• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study of UDS Solvents for Purifying Highly Sour Natural Gas at Industrial Side-stream Plant

    2016-03-22 05:16:33
    中國(guó)煉油與石油化工 2016年1期

    (State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    Experimental Study of UDS Solvents for Purifying Highly Sour Natural Gas at Industrial Side-stream Plant

    Ke Yuan; Shen Benxian; Sun Hui; Liu Jichang; Liu Lu; Xu Shenyan

    (State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    The desulfurization performance of the UDS solvents was investigated at an industrial side-stream plant and was compared with that of MDEA solvent. A mass transfer performance model was employed for explaining the COS absorption into different solvents. Meanwhile, the regeneration performance of the UDS solvents was evaluated in side-stream tests. Results indicate that under the conditions covering an absorption temperature of 40 ℃, a pressure of 8.0 MPa, and a gas to liquid volume ratio (V/L) of around 230, the H2S content in puri fi ed gas can be reduced to 4.2 mg/m3and 0 by using solvents UDS-II and UDS-III, respectively. Moreover, the total sulfur content in both puri fi ed gases is less than 80 mg/m3. As a result, the UDS-III solvent shows by 30 percentage points higher in COS removal ef fi ciency than MDEA. In addition, the total volume mass transfer coef fi cient of UDS solvent is found to be twice higher than that of MDEA. Furthermore, the UDS solvents exhibit satisfactory thermal stability and regeneration performance.

    highly sour natural gas; UDS solvent; COS; desulfurization

    1 Introduction

    As a clean and efficient energy, the rapid development of natural gas has become a trend and requisite nowadays. With its increasing domestic demand, the proven reserve of Puguang gas fi eld in Northeastern Sichuan of China is up to 381 billion m3. The Puguang natural gas has a high content of sour components, especially a high carbonyl sulfide (COS) content[1-3]. As the requirements for natural gas puri fi cation are increasingly stringent, the academic and industrial investigation on ef fi cient puri fication technology and high-performance desulfurization solvents have been attracting increasingly wide interests[4-6]. Thanks to a lot of advantages including the large processing capacity, a wide range of adaptability to sulfi de concentration and the cheap equipment requirement, the absorption processes involving various aqueous alkanolamine solutions are considered as the most suitable technologies for removal of impurities from acid natural gas. However, the commonly used alkanolamines including monoethanolamine (MEA), diethanolamine (DEA), di-2-propanolamine (DIPA), and methyldiethanolamine (MDEA) feature a low ef fi ciency for removal of organosulfurs, such as COS and mercaptans[7-9]. Therefore, it is really a challenge to reducing the total sulfur content in puri fi ed gas to a required low level, since the sour natural gas has a high organosulfur concentration.

    Based on the organosulfur removal mechanism in relation to different solvent components, the ef fi cient formulated solvents called UDS (unitedly developed desulfurization solvent) have been developed in this lab and proven to have excellent performance for both H2S and organosulfurs removal[10]. The UDS solvents are composed of UDS formula component (UDS-F) and MDEA solvent. Furthermore, their formulas can be varied according to the compositions of raw natural gas in compliance with the puri fi cation requirements. The UDS formula component is mainly composed of alkanolamine compound, heterocyclic amine compound, and sulfur-containing heterocyclic compound. Previous investigations have indicated that the UDS solvents show excellent performance for removing sour components including organosulfur compounds from simulated highly sour natural gas[11-13].

    In present work, we studied the desulfurization perfor-mance of UDS solvents in an industrial side-stream unit by using the actual natural gas feed under the operation conditions that were similar to typical industrial process. The results can provide some guidance for industrial application of the UDS solvents.

    2 Experimental

    2.1 Feed and reagents

    The actual natural gas from an industrial plant was used as the feed gas. Its average composition is given in Table 1. It had a high content of acid components, and the concentration of H2S and organosulfur compounds was 15.9% and 390.9 mg/m3, respectively. The UDS solvent, which was prepared in this laboratory, contained more than 99% of active components, with its properties (on an anhydrous basis) shown in Table 2. UDS-I, UDS-II and UDSIII solvents contained 5%, 10%, and 15% of UDS formula component (UDS-F), respectively. The mass fractions of the UDS aqueous solutions were fi xed at 50%. Deionized water was used in all cases.

    Table 1 Composition of sour natural gas feed

    Table 2 Properties of anhydrous UDS solvent

    2.2 Experimental apparatus and procedure

    The industrial side-stream experimental unit with a processing capacity of 80 Nm3of feed natural gas per h is shown in Figure 1. The highly sour natural gas feedstock enters the absorption tower at the bottom and contacts with the lean solution introduced from the top of the tower on the packing. The puri fi ed gas was sampled from the top and the content of sulfur compounds was analyzed by a gas chromatograph. The rich solution is heated at the regeneration tower for stripping the absorbed sour components. The regenerated lean solution is then discharged from the bottom of the regeneration tower followed by cooling prior to being recycled to the absorption tower for absorption of sulfur compounds. According to a typical industrial process, the absorption temperature is speci fi ed at 40 ℃ for these side-stream experiments.

