• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Core-Shell Composite of Y@Mesoporous Alumina and Its Application in Heavy Oil Cracking

    2016-03-22 05:16:35YuanChengyuanWangZhengwuZhangHaitaoTanZhengguoPanZhishuangGaoXionghou
    中國煉油與石油化工 2016年1期

    Yuan Chengyuan; Wang Zhengwu; Zhang Haitao; Tan Zhengguo; Pan Zhishuang; Gao Xionghou

    (1. Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060; 2. PetroChina Dushanzi Petrochemical Company, Karamay 838600)

    Preparation of Core-Shell Composite of Y@Mesoporous Alumina and Its Application in Heavy Oil Cracking

    Yuan Chengyuan1; Wang Zhengwu2; Zhang Haitao1; Tan Zhengguo1; Pan Zhishuang1; Gao Xionghou1

    (1. Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060; 2. PetroChina Dushanzi Petrochemical Company, Karamay 838600)

    A well core-shell composite of Y@meso-Al with a mesoporous alumina shell and a Y zeolite core was synthesized. The mesoporous alumina shell has a wormhole-like structure with large mesopores. The prepared catalytic cracking catalyst using this composite has exhibited excellent catalytic performance for heavy oil cracking thanks to its favorable physicochemical properties, such as high surface area, large pore volume and outstanding acid sites accessibility for large molecules provided by the composite. In comparison with the reference catalyst using pure Y zeolite, the oil conversion achieved by the above-mentioned catalyst increased by 2.73 percentage points, while the heavy oil yield and coke yield decreased by 2.23 percentage points and 1.28 percentage points, respectively, with the light oil yield increasing by 2.27 percentage points.

    zeolite; mesoporous alumina; core-shell; accessibility; catalytic cracking

    1 Introduction

    As acid catalysts, Y zeolites have found wide applications in catalytic cracking area for their unique properties such as strong acidity, high hydrothermal stability and abundant micropores[1-3]. However, with the growing world oil shortage, the heavy components in petroleum feedstock have greatly increased. Due to the diffusion dif fi culty in small micropores of zeolites, the catalytic cracking of heavy oil has been restricted extremely[4-5]. Therefore, it is very urgent to create mesopores in catalytic cracking catalysts for the pre-cracking of heavy oil, which will greatly facilitate the further cracking of heavy oil to light products such as gasoline and diesel over Y zeolites[6].

    To achieve this goal, various strategies such as dealumination and desilication for creating Y zeolites with hierarchical pore structures, in particular mesopores, which can facilitate the diffusion of heavy oil molecules, have been explored[7-13]. However, these methods inevitably suffer from several defects, such as limited pore volume, disordered pore channel, zeolite structure destruction and tremendous material loss, which greatly prevent their applications in practice[14]. Therefore, it is highly urgent to develop a more controllable methodology for preparing hierarchical Y zeolite materials.

    Recently, the fabrication of core-shell structured composite materials has become a research hotspot for many potential uses of these materials in separation, catalysts, drug delivery, etc.[15-17]Among them, fabricating coreshell composites by coating mesoporous materials around zeolites is of particular importance, because of the combination of advantages of both mesoporous materials and microporous zeolites by these composites. For example, the core-shell composite of Y zeolite and silicabased MCM-41 mesoporous material was successfully prepared using cetyltrimethylammonium bromide as the template[18-21]. Composite with silicalite-1 or ZSM-5 as the core and SBA-15 silica-based sieves as the shell was also synthesized[22]. However, to the best of our knowledge, the preparation of core-shell composite of Y zeolite and mesoporous alumina, which should exhibit good performance in catalytic cracking of heavy petroleum feedstocks due to the excellent properties such as bigopened mesopores, large surface area, highly uniform channels, high thermal stability and abundant surface acid sites of the mesoporous alumina[23-24], has not been reported yet.

    In this paper, a novel composite of Y@mesoporous alumina with a hierarchical pore system was successfully prepared. The obtained composite possessed a classic core-shell structure fabricated by mesoporous alumina shell and Y zeolite core. Furthermore, the composite was employed as the active component for the preparation of catalytic cracking catalyst, and the heavy oil cracking performance of the obtained catalyst was also evaluated.

    2 Experimental

    2.1 Preparation of Y@mesoporous alumina and catalytic cracking catalysts

    2.1.1 Synthesis of Y@mesoporous alumina

    As shown in Scheme 1, 4.0 g of triblock copolymer (P123, EO20PO70EO20), 15 g of Y zeolite (nSi/nAl=17) and 60 ml of anhydrous ethanol were fi rst mixed and stirred for 1 h at room temperature. Then 2.0 ml of nitric acid and 4.08 g of aluminum iso-propoxide (C9H21AlO3) were added to the above mixture under vigorous stirring. The obtained mixture was firstly stirred at room temperature for 30 min, and then kept static for another 3 h. After that, the obtained mixture was subject to ageing in a drying oven at 65 ℃ overnight to go through the solvent evaporation process. Finally, the obtained solid sample was calcined at 550 ℃ for 4 h in air. The fi nal product was labeled as Y@meso-Al.

