全| 在线天堂中文资源库| 三级毛片av免费| 女人爽到高潮嗷嗷叫在线视频| 国产成人系列免费观看| 男人的好看免费观看在线视频 | 国产精品影院久久| 18禁美女被吸乳视频| 高清av免费在线| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| av欧美777| 桃色一区二区三区在线观看| 国产av在哪里看| 三级毛片av免费| cao死你这个sao货| 国产免费现黄频在线看| 日本撒尿小便嘘嘘汇集6| 亚洲av成人一区二区三| 国产不卡一卡二| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 精品久久久久久,| 久久精品影院6| 欧美日韩视频精品一区| 午夜日韩欧美国产| 在线观看一区二区三区| 欧美精品一区二区免费开放| 丝袜美足系列| av在线播放免费不卡| 亚洲一码二码三码区别大吗| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 国产一区二区在线av高清观看| av福利片在线| 看片在线看免费视频| 欧美一区二区精品小视频在线| 久久精品人人爽人人爽视色| 自拍欧美九色日韩亚洲蝌蚪91| 免费一级毛片在线播放高清视频 | 97碰自拍视频| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类 | 老熟妇仑乱视频hdxx| 精品高清国产在线一区| 日韩欧美在线二视频| 色精品久久人妻99蜜桃| 中亚洲国语对白在线视频| 日本免费a在线| 午夜福利欧美成人| 色综合欧美亚洲国产小说| 69精品国产乱码久久久| 一个人免费在线观看的高清视频| 欧美+亚洲+日韩+国产| 在线国产一区二区在线| 制服诱惑二区| www.999成人在线观看| 亚洲成人精品中文字幕电影 | 亚洲 欧美 日韩 在线 免费| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久,| 母亲3免费完整高清在线观看| 成人影院久久| 亚洲精品一区av在线观看| 男女之事视频高清在线观看| 久久久久久久久免费视频了| 波多野结衣av一区二区av| cao死你这个sao货| 看片在线看免费视频| 在线视频色国产色| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 午夜福利一区二区在线看| 午夜精品在线福利| 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 欧美日韩福利视频一区二区| 成年版毛片免费区| 国产精品日韩av在线免费观看 | 日韩免费高清中文字幕av| 男人舔女人下体高潮全视频| 久99久视频精品免费| 亚洲专区字幕在线| 国产精品一区二区三区四区久久 | 国产亚洲欧美在线一区二区| 一级片'在线观看视频| 黄网站色视频无遮挡免费观看| 亚洲精品粉嫩美女一区| 精品熟女少妇八av免费久了| 国产激情欧美一区二区| 老司机靠b影院| 久久天堂一区二区三区四区| 国产精品久久视频播放| 国产成人啪精品午夜网站| 久久精品国产综合久久久| 天堂俺去俺来也www色官网| 亚洲国产看品久久| 欧美在线一区亚洲| 国产精品永久免费网站| 亚洲欧美激情在线| 99热只有精品国产| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 老司机深夜福利视频在线观看| 午夜精品国产一区二区电影| 女生性感内裤真人,穿戴方法视频| 十八禁人妻一区二区| 久久午夜综合久久蜜桃| 免费少妇av软件| 香蕉国产在线看| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 性欧美人与动物交配| 亚洲精品在线美女| 视频在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 麻豆久久精品国产亚洲av | 成人国语在线视频| 国产精品一区二区免费欧美| 精品久久久精品久久久| 黄网站色视频无遮挡免费观看| 亚洲精品在线观看二区| 日韩免费高清中文字幕av| 久久久久亚洲av毛片大全| 久久精品影院6| 黄片大片在线免费观看| 黑人猛操日本美女一级片| 亚洲中文日韩欧美视频| 国产精品98久久久久久宅男小说| 最好的美女福利视频网| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| av中文乱码字幕在线| 久久九九热精品免费| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频 | 午夜福利在线免费观看网站| 国产99久久九九免费精品| 久热这里只有精品99| 国产成人一区二区三区免费视频网站| 色哟哟哟哟哟哟| 啪啪无遮挡十八禁网站| 在线十欧美十亚洲十日本专区| 五月开心婷婷网| 高清在线国产一区| 亚洲片人在线观看| 国产亚洲欧美98| 老汉色∧v一级毛片| 久久亚洲真实| 一本综合久久免费| 在线天堂中文资源库| 黑人猛操日本美女一级片| 午夜影院日韩av| 在线观看日韩欧美| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密| 精品第一国产精品| 国产91精品成人一区二区三区| 成人国语在线视频| 