    Figure 1 Flowchart of industrial side-stream unit forhighly sour natural gas puri fi cation

    2.3 Analytical method

    A Clarus 500 gas chromatograph equipped with a fl ame photometric detector (FPD) (Perkin Elmer Chromatograph Instrument Co., Ltd., USA) was used to analyze the sulfur content in the feed gas and the puri fi ed gas. An SE-30 capillary column (Lanzhou Institute of Chemical Physics, China) was used to separate the sulfur compounds.

    2.4 Ef fi ciency for COS removal

    The ef fi ciencyE(%) for COS removal is calculated using the following expression:

    wherec1andc2are the concentration of COS in the feed gas and the purified gas, respectively, mg/m3;φ(H2S+CO2)1andφ(H2S+CO2)2are the total volume fraction of H2S and CO2in the feed gas and in the purified gas, respectively, %.

    2.5 Total volume mass transfer coef fi cient

    The total volume mass transfer coefficientKga(kmol/ (m3·s·kPa)) for COS is calculated using the following expression:

    wherejis the total gas phase velocity, kmol/(m2·s);Pis the gas phase pressure, kPa;His the packing height, m.

    3 Results and Discussion

    3.1 Mechanism for COS removal

    According to the composition analysis results presented in Table 1, COS accounts for the main part of organosulfurs in natural gas feed, suggesting that the overall ef fi ciency of organosulfurs removal can be largely determined by the COS removal rate. Optimization in the formula of solvent should be focused on promoting its ef fi ciency for COS removal. COS can be absorbed into tertiary amine like MDEA through hydrolysis reaction based on the alkali catalytic reaction (see Equation (3)).

    In addition to the catalytic hydrolysis reaction of COS, primary amine and secondary amine can also react with COS through forming the zwitterions (RNH2+COS-and R2NH+COS-)[14-16]. On the other hand, the primary amine and secondary amine components can catalyze the hydrolysis reaction of COS more effectively, and therefore, improve the chemical absorptive efficiency for COS removal[17-20]. The reaction can be written as Equations (4) and (5).

    Furthermore, heterocyclic amine (R′N(xiāo)H2) is the major component of UDS solvent affecting the removal of COS. Compared with primary amines and tertiary amines, MOR has a faster reaction rate with COS[14,20]. The reaction is shown in Equation (6).

    Meanwhile, the UDS solvents have good physical solubility of COS. Components of molecules with the S=O groups in UDS-F solvent can enhance the combination of organosulfurs and solvent molecules, increase the solubility of COS in the solvent, and largely improve the selective absorption of organosulfurs.

    Therefore, the UDS solvents have better organosulfurs removal performance than MDEA solvent because of their high physical absorption and chemical absorption nature. Furthermore, according to the compositions of raw natural gas as well as the puri fi cation requirements, the removal performance of UDS solvents can be updated through adjusting the content of UDS-F solvent.

    3.2 Puri fi cation performance of UDS solvent

    3.2.1 H2S removal under different gas to solvent ratios

    Figure 2 shows the H2S removal performance of UDS-I, UDS-II and UDS-III at different gas to solvent volume ratios (V/L). The H2S removal performance of MDEA solvent under the similar operating conditions is also given for comparison. It can be seen from Figure 2 that three kinds of UDS solvents and MDEA solvent all exhibit excellent H2S removal performance. The H2S content in the puri fi ed gas can be reduced up to less than the detection limit at aV/Lratio of less than 200. As theV/Lratio rises to 230, different solvents show a clear distinction in H2S removal performance. As for MDEA solvent, the H2S content in puri fi ed gas is a highest value, 34.7 mg/m3. As regards the UDS solvents, the H2S content in puri fi ed gas is 6.5 mg/m3, 4.2 mg/m3and 0 for UDS-I, UDS-II and UDS-III solvents, respectively.

    Figure 2 Effect of gas to solvent ratio on the performance of different solvents for H2S removal at 40℃

    3.2.2 Total sulfur removal performance under different gas to solvent ratios

    At differentV/Lratios, the performance of solvents for removal of total sulfur is shown in Figure 3. With theV/Lratio increasing from 140 to 230, the total sulfur content in the purified gas treated by MDEA is in the range of 150 to 290 mg/m3. The total sulfur content of the puri fi ed gas is below 80 mg/m3at the sameV/Lratio range upon using the UDS solvents. Three kinds of UDS solvents show significantly higher total sulfur removal performance as compared with MDEA solvent. It is mainly because the UDS solvents are designed according to the mechanism for removal of different types of sulfur compounds. Therefore, the UDS solvents not only can effectively remove H2S, but also reduce the total sulfur content in the puri fi ed gas to a lower level and improve the quality of puri fi ed gas.