    2.1.2 Preparation of catalytic cracking catalyst containing Y@meso-Al

    30 g of kaolin clay and 15 g of Y@meso-Al were fi rstly mixed. Then the obtained solid mixture was added into 45.5 g of alumina sol solution under vigorous stirring. The obtained solution was stirred for 1 h at room temperature, and then was put in a drying oven to be subject to ageing overnight at 120 ℃. After that, the obtained solid sample was calcined at 450 ℃ for 3 h, and named as Cat-new.

    2.1.3 Preparation of reference catalytic cracking catalyst

    30 g of kaolin clay and 15 g of Y zeolite were fi rstly mixed. Then the obtained solid mixture was added to 45.5 g of alumina sol solution under vigorous stirring. The obtained mixture was stirred for 1 h at room temperature, and was then put into a drying oven to be subject to ageing overnight at 120 ℃. After that, the obtained solid sample was calcined at 450 ℃ for 3 h, and named as Cat-old.

    2.2 Characterization

    X-ray diffraction (XRD) was carried out on a PANalytical X’pert pro diffractometer. The BET surface area and the pore size distribution measurements were performed on a Micromeritics ASAP 2010 instrument operating at liquid nitrogen temperature. The transmission electron microscopy (TEM) micrographs were obtained with a JEM-2010 electron microscope. The Fourier transform infrared (FTIR) spectra of the samples after adsorption of pyridine (Py) and 2,6-di-tert-butylpyridine (DTBPy) were recorded on a Bruker Tensor 27 FT-IR spectrometer.

    2.3 Cracking tests

    The catalytic cracking of heavy oil was performed in a micro fixed fluid bed unit. Prior to testing, the catalysts were steam deactivated at 800 ℃ for 4 h. The reaction temperature was 500 ℃, with the catalyst/oil weight ratio equating to 4. The properties of the heavy oil feedstock are listed in Table 1.

    Scheme 1 Preparation of Y@meso-Al

    Table 1 Properties of heavy oil feedstock

    3 Results and Discussion

    3.1 XRD analyses

    Figure 1 XRD patterns of the Y@meso-Al sample

    Figure 1 shows the XRD patterns of the sample Y@meso-Al. It is shown that a resolved diffraction peak at a 2θ value of 0.8owas observed in the small-angle XRD pattern, corresponding to the (100) face diffraction peak of mesoporous materials with hexagonal pores[25]. The appearance of this diffraction peak con fi rmed that some mesoporous alumina shell had been formed in the sample of Y@meso-Al. In the large-angle XRD pattern, the sample of Y@ meso-Al exhibited the characteristic diffraction peaks of microporous Y zeolite and Al2O3, indicating to the coexistence of microporous Y zeolite and mesoporous alumina shell. These resolved diffraction peaks also illustrated that there was no remarkable degradation for Y zeolite during the covering process.

    3.2 N2adsorption/desorption analyses

    The N2adsorption/desorption isotherms and pore size distribution of different samples are shown in Figure 2. It can be seen that Y zeolite displayed a type I adsorption isotherm, with a fast adsorption volume increasing at low pressure followed by a platform appearing, which indicated the characteristics of micropores material[26]. The small hysteresis loop was caused by the secondary mesopores resulted from the desilication of Y zeolite in the alkaline environment[27]. Compared with the pure Y zeolite, the sample of Y@meso-Al showed a much bigger hysteresis loop ascribed to the synergistic function of microporous Y zeolite and mesoporous alumina in Y@meso-Al[28].

    Figure 2 N2adsorption/desorption isotherms (a) and pore size distribution (b) of Y zeolite and Y@meso-Al

    It can be seen from the pore size distribution that the main distribution peak for Y zeolite appeared in the microporous range. In contrast with the Y zeolite, besides a distribution peak in the microporous range, the sample Y@ meso-Al exhibited additionally two distribution peaks in the mesoporous range, indicating that the pores of Y zeolite were not blocked during the covering process along with the formation of mesoporous alumina shell.

    As shown in Table 2, the total surface area (SBET) and pore volume (Vtotal) of the sample Y@meso-Al were smaller than that of Y zeolite. However, the sample Y@meso-Al possessed higher mesoporous surface area (Smeso) and higher mesoporous pore volume (Vmeso), indicating that there were more mesopores in Y@meso-Al. Compared to the sample Cat-old, the SBETandVtotalof the sample Catnew increased slightly owing to the existence of mesoporous alumina in Cat-new.