涩涩av久久男人的天堂| 精品久久久久久电影网| 亚洲三区欧美一区| videosex国产| 桃红色精品国产亚洲av| 99国产综合亚洲精品| 国产av一区二区精品久久| 久久精品影院6| 91国产中文字幕| 午夜免费鲁丝| 国产一区二区三区视频了| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 999精品在线视频| 一级片免费观看大全| 搡老熟女国产l中国老女人| 国产精品九九99| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 国产男靠女视频免费网站| 久99久视频精品免费| 激情视频va一区二区三区| 免费人成视频x8x8入口观看| 亚洲午夜精品一区,二区,三区| 久久中文字幕一级| 99久久99久久久精品蜜桃| 91精品三级在线观看| 黄色丝袜av网址大全| 国产又色又爽无遮挡免费看| 一级片'在线观看视频| 亚洲成人精品中文字幕电影 | 无限看片的www在线观看| videosex国产| 看黄色毛片网站| 亚洲熟妇熟女久久| 亚洲色图综合在线观看| 成年人免费黄色播放视频| 精品第一国产精品| 88av欧美| 黄色a级毛片大全视频| 精品国产美女av久久久久小说| 精品日产1卡2卡| 亚洲精品一区av在线观看| 人人妻人人澡人人看| 国产成人欧美| av福利片在线| 91字幕亚洲| 国产欧美日韩一区二区精品| 欧美日韩亚洲高清精品| 欧美色视频一区免费| 在线观看www视频免费| 一级,二级,三级黄色视频| 欧美日韩瑟瑟在线播放| 99国产精品一区二区蜜桃av| 曰老女人黄片| 啪啪无遮挡十八禁网站| 国产精品免费视频内射| 日韩高清综合在线| 精品国产超薄肉色丝袜足j| 国产精品久久视频播放| 亚洲五月色婷婷综合| 免费搜索国产男女视频| 黄色成人免费大全| 国产黄色免费在线视频| 午夜两性在线视频| 久久午夜亚洲精品久久| 免费在线观看影片大全网站| 国产极品粉嫩免费观看在线| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 悠悠久久av| 一区在线观看完整版| 精品国产亚洲在线| www.www免费av| 亚洲五月色婷婷综合| 1024视频免费在线观看| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 日韩国内少妇激情av| 久久中文字幕人妻熟女| 高清欧美精品videossex| 成在线人永久免费视频| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 丰满迷人的少妇在线观看| 国产精品久久久人人做人人爽| 精品久久久久久成人av| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 一区在线观看完整版| 女人被躁到高潮嗷嗷叫费观| 99热国产这里只有精品6| 纯流量卡能插随身wifi吗| 别揉我奶头~嗯~啊~动态视频| 成人av一区二区三区在线看| 久99久视频精品免费| 91字幕亚洲| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 婷婷丁香在线五月| 日韩欧美一区二区三区在线观看| 国产aⅴ精品一区二区三区波| 亚洲激情在线av| 制服人妻中文乱码| 欧美日本中文国产一区发布| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲精品成人av观看孕妇| 黄片大片在线免费观看| 国产精品综合久久久久久久免费 | 精品午夜福利视频在线观看一区| 亚洲精品一区av在线观看| 国产亚洲欧美98| 亚洲国产毛片av蜜桃av| 美女扒开内裤让男人捅视频| 18禁国产床啪视频网站| 日韩大尺度精品在线看网址 | 青草久久国产| 国产精品99久久99久久久不卡| 亚洲视频免费观看视频| av在线播放免费不卡| 日韩高清综合在线| 看片在线看免费视频| 久久中文看片网| 亚洲免费av在线视频| 少妇 在线观看| 深夜精品福利| 在线av久久热| 亚洲熟女毛片儿| 久久久精品欧美日韩精品| 午夜成年电影在线免费观看| 国产精品永久免费网站| 亚洲午夜理论影院| 三上悠亚av全集在线观看| 午夜福利免费观看在线| 国产av又大| 无限看片的www在线观看| 久久久国产欧美日韩av| 日韩人妻精品一区2区三区| 午夜免费鲁丝| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 午夜视频精品福利| 欧美丝袜亚洲另类 | 久久精品影院6| 看黄色毛片网站| 欧美日韩乱码在线| 久久国产精品影院| 69精品国产乱码久久久| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| 亚洲第一青青草原| 久久久久久久久中文| 久久人妻福利社区极品人妻图片| 国产精品99久久99久久久不卡| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区蜜桃| 色综合欧美亚洲国产小说| 精品国产美女av久久久久小说| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 国产亚洲av高清不卡| 