    Figure 3 Effect of gas to solvent ratio on the performance for removal of total sulfur at 40

    3.2.3 CO2removal performance at different gas to solvent ratios

    Figure 4 shows the relationship between the CO2content in the purified gas andV/Lof different solvents. With the increase ofV/Lratio, the CO2content in puri fi ed gas follows a different rising speed. Because of the similar molecular structure of CO2and COS, the mechanism for removal of CO2is similar to that of COS in the absorption process. The composition of UDS solvents that can improve the physical and chemical dissolution performance of COS could also increase the CO2removal rate to a certain extent. Therefore, in comparison with MDEA solvent, the UDS solvents possess higher CO2absorption rate. As a result, varying performance for removal of CO2can also be achieved by adjusting the composition of UDS solvents based on different process requirements.

    Figure 4 Effect of gas to solvent ratio on the performanceof solvent for CO2removal at 40℃

    3.2.4 Comparison of COS removal performance between UDS and MDEA solvents

    Judging from the analysis of sulfur compounds in feed gas shown in Table 1, the organosulfurs in raw materials contain mainly COS, so the organosulfurs removal performance of the solvent is mainly determined by the COS removal rate. The COS removal ef fi ciency and total volume mass transfer coef fi cient of UDS solvents are compared with those of MDEA at aV/Lratio of 230, with the results presented in Figure 5. It can be seen that the COS removal efficiency and total volume mass transfer coefficient increase with an increasing content of UDS-F solvent. The COS removal ef fi ciency of UDS solvents is by more than 30 percentage points higher than that of MDEA solvent. At aV/Lratio of 230, the total volume mass transfercoef fi cient of UDS-I is 8.55×10-7kmol/(m3·s·kPa), which is twice higher than that of MDEA solvent, viz. 3.02×10-7kmol/(m3·s·kPa).

    Figure 5 Comparison on removal of COS between UDS and MDEA solvents at 40(atV/L=230)

    3.3 Mass transfer performance model for COS absorption

    The UDS solvents have definite chemical and physical solubility of COS. But in the presence of H2S and CO2, the chemical solubility of COS will be affected by different degree of inhibition. For the case of highly sour gas absorption process, there is a high concentration of H2S and CO2. The acidic component load in UDS solution is higher. Therefore, we set up an absorption model for removing organosulfurs from highly sour natural gas by the UDS solvents[21-22](see Equation (7)).

    wherebis the mass transfer performance factor of COS, mol0.3·m-0.6·s-0.3·kPa-1; a is the packing speci fi c area, m2/m3; H is the height of absorption tower, m;Gis the gas phase fl ow rate, mol/s;Lis the liquid fl ow rate, mol/s;mis the Henry constant of COS;y1andy2are the organosulfurs concentration in the gas feed and in the puri fi ed gas, respectively.

    The Henry constantmand the mass transfer performance factorbof COS in UDS and MDEA solvents are calculated using the above model, with the results listed in Table 3. The Henry constantmis used to characterize the capacity of COS dissolved, and the smaller m indicates the higher solubility of COS in the solvent. The mass transfer performance factorbcharacterizes the mass transfer performance of COS in the absorption process. Under the same condition, the greater mass transfer performance factorbof COS is more bene fi cial to the absorption process. The model parameters in Table 3 show that the Henry constant of COS for the UDS solvents is less than that of MDEA solvent, which indicates that the solubility of COS in the UDS solvent is higher than that in MDEA under the same absorption condition. At the same time, the mass transfer performance factor of COS in UDS solvent is higher than that in MDEA. The UDS-F component, which can improve the chemical absorption rate and the physical solubility of COS, provides UDS solvent with higher COS solubility and mass transfer performance. The industrial side-stream test results confirm our conclusion that the UDS solvents can improve the COS removal efficiency by more than 30 percentage points as compared with MDEA solvent.

    Table 3 Henry's constant and mass transfer factors of organosulfur for UDS solvents at 40

    Table 3 Henry's constant and mass transfer factors of organosulfur for UDS solvents at 40

    Solventmb×103, mol0.3·m-0.6·s-0.3·kPa-1MDEA 4.15 1.93 UDS-I 1.34 2.94 UDS-II 1.02 3.37 UDS-III 0.91 3.52

    The model analysis is carried out to study the effect of operating conditions on the puri fi cation performance. For the same set of devices, the main adjustable parameters are the gas liquid ratio, namely the gas phase fl ow and the liquid phase flow. The effect of gas phase flow and liquid phase fl ow on the puri fi cation performance using the UDS-III solvent is shown in Figure 6. With the decrease of the gas phase fl ow or the increase of liquid phase fl ow, the puri fi cation performance becomes better. At a low gas velocity, a higher solvent circulation volume can improve the puri fi cation performance. But at a high gas velocity, an increasing solvent fl ow, which means reduction of the gas liquid ratio, does not have obvious effect on improvement of the purification performance. Therefore, an appropriate gas liquid ratio not only can improve the effect of puri fi cation, but also reduce the energy consumption.