    Table 2 Structural properties of different samples

    3.3 TEM analyses

    The TEM image of Figure 3(a) clearly shows that the sample Y@meso-Al had a classic core-shell structure, with Y zeolite being covered by a uniform mesoporous alumina shell. No separated pieces of Y zeolite and mesoporous alumina were observed. Judging from the image scale, the mesoporous alumina shell thickness was calculated to be about 30 nm. The structural detail of mesoporous alumina shell is shown in Figure 3(b). As it is shown in the TEM image, the mesoporous alumina shell of the composite Y@meso-Al possessed interconnected mesopores with a disordered arrangement.

    3.4 Accessibility of active sites

    Figure 3 TEM images of Y@meso-Al

    The accessibility of acid sites is a very important factor for the performance of catalytic cracking catalysts in heavy oil catalytic cracking[29]. Here, pyridine (Py) and 2,6-di-tert-butylpyridine (DTBPy) adsorption FT-IR spectra were used to estimate the accessibility of acid sites for the studied catalysts[30]. The area of corresponding adsorption peak (A) is linearly correlated to the quantity of the acid sites which probe molecules can reach. For the DTBPy probe molecule, because of its large diameters, it can only reach partially the acid sites, while pyridine molecule can reach all acid sites. Therefore, it is reasonable to take the value ofADTBPy/APyto estimate the acid sites accessibility of the catalyst for the large residual oil molecules. Higher value ofADTBPy/APymeans better accessibility of acid sites.

    The FT-IR spectra of samples Cat-old and Cat-new after adsorption of Py and DTBPy are presented in Figure 4. It is shown that the absorption peaks at around 1 540 cm-1and 3 400 cm-1for all samples could be assigned to the Br?nsted acid sites on which Py and DTBPy were adsorbed, respectively[31]. There was no distinct difference in Py adsorption peak area (APy) for the two samples. However, as to the big probe molecules of DTBPy, the corresponding adsorption peak area (ADTBPy) of the sample Cat-new was much higher than that of the sample Cat-old.

    The values ofADTBPy/APyfor the two samples are shown in Figure 5. As it can be seen that the value ofADTBPy/APyfor the sample Cat-new was remarkably higher than that of the sample Cat-old, indicating to the better acid sites accessibility for the large molecules of Cat-new than Catold. The promotion of acid sites accessibility can be ascribed to the favorable mesopores in the sample Cat-new catalyst provided by Y@meso-Al, which could greatlyfacilitate the diffusion of large molecules in the Cat-new catalyst[32-34].

    Figure 4 FT-IR spectra of samples Cat-old and Cat-new after adsorption of Py (a) and DTBPy (b)

    Figure 5 Acid sites accessibility analysis of samples Catold and Cat-new

    3.5 Cracking tests

    The activity and product distribution of residue cracking using different catalysts are shown in Table 3. The data showed that compared with the catalyst Cat-old, the feed oil conversion of the catalyst Cat-new increased by 2.73 percentage points, while the heavy oil yield and coke yield decreased by 2.23 percentage points and 1.28 percentage points, respectively, with light oil yield increasing by 2.27 percentage points. Therefore, the overall reaction performance of the Cat-new catalyst was obviously better than that of the Cat-old catalyst. Moreover, despite the decreased Y zeolite content in contrast with the Catold catalyst, the activity of the Cat-new catalyst was improved, which fully demonstrated the advantages of the Y@meso-Al sample. The excellent catalytic performance of the Cat-new catalyst can be attributed to its excellent structural properties, such as high surface area, big pore volume and outstanding acid sites accessibility provided by the composite of Y@meso-Al.

    Table 3 Residue cracking data for different catalysts

    4 Conclusions

    The uniform core-shell composite consisting of the Y zeolite core and mesoporous alumina shell was prepared, and employed as the active component for preparing catalytic cracking catalyst. The physicochemical properties of the newly prepared catalyst were greatly improved by the obtained composite characteristic of high surface area, large pore volume and outstanding acid sites accessibility. As a result, the corresponding catalyst showed excellent performance for heavy oil cracking. In comparison with the reference catalyst, the heavy oil conversion of the newly prepared catalyst increased by 2.73 percentage points, while the heavy oil yield and coke yield decreased by 2.23 percentage points and 1.28 percentage points, respectively, with the light oil yield increasing by 2.27 percentage points.

    Acknowledgements: This work was financially supported by the Department of Science and Technology Management of PetroChina (No. 2011B-2404-0102).