热re99久久国产66热| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 久久久久久免费高清国产稀缺| av网站免费在线观看视频| 免费在线观看视频国产中文字幕亚洲| 久久中文字幕人妻熟女| 国产乱人伦免费视频| 久久九九热精品免费| 韩国精品一区二区三区| 国产亚洲欧美精品永久| 91精品三级在线观看| 国产亚洲精品综合一区在线观看 | 国产免费男女视频| 亚洲五月天丁香| 国产精品亚洲一级av第二区| 国产av又大| 午夜免费成人在线视频| 国产精品 欧美亚洲| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产成人av教育| 欧美av亚洲av综合av国产av| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 欧美日韩精品网址| 别揉我奶头~嗯~啊~动态视频| 久久久国产欧美日韩av| 制服人妻中文乱码| 免费高清在线观看日韩| 国产精品99久久99久久久不卡| 成人黄色视频免费在线看| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 国产精品九九99| 老司机亚洲免费影院| 久久久久久久久久久久大奶| 日韩中文字幕欧美一区二区| 亚洲人成电影观看| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 一级毛片精品| 久久香蕉国产精品| 麻豆一二三区av精品| 日韩三级视频一区二区三区| 一区二区三区国产精品乱码| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 日韩大码丰满熟妇| 成年版毛片免费区| 少妇裸体淫交视频免费看高清 | 色播在线永久视频| 亚洲av日韩精品久久久久久密| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 国产成人免费无遮挡视频| 国产深夜福利视频在线观看| 在线观看免费视频日本深夜| 人成视频在线观看免费观看| 女性被躁到高潮视频| 久久99一区二区三区| 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 热re99久久国产66热| 一个人免费在线观看的高清视频| 男男h啪啪无遮挡| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| av福利片在线| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 88av欧美| 国产精品久久久久成人av| 久久性视频一级片| 亚洲国产精品sss在线观看 | 国产深夜福利视频在线观看| 高清在线国产一区| 国产精品自产拍在线观看55亚洲| 亚洲人成网站在线播放欧美日韩| 亚洲成a人片在线一区二区| 国产高清激情床上av| 黄色毛片三级朝国网站| 国产精品 国内视频| 999久久久国产精品视频| 法律面前人人平等表现在哪些方面| 亚洲中文av在线| 欧美精品亚洲一区二区| 三级毛片av免费| 国产精品久久久人人做人人爽| 丝袜美足系列| 久久久久九九精品影院| 亚洲成人免费av在线播放| 欧美大码av| 久久人妻福利社区极品人妻图片| 国产99白浆流出| 老司机午夜福利在线观看视频| 亚洲精品美女久久久久99蜜臀| 老司机亚洲免费影院| 99精品久久久久人妻精品| 一区福利在线观看| 久久久久久久久中文| www.www免费av| 亚洲成人免费av在线播放| 我的亚洲天堂| 免费人成视频x8x8入口观看| 黑人巨大精品欧美一区二区蜜桃| 欧美大码av| 免费女性裸体啪啪无遮挡网站| 999精品在线视频| 国产亚洲欧美精品永久| 黄片小视频在线播放| 啦啦啦在线免费观看视频4| 国产一区二区三区在线臀色熟女 | 中文字幕av电影在线播放| 天堂√8在线中文| 免费在线观看日本一区| 黄色视频不卡| 韩国av一区二区三区四区| 精品免费久久久久久久清纯| 欧美日韩精品网址| 嫁个100分男人电影在线观看| 欧美日韩亚洲高清精品| 97超级碰碰碰精品色视频在线观看| 波多野结衣av一区二区av| av网站在线播放免费| 亚洲视频免费观看视频| 免费观看精品视频网站| 99在线人妻在线中文字幕| 真人做人爱边吃奶动态| 欧美成人性av电影在线观看| 亚洲全国av大片| 91大片在线观看| а√天堂www在线а√下载| 老熟妇仑乱视频hdxx| 国产片内射在线| 国产亚洲精品久久久久5区| 欧美日韩亚洲高清精品| 国产av一区在线观看免费| 国产亚洲精品久久久久5区| 欧美不卡视频在线免费观看 | 国产精品久久久av美女十八| 国产精品一区二区在线不卡| 亚洲性夜色夜夜综合| 又紧又爽又黄一区二区| 国产精品亚洲av一区麻豆| 免费高清视频大片| 9热在线视频观看99| 国产精品 国内视频| 麻豆久久精品国产亚洲av | 久久精品国产亚洲av高清一级| 岛国在线观看网站| 又大又爽又粗| 亚洲人成网站在线播放欧美日韩| 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 丰满人妻熟妇乱又伦精品不卡| 日本黄色日本黄色录像| 成人永久免费在线观看视频| 日韩高清综合在线| 男人舔女人的私密视频| 欧美一级毛片孕妇| 久久中文看片网| 男男h啪啪无遮挡|