    Figure 6 Model analysis on effect of operating conditions on puri fi cation performance

    3.4 Regeneration performance of UDS solvents

    The regeneration performance of the solvent in the re-cycling process is an important factor that can affect the absorption performance of the solvent, and the content of acid components in the lean solution will directly in fl uence the quality of the puri fi ed gas.

    Industrial side-stream experiment examines the regeneration performance of the UDS and MDEA solvents. The results are listed in Table 4. Regenerative steam consumption is speci fi ed at 0.35 kg per kg of solution circulated. Under the same regeneration conditions, the contents of H2S and CO2in the UDS and MDEA lean solutions are maintained at under 0.04 mol/L, indicating to the good regeneration performance.

    Table 4 Content of H2S and CO2in the UDS and MDEA lean solutions

    4 Conclusions

    The desulfurization performance of MDEA solvent and three kinds of UDS solvents was studied in an industrial side-stream unit. At an absorption temperature of 40 ℃, an absorption pressure of 8.0 MPa, aV/Lratio of about 230, the H2S content in puri fi ed gas was reduced to 34.7 mg/m3, 6.5 mg/m3, 4.2 mg/m3, and 0 by using MDEA, UDS-I, UDS-II and UDS-III, respectively. In comparison with MDEA solvent, three kinds of the UDS solvents not only showed good effect of H2S removal, but also achieved better COS removal performance. When theV/Lratio changed within the range from 140 to 230, the total sulfur content in the purified gas ranged from 150 mg/m3to 290 mg/m3for MDEA solvent, while the total sulfur content in the purified gas was below 80 mg/m3for the UDS solvents. The UDS solvents achieved by more than 30 percentage points higher in COS removal ef fi ciency as compared to that of MDEA. In addition, the total volume mass transfer coef fi cient of UDS solvent was found to be twice higher than that of MDEA. Furthermore, the UDS solvents exhibited satisfactory regeneration performance.

    Acknowledgements: The authors are grateful for the fi nancial support from the National Key Science and Technology Project of China (2011ZX05017-005) and the Fundamental Research Funds for the Central Universities (No.22A201514010).

    [1] Long S X, Zhu H, Zhu T, et al. Prospect of Sinopec's exploration for natural gas [J]. Natural Gas Industry, 2008, 28(1): 17-21 (in Chinese)

    [2] Li L, Chen J F, Xu L H. Component and carbon isotope characteristics of natural gas in the Puguang gas fi eld, Sichuan [J]. Inner Mongolia Petrochem Indus, 2008(4): 106-108 (in Chinese)

    [3] Ma Y S. Geochemical characteristics and origin of natural gases from Puguang gas fi eld in Eastern Sichuan Basin [J]. Natural Gas Geoscience, 2008, 19(1): 1-7 (in Chinese)

    [4] Ghanbarabadi H, Khoshandam B. Simulation and comparison of Sulfinol solvent performance with amine solvents in removing sulfur compounds and acid gases from natural sour gas [J]. Journal of Natural Gas Science and Engineering, 2015, 22: 415-420

    [5] Luo X W. Development and application of natural gas puri fi cation techniques [J]. Natural Gas and Oil, 2006, 24(2): 30-34 (in Chinese)

    [6] Angaji M T, Ghanbarabadi H, Gohari F K Z. Optimizations of sulfolane concentration in propose sulfinol-M solvent instead of MDEA solvent in the refineries of Sarakhs [J]. Journal of Natural Gas Science and Engineering, 2013, 15: 22-26

    [7] Zong L, Chen C C. Thermodynamic modeling of CO2and H2S solubility in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with electrolyte NRTL model [J]. Fluid Phase Equilibria, 2011, 306(2): 190-203

    [8] Rivera-Tinoco R, Bouallou C. Reaction kinetics of carbonyl sulfide (COS) with diethanolamine in methanolic solutions[J]. Industrial & Engineering Chemistry Research, 2008, 47(19): 7375-7380

    [9] Yu M, Zhou L. Review and forecast of puri fi cation of H2S in natural gas[J]. Tianjin Chemical Industry, 2002(5): 18-20 (in Chinese)

    [10] Shen B X, Zhang J H, Chu Z, et al. High-ef fi ciency puri fication desulfurizer for high-acid oil and gas: China Patent, ZL200910233505.1[P], 2014-04-02

    [11] Zhang J H, Shen B X, Liu J C, et al. Study on removing organosulfur from highly sour natural gas by medium pressure absorption using XDS solvent[J]. Petroleum Processing and Petrochemicals, 2009, 40(3): 65-68 (in Chinese)

    [12] Zhang J H, Shen B X, Sun H, et al. A study on the desulfurization performance of solvent UDS for purifying highly sour natural gas [J]. Petroleum Science and Technology, 2011, 29(1): 48-58