    [1] Corma A, Martinez A, Martinez-Soria V, et al. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst [J]. J Catal, 1995, 153(1): 25-31

    [2] Yilmaz B, Muller U. Catalytic applications of zeolites in chemical industry [J]. Top Catal, 2009, 52(11): 888-895

    [3] Hosseinpour N, Mortazavi A, Bazyari A, et al. Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation [J]. Fuel Process Technol, 2009, 90(2): 171-179

    [4] Qi Y P, Chen S L, Dong P, et al. Novel macroporous residua FCC catalysts [J]. J Fuel Chem Technol, 2006, 34(6): 685-689

    [5] Li H, Yu J, Xu J, et al. Identification of key oil refining technologies for China National Petroleum Co. (CNPC) [J]. Energy Policy, 2007, 35(4): 2635-2647

    [6] Maselli J, Peters A W. Preparation and properties of fluid cracking catalysts for residual oil conversion [J]. Catal Rev, 1984, 26(1): 525-554

    [7] Qumi Y, Takahashi J, Takesshima K, et al. Realumination of zeolite Y under acidic conditions [J]. J Porous Mater, 2007, 14(4): 19-26

    [8] Yu Z, Zheng A, Wang Q, et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced27Al DQ-MAS NMR spectroscopy at high field [J]. Angew Chem Int Ed, 2010, 49(46): 8657-8661

    [9] Tomiyama T, Okumura K, Niwa M. Enhancement in cracking activity of USY zeolites treated with ammonium nitrate solution [J]. Chem Lett, 2011, 40(1): 49-51

    [10] Qin Z, Shen B, Gao X, et al. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene [J]. J Catal, 2011, 278(2): 266-275

    [11] Chandra Shekara BM, Jai Prakash B S, Bhat Y S. Dealumination of zeolite BEA under microwave irradiation [J]. ACS Catal, 2011, 1(3): 193-199

    [12] de Jong K P, Zecevic J, Friedrich H, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts [J]. Angew Chem Int Ed, 2010, 49(52): 10074-10078.

    [13] Verboekend D, Vile G, Perez-Ramiez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies [J]. Adv Funct Mater, 2012, 22(5): 916-928

    [14] Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking [J]. Chem Cat Chem, 2014, 6(1): 46-66

    [15] Lu Y, Yin Y, Li Z, et al. Synthesis and self-assembly of Au@SiO2core-shell colloids [J]. Nano Lett, 2002, 2(7): 785-788

    [16] Bouizi Y, Rouleau L, Valtchev V P. Factors controlling the formation of core-shell zeolite-zeolite composites [J]. Chem Mater, 2006, 18(20): 4959-4966

    [17] Deng Y, Qi D, Deng C, et al. Superparamagnetic highmagnetization microspheres with an Fe3O4@SiO2core and perpendicularly aligned mesoporous SiO2shell for removal of microcystins [J]. J Am Chem Soc, 2008, 130(1): 28-29

    [18] Xu L, Le Y J, Wu H H, et al. Core/shell-structured TS-1@ mesoporous silica-supported Au nanoparticles for selective epoxidation of propylene with H2and O2[J]. J Mater Chem, 2011, 21: 10852-10858

    [19] Han Y, Pitukmanorom P, Zhao L, et al. Generalized synthesis of mesoporous shells on zeolite crystals [J]. Small, 2011, 7(3): 326-332

    [20] Zhang Y H, Liu Y C, Li Y X. Synthesis and characteristics of Y-zeolite/MCM-48 biporous molecular sieve [J]. Appl Catal A, 2008, 345(1): 73-79

    [21] Waller P, Shan Z, Marchese L, et al. Zeolite nanocrystals inside mesoporous TUD-1: A high-performance catalytic composite [J]. Chem Eur J, 2004, 10(20): 4970-4976

    [22] Qian X F, Du J M, Li B, et al. Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites [J]. Chem Sci, 2011, 2: 2006-2016

    [23] Yuan Q, Yin A X, Luo C, et al. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability [J]. J Am Chem Soc, 2008, 130(11): 3465-3472

    [24] Yuan Q, Duan H H, Li L L, et al. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina [J]. Adv Mater, 2010, 22(13): 1475-1478

    [25] Zhao D, Feng J, Huo Q, et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279(23): 548-552

    [26] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J].Pure Appl Chem, 1985, 57(4): 603-619

    [27] Qin Z, Shen B, Yu Z, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking [J]. J Catal, 2013, 298: 102-111

    [28] Jia L, Sun X, Ye X, et al. Core-shell composites of USY@ mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield [J]. Micropor Mesopor Mater, 2013, 176: 16-24

    [29] Thibault-Starzyk F, Stan I, Abello S, et al. Quanti fi cation of enhanced acid site accessibility in hierarchical zeolites -The accessibility index [J]. J Catal, 2009, 264(1): 11-14

    [30] Thomas O, Guillaume C, Houalla M. Quantitative IR characterization of the acidity of various oxide catalysts [J]. Micropor Mesopor Mater, 2005, 82(1/2): 99-104

    [31] Corma A, Fornes V, Forni L, et al. 2,6-Di-tert-butylpyridine as a probe molecule to measure external acidity of zeolites [J]. J Catal, 1998, 179(2): 451-458

    [32] Xue Z, Zhang T, Ma J, et al. Accessibility and catalysis of acidic sites in hierarchical ZSM-5 prepared by silanization [J]. Micropor Mesopor Mater, 2012, 151: 271-276

    [33] Zhang Baozhong, Liu Xiaopeng. Catalytic performance of MFI/MFI core-shell zeolites in benzene methylation[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(4): 94-99

    [34] Liu Dongmei, Kong Feifei, Zhai Yuchun, et al. Secondary crystallization of Na2CO3-modified HZSM-5 zeolites with tetrapropylammonium hydroxide and their catalytic performance in thiophene alkylation reaction[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(3): 53-60

    Received date: 2015-10-29; Accepted date: 2016-01-07.