    [13] Zhang J H, Shen B X, Liu J C, et al. Absorption selectivity of solvents for organosulfurs in highly sour natural gas [J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36(8): 822-829

    [14] Sharma M M. Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines and catalysis by Br?nsted bases of the hydrolysis of COS [J]. Transactions of the Faraday Society, 1965, 61: 681-688

    [15] Lee S C, Snodgrass M J, Park M K, et al. Kinetics of removal of carbonyl sul fi de by aqueous monoethanolamine [J]. Environmental Science & Technology, 2001, 35(11): 2352-2357

    [16] Amararene F, Bouallou C. Kinetics of carbonyl sulfide (COS) absorption with aqueous solutions of diethanolamine and methyldiethanolamine [J]. Industrial & Engineering Chemistry Research, 2004, 43(19): 6136-6141

    [17] Asit K S, Symalendu S B, Saju J P. Selective removal of H2S from gases containing H2S and CO2by absorption into aqueous solutions of 2-amino-2-methyl-1-propanol [J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3051-3055

    [18] Hu T Y. Study on solvent CT8-20 on removing organosulfur from highly sour natural gas [J]. Gas Purification, 2005, 5(4): 38-44 (in Chinese)

    [19] Littel R J, Versteeg G F, Van Swaaij W P M. Kinetic study of COS with tertiary alkanolamine solutions. 2. Modeling and experiments in a stirred cell reactor [J]. Industrial & Engineering Chemistry Research, 1992, 31(5): 1269-1274

    [20] Littel R J, Versteeg G F, Swaaij W P M. Kinetics of COS with primary and secondary amines in aqueous solutions [J]. AIChE Journal, 1992, 38(2): 244-250

    [21] Zhang J H, Shen B X, Liu J C, et al. An absorption model for solvent XDS on removing organosulfurs from highly sour natural gas [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32(17): 1625-1633

    [22] Zhang Feng, Shen Benxian, Sun Hui, et al. Simultaneous removal of H2S and organosulfur compounds from liquefied petroleum gas using formulated solvents: Solubility parameter investigation and industrial test[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(1): 75-81

    Received date: 2015-10-21; Accepted date: 2015-12-25.

    Prof. Shen Benxian, Telephone: +86-21-64252851; E-mail: sbx@ecust.edu.cn.

    精品亚洲成国产av| 国产精品亚洲av一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 欧美成人午夜精品| 国产蜜桃级精品一区二区三区 | 中文字幕最新亚洲高清| 国产精品国产高清国产av | 国产精品 欧美亚洲| 丝袜美足系列| 国产精品影院久久| 久久久国产精品麻豆| 后天国语完整版免费观看| 高清在线国产一区| 欧美精品亚洲一区二区| 国产又爽黄色视频| 51午夜福利影视在线观看| 18禁黄网站禁片午夜丰满| 午夜福利免费观看在线| 99热国产这里只有精品6| 人人妻人人添人人爽欧美一区卜| 悠悠久久av| 午夜福利,免费看| 久久精品91无色码中文字幕| 免费久久久久久久精品成人欧美视频| 激情在线观看视频在线高清 | 伦理电影免费视频| 亚洲精品成人av观看孕妇| 国产xxxxx性猛交| 国内毛片毛片毛片毛片毛片| 亚洲人成伊人成综合网2020| 宅男免费午夜| 亚洲av日韩精品久久久久久密| tocl精华| 日日夜夜操网爽| 美女视频免费永久观看网站| 久久久久久久午夜电影 | xxxhd国产人妻xxx| 精品电影一区二区在线| 成人亚洲精品一区在线观看| 午夜精品久久久久久毛片777| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 精品人妻在线不人妻| 亚洲一码二码三码区别大吗| 亚洲avbb在线观看| 激情在线观看视频在线高清 | 亚洲欧美日韩高清在线视频| netflix在线观看网站| 一二三四在线观看免费中文在| 97人妻天天添夜夜摸| 老熟妇仑乱视频hdxx| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲视频免费观看视频| 99在线人妻在线中文字幕 | 在线国产一区二区在线| 成年人午夜在线观看视频| 动漫黄色视频在线观看| 亚洲精品在线观看二区| 少妇被粗大的猛进出69影院| 99在线人妻在线中文字幕 | 老熟妇乱子伦视频在线观看| 少妇粗大呻吟视频| 精品一区二区三卡| 久久久久精品人妻al黑| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 中文字幕制服av| 美女高潮到喷水免费观看| 一区在线观看完整版| 怎么达到女性高潮| 日韩免费av在线播放| 大香蕉久久网| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女 | 无遮挡黄片免费观看| 久久人妻福利社区极品人妻图片| 欧美另类亚洲清纯唯美| 身体一侧抽搐| 亚洲av日韩精品久久久久久密| 视频区图区小说| 成人精品一区二区免费| 日韩 欧美 亚洲 中文字幕| 满18在线观看网站| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 人妻丰满熟妇av一区二区三区 | 这个男人来自地球电影免费观看| 怎么达到女性高潮| 欧美+亚洲+日韩+国产| 国产精品一区二区在线观看99| 亚洲人成伊人成综合网2020| 欧美性长视频在线观看| 亚洲第一青青草原| av福利片在线| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲| 1024视频免费在线观看| 久久久久久久久免费视频了| 十八禁高潮呻吟视频| 免费观看人在逋| 91麻豆av在线| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| x7x7x7水蜜桃| 亚洲色图av天堂| 热99久久久久精品小说推荐| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 高清视频免费观看一区二区| 精品国产一区二区久久| 国产精品国产高清国产av | 热re99久久国产66热| 午夜免费成人在线视频| 欧美在线一区亚洲| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 亚洲综合色网址| av免费在线观看网站| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 久久精品亚洲精品国产色婷小说| 丰满的人妻完整版| 视频区图区小说| 中文字幕精品免费在线观看视频| 91麻豆精品激情在线观看国产 | 国产激情欧美一区二区| 日本欧美视频一区| 成人手机av| 亚洲色图综合在线观看| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 欧美日韩黄片免| 人人妻人人爽人人添夜夜欢视频| 极品人妻少妇av视频| 欧美 亚洲 国产 日韩一| 亚洲片人在线观看| 两性夫妻黄色片| 看片在线看免费视频| 国产亚洲精品第一综合不卡| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 王馨瑶露胸无遮挡在线观看| 午夜福利一区二区在线看| 欧美成狂野欧美在线观看| 看黄色毛片网站| 国产在线观看jvid| 91国产中文字幕| av国产精品久久久久影院| 99久久人妻综合| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 18禁观看日本| av超薄肉色丝袜交足视频| 国产在线精品亚洲第一网站| 国产真人三级小视频在线观看| 国产黄色免费在线视频| 成人永久免费在线观看视频| 亚洲成人国产一区在线观看| 国产97色在线日韩免费| 欧美日韩黄片免| 久久中文字幕一级| 精品少妇久久久久久888优播| 国产男靠女视频免费网站| 69av精品久久久久久| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 免费看十八禁软件| 欧美人与性动交α欧美软件| 久久久水蜜桃国产精品网| 女人精品久久久久毛片| 国产精品免费视频内射| 大香蕉久久网| 久久ye,这里只有精品| 国产精品综合久久久久久久免费 | 啦啦啦免费观看视频1| 在线观看免费日韩欧美大片| 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 欧美黄色片欧美黄色片| 久久性视频一级片| 日韩欧美在线二视频 | 18禁美女被吸乳视频| 亚洲一区高清亚洲精品| 亚洲av片天天在线观看| 丰满饥渴人妻一区二区三| 日韩欧美一区二区三区在线观看 | www.