    Yuan Chengyuan, Telephone: +86-931-7981621; E-mail: yuanchengyuan@petrochina.com.cn.

    老司机午夜十八禁免费视频| 少妇 在线观看| 天堂中文最新版在线下载| 建设人人有责人人尽责人人享有的| 日韩中文字幕视频在线看片| 亚洲一码二码三码区别大吗| 国产精品久久久av美女十八| 美女扒开内裤让男人捅视频| 大陆偷拍与自拍| 飞空精品影院首页| 美女福利国产在线| 国产极品粉嫩免费观看在线| 1024香蕉在线观看| 老司机亚洲免费影院| 亚洲欧洲国产日韩| 精品人妻熟女毛片av久久网站| 亚洲av综合色区一区| 午夜免费鲁丝| 男的添女的下面高潮视频| 天天躁夜夜躁狠狠躁躁| 真人做人爱边吃奶动态| 99香蕉大伊视频| 欧美日本中文国产一区发布| 亚洲精品一卡2卡三卡4卡5卡 | 曰老女人黄片| 亚洲免费av在线视频| 精品久久久久久久毛片微露脸 | 欧美少妇被猛烈插入视频| 亚洲七黄色美女视频| 激情视频va一区二区三区| 欧美大码av| 十八禁人妻一区二区| www.999成人在线观看| 又紧又爽又黄一区二区| 国产男人的电影天堂91| 亚洲国产精品一区二区三区在线| 精品国产一区二区三区四区第35| 亚洲精品在线美女| 激情五月婷婷亚洲| 久久女婷五月综合色啪小说| 99久久人妻综合| 免费在线观看视频国产中文字幕亚洲 | 国产精品99久久99久久久不卡| 国产极品粉嫩免费观看在线| 欧美激情极品国产一区二区三区| 丝袜在线中文字幕| 精品高清国产在线一区| 色婷婷av一区二区三区视频| 欧美激情极品国产一区二区三区| 国产成人欧美| 久久99热这里只频精品6学生| 亚洲av成人精品一二三区| 色94色欧美一区二区| 欧美日韩亚洲高清精品| 久久热在线av| 精品国产一区二区久久| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区在线观看av| 麻豆国产av国片精品| 制服诱惑二区| 国产成人影院久久av| 国产色视频综合| 男人操女人黄网站| 国产成人影院久久av| 国产精品偷伦视频观看了| 亚洲色图 男人天堂 中文字幕| 免费观看人在逋| av国产久精品久网站免费入址| 免费av中文字幕在线| 亚洲成国产人片在线观看| 免费在线观看完整版高清| 日韩视频在线欧美| 免费黄频网站在线观看国产| 在线亚洲精品国产二区图片欧美| 好男人电影高清在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品成人av观看孕妇| 亚洲一区中文字幕在线| 中文字幕av电影在线播放| 欧美人与性动交α欧美精品济南到| 美女大奶头黄色视频| 成人亚洲精品一区在线观看| 少妇被粗大的猛进出69影院| 日本五十路高清| 午夜激情av网站| 91精品伊人久久大香线蕉| 国产片内射在线| 日韩大片免费观看网站| 免费人妻精品一区二区三区视频| 精品国产一区二区三区久久久樱花| 国产不卡av网站在线观看| 丁香六月天网| 亚洲精品国产区一区二| 一边摸一边做爽爽视频免费| 九色亚洲精品在线播放| 亚洲午夜精品一区,二区,三区| 亚洲国产最新在线播放| 亚洲精品国产色婷婷电影| 亚洲精品国产一区二区精华液| 精品国产一区二区久久| 免费看十八禁软件| 后天国语完整版免费观看| 欧美日韩成人在线一区二区| 18禁黄网站禁片午夜丰满| av又黄又爽大尺度在线免费看| 亚洲国产中文字幕在线视频| 久久久久久久精品精品| 国产成人a∨麻豆精品| 欧美精品啪啪一区二区三区 | 51午夜福利影视在线观看| 亚洲男人天堂网一区| 99国产精品免费福利视频| 国产精品国产av在线观看| 国产精品国产av在线观看| 好男人电影高清在线观看| 婷婷成人精品国产| 国产在线一区二区三区精| www.自偷自拍.com| 精品亚洲成a人片在线观看| 天天影视国产精品| 精品人妻在线不人妻| 男女床上黄色一级片免费看| 国产欧美亚洲国产| 人体艺术视频欧美日本| 欧美变态另类bdsm刘玥| 亚洲欧美色中文字幕在线| 亚洲专区国产一区二区| 国产av国产精品国产| 亚洲 欧美一区二区三区| 性少妇av在线| 中文欧美无线码| 日韩人妻精品一区2区三区| 深夜精品福利| 成年人免费黄色播放视频| 久久久国产欧美日韩av| 我要看黄色一级片免费的| 一区二区三区乱码不卡18| 成人影院久久| 国产成人一区二区三区免费视频网站 | 国产精品麻豆人妻色哟哟久久| 久久久久国产精品人妻一区二区| 欧美久久黑人一区二区| 国产视频首页在线观看| 亚洲伊人久久精品综合| 久久久亚洲精品成人影院| 狠狠婷婷综合久久久久久88av| 国产精品二区激情视频| av在线app专区| 亚洲成人免费电影在线观看 | 一本一本久久a久久精品综合妖精| av视频免费观看在线观看| 成年av动漫网址| 午夜激情av网站| 亚洲精品国产av成人精品| 亚洲精品av麻豆狂野| 久久久国产一区二区| av又黄又爽大尺度在线免费看| 国产精品99久久99久久久不卡| 搡老乐熟女国产| 一级毛片女人18水好多 | 97人妻天天添夜夜摸| 亚洲免费av在线视频| 中文精品一卡2卡3卡4更新| 午夜av观看不卡| 久久99一区二区三区| 欧美xxⅹ黑人| 亚洲精品美女久久av网站| 美女午夜性视频免费| 极品少妇高潮喷水抽搐| 亚洲欧美激情在线| 欧美人与性动交α欧美软件| 天天躁日日躁夜夜躁夜夜| 久久精品久久精品一区二区三区| 日韩中文字幕视频在线看片| 成人国语在线视频| 操出白浆在线播放| 男女边摸边吃奶| 亚洲av欧美aⅴ国产| 国产男女超爽视频在线观看| 悠悠久久av| 国产精品久久久久久精品电影小说| 日本vs欧美在线观看视频| 中文欧美无线码| 伊人亚洲综合成人网| 高清黄色对白视频在线免费看| 亚洲久久久国产精品| 一区福利在线观看| 日韩欧美一区视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 在线观看www视频免费| 少妇粗大呻吟视频| 中文乱码字字幕精品一区二区三区| 91九色精品人成在线观看| 久久精品国产综合久久久| 欧美大码av| 中文字幕最新亚洲高清| 免费av中文字幕在线| 日韩中文字幕视频在线看片| 国产一区亚洲一区在线观看| 午夜老司机福利片| 91国产中文字幕| 日韩av在线免费看完整版不卡| 国产精品久久久久久人妻精品电影 | 免费观看人在逋| 美女高潮到喷水免费观看| 欧美激情极品国产一区二区三区| 久久av网站| 日韩电影二区| 久久国产精品男人的天堂亚洲| 久久久国产欧美日韩av| 三上悠亚av全集在线观看| 婷婷成人精品国产| 婷婷色av中文字幕| 亚洲成人免费电影在线观看 | 黑丝袜美女国产一区| 成年美女黄网站色视频大全免费| 女人久久www免费人成看片| 国产在线视频一区二区| 国产免费现黄频在线看| 欧美日本中文国产一区发布| 热99久久久久精品小说推荐| 人妻一区二区av| 日韩视频在线欧美| 欧美av亚洲av综合av国产av| 日韩视频在线欧美| 极品少妇高潮喷水抽搐| 亚洲精品一区蜜桃| 精品亚洲成国产av| 精品亚洲成a人片在线观看| 新久久久久国产一级毛片| 亚洲成人免费av在线播放| 精品亚洲乱码少妇综合久久| tube8黄色片| 男女午夜视频在线观看| 一个人免费看片子| 美女午夜性视频免费| 在线观看一区二区三区激情| 国产精品香港三级国产av潘金莲 | 免费久久久久久久精品成人欧美视频| 久久久久久久精品精品| 水蜜桃什么品种好| 一个人免费看片子| 亚洲av日韩精品久久久久久密 | 又粗又硬又长又爽又黄的视频| 黑人欧美特级aaaaaa片| 日韩免费高清中文字幕av| 国产精品国产三级国产专区5o| www.自偷自拍.com| 亚洲国产精品999| 夫妻性生交免费视频一级片| 老鸭窝网址在线观看| 久久久久久人人人人人| 午夜影院在线不卡| 人人妻人人澡人人爽人人夜夜| 一级毛片黄色毛片免费观看视频| 十八禁人妻一区二区| 男的添女的下面高潮视频| 国产精品秋霞免费鲁丝片| 欧美大码av| 国产成人精品久久二区二区免费| 国产视频一区二区在线看| 久久久久久久大尺度免费视频| 亚洲,欧美精品.| 欧美精品人与动牲交sv欧美| 熟女av电影| 国产精品二区激情视频| 叶爱在线成人免费视频播放| 精品一区二区三区四区五区乱码 | 男男h啪啪无遮挡| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 久久亚洲精品不卡| 欧美激情极品国产一区二区三区| 大型av网站在线播放| 男人操女人黄网站| 又粗又硬又长又爽又黄的视频| 亚洲精品久久午夜乱码| 女人爽到高潮嗷嗷叫在线视频| 一级黄色大片毛片| 精品人妻1区二区| 中文字幕人妻丝袜一区二区| 满18在线观看网站| 久久这里只有精品19| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 久久久久久久国产电影| a级片在线免费高清观看视频| 天堂中文最新版在线下载| 美女主播在线视频| 国产精品三级大全| av电影中文网址| 亚洲 国产 在线| 中文字幕人妻丝袜一区二区| 亚洲熟女精品中文字幕| 50天的宝宝边吃奶边哭怎么回事| 韩国高清视频一区二区三区| a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 搡老乐熟女国产| 超碰成人久久| 亚洲精品国产av蜜桃| 国产不卡av网站在线观看| 男女边摸边吃奶| 黑人猛操日本美女一级片| 亚洲国产精品成人久久小说| 午夜福利视频在线观看免费| 啦啦啦 在线观看视频| 成人手机av| 亚洲精品久久午夜乱码| 飞空精品影院首页| 岛国毛片在线播放| 免费在线观看黄色视频的| 看免费av毛片| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 久久九九热精品免费| 人人澡人人妻人| 99热全是精品| 