熟女人妻精品国产| 97人妻天天添夜夜摸| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全免费视频| 欧美黄色淫秽网站| 成人精品一区二区免费| 嫩草影视91久久| 久久精品人人爽人人爽视色| 欧美久久黑人一区二区| 久久狼人影院| 日本撒尿小便嘘嘘汇集6| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美国产一区二区入口| 男人的好看免费观看在线视频 | 热99re8久久精品国产| 黄色怎么调成土黄色| 国产高清视频在线播放一区| 99国产精品免费福利视频| 国产精品偷伦视频观看了| 黑人欧美特级aaaaaa片| 亚洲中文字幕日韩| 午夜免费观看网址| 18在线观看网站| 中文字幕最新亚洲高清| 无限看片的www在线观看| 亚洲少妇的诱惑av| 成在线人永久免费视频| e午夜精品久久久久久久| 欧美日韩国产mv在线观看视频| 伊人久久大香线蕉亚洲五| 日韩三级视频一区二区三区| 成人黄色视频免费在线看| 老司机亚洲免费影院| 国产精品二区激情视频| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| a在线观看视频网站| av电影中文网址| 欧美黑人欧美精品刺激| 可以免费在线观看a视频的电影网站| 超碰97精品在线观看| 亚洲av日韩在线播放| 亚洲欧洲精品一区二区精品久久久| 妹子高潮喷水视频| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 日日夜夜操网爽| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 免费在线观看亚洲国产| 天天躁日日躁夜夜躁夜夜| 精品亚洲成a人片在线观看| 久久人妻福利社区极品人妻图片| 久久草成人影院| 亚洲色图av天堂| 一进一出好大好爽视频| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 丁香欧美五月| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩另类电影网站| 国产精品久久久人人做人人爽| 丝袜人妻中文字幕| 两个人看的免费小视频| 亚洲精品国产区一区二| 大香蕉久久网| 两人在一起打扑克的视频| 久久精品亚洲精品国产色婷小说| 免费看a级黄色片| 51午夜福利影视在线观看| 欧美国产精品一级二级三级| 亚洲中文字幕日韩| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 免费在线观看影片大全网站| 超色免费av| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 国产精品综合久久久久久久免费 | 久久精品aⅴ一区二区三区四区| e午夜精品久久久久久久| 精品国产亚洲在线| 一个人免费在线观看的高清视频| 女人被狂操c到高潮| 国产亚洲精品一区二区www | 中出人妻视频一区二区| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 亚洲在线自拍视频| 18禁国产床啪视频网站| www.熟女人妻精品国产| 久久久精品免费免费高清| 久久久久视频综合| 亚洲成人免费av在线播放| 中文字幕人妻熟女乱码| 女同久久另类99精品国产91| 大型av网站在线播放| 丝袜美足系列| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| 久久久久精品国产欧美久久久| 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 纯流量卡能插随身wifi吗| 久久精品亚洲av国产电影网| 美女国产高潮福利片在线看| 国产伦人伦偷精品视频| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 国产人伦9x9x在线观看| 成年动漫av网址| 成人国语在线视频| 精品人妻1区二区| 欧美日韩福利视频一区二区| 少妇粗大呻吟视频| 欧美日韩福利视频一区二区| 黄色 视频免费看| 麻豆av在线久日| 下体分泌物呈黄色| 亚洲黑人精品在线| 国产精品国产高清国产av | 国产精品98久久久久久宅男小说| 天天操日日干夜夜撸| 黑人操中国人逼视频| 国产午夜精品久久久久久| 精品久久久久久久久久免费视频 | 一个人免费在线观看的高清视频| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 久久青草综合色| 亚洲男人天堂网一区| 欧美大码av| 热99久久久久精品小说推荐| 久久午夜综合久久蜜桃| 高清视频免费观看一区二区| 人妻丰满熟妇av一区二区三区 | 国产精品 欧美亚洲| 日本欧美视频一区| 久久草成人影院| 精品久久久久久,| aaaaa片日本免费| 日韩免费av在线播放| 久久久国产成人免费| 欧美亚洲日本最大视频资源| 亚洲人成电影免费在线| 日韩制服丝袜自拍偷拍| av片东京热男人的天堂| 国产野战对白在线观看| 老司机午夜福利在线观看视频| 波多野结衣av一区二区av| 亚洲免费av在线视频| av线在线观看网站| 精品久久久久久电影网| 亚洲美女黄片视频| 婷婷丁香在线五月| 久久精品熟女亚洲av麻豆精品| 99久久综合精品五月天人人| 99re在线观看精品视频| 免费av中文字幕在线| 久久精品国产亚洲av香蕉五月 | 捣出白浆h1v1| 黄色毛片三级朝国网站| 日韩视频一区二区在线观看| 国产成+人综合+亚洲专区| 亚洲九九香蕉| 欧美人与性动交α欧美软件| cao死你这个sao货| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 亚洲熟女毛片儿| 男人的好看免费观看在线视频 | 亚洲男人天堂网一区| 成人18禁在线播放| 亚洲美女黄片视频| 无人区码免费观看不卡| videos熟女内射| 欧美乱妇无乱码| 免费日韩欧美在线观看| 满18在线观看网站| 少妇 在线观看| 高清毛片免费观看视频网站 | 人人妻,人人澡人人爽秒播| 很黄的视频免费| 精品人妻1区二区| 国产区一区二久久| 天天影视国产精品| www.精华液| 国产精品久久久人人做人人爽| 国产片内射在线| 久久中文看片网| 亚洲欧美日韩高清在线视频| 亚洲av日韩精品久久久久久密| 在线国产一区二区在线| 性色av乱码一区二区三区2| 国产免费男女视频| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 欧美日韩成人在线一区二区| 婷婷成人精品国产| 久久这里只有精品19| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 精品人妻在线不人妻| www.