午夜福利,免费看| 欧美日韩亚洲综合一区二区三区_| 男的添女的下面高潮视频| 91国产中文字幕| 男女边吃奶边做爰视频| 啦啦啦视频在线资源免费观看| 国产日韩欧美视频二区| 嫩草影视91久久| 五月开心婷婷网| 人成视频在线观看免费观看| 国产男女内射视频| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 一区福利在线观看| 国产男女超爽视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲伊人久久精品综合| 国产成人av激情在线播放| av电影中文网址| 欧美成人精品欧美一级黄| 一区福利在线观看| 波野结衣二区三区在线| 亚洲美女黄色视频免费看| 亚洲国产中文字幕在线视频| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 考比视频在线观看| 久9热在线精品视频| 啦啦啦在线观看免费高清www| 亚洲欧美一区二区三区国产| 久久精品国产a三级三级三级| www.999成人在线观看| 天堂中文最新版在线下载| 中文精品一卡2卡3卡4更新| 国产99久久九九免费精品| 国产成人欧美| 精品一品国产午夜福利视频| 51午夜福利影视在线观看| 免费观看a级毛片全部| 免费在线观看日本一区| 在现免费观看毛片| 国产日韩欧美在线精品| 看免费成人av毛片| 中文欧美无线码| 欧美日韩亚洲国产一区二区在线观看 | 老汉色∧v一级毛片| 国产xxxxx性猛交| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 99久久人妻综合| 亚洲视频免费观看视频| 1024视频免费在线观看| 91九色精品人成在线观看| 精品一品国产午夜福利视频| 国产av精品麻豆| 国产精品成人在线| 黑人猛操日本美女一级片| 亚洲欧美清纯卡通| 三上悠亚av全集在线观看| 免费看不卡的av| 大话2 男鬼变身卡| 少妇人妻 视频| xxxhd国产人妻xxx| 亚洲五月色婷婷综合| 国产又爽黄色视频| 国产av精品麻豆| 99热国产这里只有精品6| 我的亚洲天堂| 亚洲精品第二区| av欧美777| 男女下面插进去视频免费观看| 久久这里只有精品19| 一区二区三区四区激情视频| 国产精品99久久99久久久不卡| 国产日韩欧美在线精品| 欧美日韩综合久久久久久| 国产国语露脸激情在线看| 天堂8中文在线网| 国产亚洲av高清不卡| 国产真人三级小视频在线观看| 另类亚洲欧美激情| 亚洲精品美女久久久久99蜜臀 | 午夜日韩欧美国产| 中文字幕精品免费在线观看视频| 日韩 亚洲 欧美在线| 在线观看www视频免费| 嫩草影视91久久| 国产欧美亚洲国产| 香蕉国产在线看| 久久99热这里只频精品6学生| 国产精品免费视频内射| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 18禁裸乳无遮挡动漫免费视频| 久久 成人 亚洲| 亚洲 国产 在线| 国产一区二区激情短视频 | 男女免费视频国产| 日韩大片免费观看网站| 99久久99久久久精品蜜桃| 日韩制服丝袜自拍偷拍| 大香蕉久久网| 18禁黄网站禁片午夜丰满| 亚洲精品av麻豆狂野| 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 日本av免费视频播放| 国产日韩一区二区三区精品不卡| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 69精品国产乱码久久久| 久久99热这里只频精品6学生| www.自偷自拍.com| 成人免费观看视频高清| 精品一区二区三区四区五区乱码 | 午夜两性在线视频| 国产伦理片在线播放av一区| 麻豆av在线久日| 中国国产av一级| 国产精品国产三级国产专区5o| 亚洲,欧美,日韩| 欧美成狂野欧美在线观看| 亚洲精品av麻豆狂野| 18禁观看日本| 欧美精品人与动牲交sv欧美| 日韩制服丝袜自拍偷拍| 午夜福利乱码中文字幕| 一级片免费观看大全| 啦啦啦在线免费观看视频4| 晚上一个人看的免费电影| 性高湖久久久久久久久免费观看| 免费在线观看黄色视频的| 国产1区2区3区精品| 十八禁高潮呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 日韩中文字幕视频在线看片| a级毛片黄视频| 免费看不卡的av| 91国产中文字幕| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 操美女的视频在线观看| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| 欧美大码av| 少妇精品久久久久久久| 只有这里有精品99| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| av片东京热男人的天堂| 午夜两性在线视频| 狠狠婷婷综合久久久久久88av| 青青草视频在线视频观看| av欧美777| 两人在一起打扑克的视频| 国产成人欧美| 电影成人av| 又黄又粗又硬又大视频| 久久久国产精品麻豆| 9色porny在线观看| 亚洲国产看品久久| 久久久精品国产亚洲av高清涩受| 久久久精品区二区三区| 最近中文字幕2019免费版| 国产麻豆69| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 咕卡用的链子| 欧美激情极品国产一区二区三区| 男女边吃奶边做爰视频| 国产又爽黄色视频| 精品国产乱码久久久久久小说| 最近手机中文字幕大全| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品高潮呻吟av久久| 性少妇av在线| 亚洲专区中文字幕在线| 美女主播在线视频| 97精品久久久久久久久久精品| 性色av乱码一区二区三区2| 日本av手机在线免费观看| 亚洲视频免费观看视频| 欧美中文综合在线视频| 一个人免费看片子| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| 午夜福利在线免费观看网站| 精品第一国产精品| h视频一区二区三区| e午夜精品久久久久久久| 老司机靠b影院| 人人妻人人澡人人爽人人夜夜| 制服人妻中文乱码| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 亚洲精品中文字幕在线视频| 麻豆av在线久日| 欧美日韩av久久| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| avwww免费| 99久久精品国产亚洲精品| 久久久精品区二区三区| 永久免费av网站大全| 国产av国产精品国产| 国产欧美日韩一区二区三 | kizo精华| 国产一区亚洲一区在线观看| 亚洲专区中文字幕在线| 汤姆久久久久久久影院中文字幕| 不卡av一区二区三区| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 一区福利在线观看| 女人精品久久久久毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲av国产av综合av卡| 欧美 亚洲 国产 日韩一| 性高湖久久久久久久久免费观看| 亚洲国产精品一区三区| av欧美777| 成年女人毛片免费观看观看9 | 91精品国产国语对白视频| 深夜精品福利| 免费av中文字幕在线| 久久精品熟女亚洲av麻豆精品| 七月丁香在线播放| 国产欧美日韩一区二区三区在线| 国产色视频综合| 亚洲精品第二区| 伊人亚洲综合成人网| 日本欧美国产在线视频| 亚洲av电影在线进入| 一级毛片女人18水好多 | 狂野欧美激情性xxxx| 久久久久久久国产电影| 精品熟女少妇八av免费久了| 国产精品国产三级国产专区5o| 中国美女看黄片| 国产精品99久久99久久久不卡| 最近最新中文字幕大全免费视频 | 女人久久www免费人成看片| xxxhd国产人妻xxx| 亚洲精品美女久久久久99蜜臀 | 亚洲视频免费观看视频| 久久影院123| 久久毛片免费看一区二区三区| 婷婷丁香在线五月| av在线app专区| 国产麻豆69| 亚洲国产成人一精品久久久| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 国产福利在线免费观看视频| 久久久久网色| 美女大奶头黄色视频| 老司机在亚洲福利影院| 男女之事视频高清在线观看 | 九色亚洲精品在线播放| a级毛片在线看网站| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影 | 晚上一个人看的免费电影| 成年人黄色毛片网站| 亚洲精品在线美女| 两性夫妻黄色片| 性色av一级| 国产精品成人在线| 丝袜在线中文字幕| 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 涩涩av久久男人的天堂| 99精品久久久久人妻精品| 免费看av在线观看网站| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区国产| 99国产精品一区二区蜜桃av | 黄色怎么调成土黄色| 国产成人一区二区在线| 亚洲情色 制服丝袜| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 亚洲国产中文字幕在线视频| 国产真人三级小视频在线观看| 各种免费的搞黄视频| 久久毛片免费看一区二区三区| √禁漫天堂资源中文www| av欧美777| 男女高潮啪啪啪动态图| 久久天堂一区二区三区四区| 男女国产视频网站| 久久天堂一区二区三区四区| av国产精品久久久久影院| www.av在线官网国产|