熟女人妻精品国产| 亚洲精品美女久久久久99蜜臀| 怎么达到女性高潮| 国产男女超爽视频在线观看| 欧美 亚洲 国产 日韩一| 久久久久久久精品吃奶| 少妇 在线观看| 久久精品亚洲av国产电影网| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看 | 精品少妇久久久久久888优播| 欧美激情极品国产一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品一二三| 色综合欧美亚洲国产小说| 大型黄色视频在线免费观看| 国产精品成人在线| 欧美性长视频在线观看| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 一级黄色大片毛片| 91av网站免费观看| 国产99久久九九免费精品| 午夜福利乱码中文字幕| 免费在线观看黄色视频的| 侵犯人妻中文字幕一二三四区| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 亚洲第一av免费看| 在线观看日韩欧美| 又紧又爽又黄一区二区| 亚洲九九香蕉| 国产1区2区3区精品| a级片在线免费高清观看视频| 首页视频小说图片口味搜索| 夫妻午夜视频| 国产主播在线观看一区二区| 我的亚洲天堂| 90打野战视频偷拍视频| 色老头精品视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产99白浆流出| 美女 人体艺术 gogo| 日韩成人在线观看一区二区三区| svipshipincom国产片| 亚洲成av片中文字幕在线观看| 日日爽夜夜爽网站| 性色av乱码一区二区三区2| 久久久久国产精品人妻aⅴ院 | 午夜91福利影院| 国产男女超爽视频在线观看| 一级毛片女人18水好多| 国产精品免费一区二区三区在线 | 一边摸一边做爽爽视频免费| 夜夜爽天天搞| 亚洲国产精品合色在线| 极品教师在线免费播放| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 淫妇啪啪啪对白视频| 另类亚洲欧美激情| 国产成人啪精品午夜网站| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 国产深夜福利视频在线观看| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 两性夫妻黄色片| 久久精品国产a三级三级三级| av网站在线播放免费| 亚洲第一青青草原| 91在线观看av| 亚洲一区二区三区欧美精品| 成人国产一区最新在线观看| 国产精品免费大片| 国产欧美亚洲国产| 女性被躁到高潮视频| 成人手机av| 免费看a级黄色片| 国产精品永久免费网站| 女性生殖器流出的白浆| 欧美日韩av久久| 久久久国产成人免费| 村上凉子中文字幕在线| 久久影院123| 亚洲人成77777在线视频| 欧美日韩精品网址| 欧美日韩福利视频一区二区| 精品国产一区二区三区四区第35| 国产精品一区二区免费欧美| 国产有黄有色有爽视频| 在线观看免费视频日本深夜| 午夜老司机福利片| 人妻 亚洲 视频| 黄色毛片三级朝国网站| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 婷婷丁香在线五月| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| 亚洲人成电影观看| 涩涩av久久男人的天堂| 国产片内射在线| 成人亚洲精品一区在线观看| av免费在线观看网站| 18禁黄网站禁片午夜丰满| 久久狼人影院| 日日摸夜夜添夜夜添小说| 亚洲精品中文字幕一二三四区| 精品一区二区三区视频在线观看免费 | 五月开心婷婷网| 亚洲午夜精品一区,二区,三区| 欧美色视频一区免费| 亚洲成人免费av在线播放| 最新美女视频免费是黄的| 国产av精品麻豆| 亚洲精品成人av观看孕妇| 很黄的视频免费| 久久天堂一区二区三区四区| 在线观看舔阴道视频| 最新的欧美精品一区二区| 乱人伦中国视频| 国产精品 欧美亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 黄片大片在线免费观看| 涩涩av久久男人的天堂| 两个人看的免费小视频| 黄频高清免费视频| 国产成人欧美| 婷婷丁香在线五月| 欧美激情极品国产一区二区三区| 手机成人av网站| 一进一出抽搐动态| 午夜福利一区二区在线看| 在线国产一区二区在线| 99riav亚洲国产免费| 91成人精品电影| 人人澡人人妻人| 91av网站免费观看| 丝袜在线中文字幕| 国产精品免费大片| 露出奶头的视频| 一二三四在线观看免费中文在| 18禁黄网站禁片午夜丰满| 午夜福利一区二区在线看| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 午夜福利视频在线观看免费| 人人妻人人添人人爽欧美一区卜| 亚洲av熟女| 午夜视频精品福利| 国产精品免费大片| 一个人免费在线观看的高清视频| 免费在线观看视频国产中文字幕亚洲| 男女下面插进去视频免费观看| 国产精品1区2区在线观看. | 黄色怎么调成土黄色| 亚洲av日韩精品久久久久久密| 91在线观看av| 日本a在线网址| av免费在线观看网站| 久久性视频一级片| 男人舔女人的私密视频| 国产欧美日韩综合在线一区二区| 国产野战对白在线观看| 国产精品久久电影中文字幕 | 如日韩欧美国产精品一区二区三区| 精品一区二区三区视频在线观看免费 | 久久精品aⅴ一区二区三区四区| 91大片在线观看| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www | 国产精品一区二区精品视频观看| 亚洲五月婷婷丁香| www.自偷自拍.com| 久久久久国产一级毛片高清牌| 欧美黑人精品巨大| 人人妻人人添人人爽欧美一区卜| 午夜福利免费观看在线| 热99国产精品久久久久久7| 亚洲精品自拍成人| 国产高清视频在线播放一区| 操美女的视频在线观看| 久久精品国产亚洲av香蕉五月 | 18禁美女被吸乳视频| 日韩免费av在线播放| av天堂久久9| 亚洲七黄色美女视频| 18禁观看日本| 国产日韩一区二区三区精品不卡| 亚洲国产精品一区二区三区在线| www.自偷自拍.com| 人人澡人人妻人| 夜夜爽天天搞| 亚洲美女黄片视频| 黄色毛片三级朝国网站| 18禁裸乳无遮挡免费网站照片 | 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 手机成人av网站| 99热网站在线观看| 日韩三级视频一区二区三区| 在线观看免费视频日本深夜| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利在线免费观看网站| 精品国产超薄肉色丝袜足j|