• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrospinning Preparation and Mechanical Properties of Polymethyl Methacrylate (PMMA)/Halloysite Nanotubes (HNTs) Composite Nano fi bers

    2016-03-22 06:35:59ChengZhilinQinXixiQinDunzhong
    中國煉油與石油化工 2016年2期

    Cheng Zhilin; Qin Xixi; Qin Dunzhong

    (1.College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002; 2. Jiangsu Sinvochem Company, Yangzhou 211900)

    Electrospinning Preparation and Mechanical Properties of Polymethyl Methacrylate (PMMA)/Halloysite Nanotubes (HNTs) Composite Nano fi bers

    Cheng Zhilin1; Qin Xixi1; Qin Dunzhong2

    (1.College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002; 2. Jiangsu Sinvochem Company, Yangzhou 211900)

    The paper was aimed at the PMMA/HNTs composite nano fi bers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the structure and properties of the composite nanofibers by SEM, XRD, FTIR and DSC techniques. The effect of the PMMA/HNTs composite nanofibers in relationship to the mass percentage of HNTs was investigated. The results indicated that HNTs wrapped in polymer matrix were highly oriented and dispersed by the electrospinning technique, resulting in improved thermal stability of the polymer. Moreover, the mechanical properties of the PMMA/HNTs composite nano fi bers which were dependent on HNTs mass content were measured, and good enhanced mechanical properties were obtained.

    PMMA; HNTs, composite nano fi bers, electrospinning

    1 Introduction

    Nanofibers can be produced from a wide range of polymers. These fibers have extremely high specific surface area due to their small diameters, and nanofiber mats can be highly porous with excellent pore interconnection. These unique characteristics plus the functionalities from the polymers themselves provide nanofibers with many desirable properties for advanced applications. Electrospinning is a very versatile and cost effective process for producing multi-functional nanofibers from various polymers, polymer blends and composites[1-3]. In the recent past, the composite or functioned PMMA nano fi bers prepared by electrospinning technique have presented many promising applications, such as lithium ion battery[1], luminescent fiber[2]and bioseparation[3].

    More recently, Reddy, et al.[4]reported that the dielectric constant of WS2/PMMA composite nano fi bers manufactured by electrospinning were obviously higher than that of the Perspex, and their enhanced rigidity and toughness could be used as transparent high energy absorption material. Ji, et al.[5]reported the gas sensing properties of the PANI/PMMA coaxial composite nanofibers with polyaniline (PANI) formed by virtue of in-situ solution polymerization by electrospinning. Preda, et al.[6]reported that the semiconductor coated fiber based on ZnO/PMMA composite nanofibers could be prepared by combination of chemical deposition and electrospinning. Bae, et al.[7]reported that the PMMA fi bers with good adsorption property could be used on the sewage disposal and environmental protection.

    As a two-layered alumino-silicate clay, halloysite nanotubes (HNTs) have a number of exciting potential applications in polymer nanocomposites thanks to their high mechanical strength, thermal stability, biocompatibility, and abundance of resources[8-12].

    In this paper, the PMMA/HNTs composite nanofibers were successfully prepared by electrospinning technique. The composite nanofibers were characterized by SEM, XRD, IR, and DSC techniques, with their mechanical properties measured.

    2 Experimental

    2.1 Materials

    HNTs (with the length covering 200—500 nm and the pore diameter ranging from 15 nm to 25 nm) were purchased from the Golden Sun Ceramics Co., Ltd. of China. Before being used, HNTs were calcined at 500 ℃ for 6 h. All reagents were of analytically pure grade and used without further puri fi cation.

    2.2 Preparation of dispersed PMMA/HNTs solution

    Firstly, HNTs were highly dispersed in DMF solvent by the sand milling device, which could obtain a uniform suspension that could be stabilized for 3 days without any sediment. Next, 28% of PMMA transparent solution was prepared by dissolving PMMA in DMF solvent at room temperature for 2 h under vigorous stirring by a mechanical stirrer. Finally, a certain amount of the previously obtained HNTs suspension was added into the above PMMA solution under vigorous stirring for 4 h at different mass concentration of HNTs , namely 5%, 10%, 15%, 20% and 25%, respectively, relative to PMMA, which was labeled as PMMA/HNTs-5, PMMA/HNTs-10, PMMA/HNTs-15, PMMA/HNTs-20 and PMMA/HNTs-25, respectively.

    2.3 Electrospinning

    The PMMA/HNTs composite nanofibers were prepared by using an SS-2535H electrospinning system(made by the Beijing Yongkang Industry Technology Development Co. Ltd.). A syringe was filled with the PMMA/HNTs solution. The solution was transferred through a syringe needle at a flow rate of 0.2 mm/min. The electrospun fi bers were collected on a paper wrapped rotating metal drum. The inner diameter of the syringe needle was 0.2 mm, and the distance between the syringe needle and the rotating metal drum was maintained at 15—20 cm apart. The electrospinning method for preparation of the PMMA/HNTs composite nanofibers is illustrated in Scheme 1.

    2.4 Characterization

    Scheme 1 Schematic illustration of preparation of PMMA/HNTs composite nano fi bers

    The SEM images were recorded by a S-4800 field emission scanning electron microscope. The FT-IR spectra were recorded on a Cary 610/670 micro infrared spectrometer in the range of 4 000—750 cm-1by the single reflection ATR attachment. The XRD analysis was recorded by a powder X- ray diffractometer. The DSC analysis of polymer was recorded by a DSC 8500 differential scanning calorimeter. The mechanical properties were characterized by a TY8000-85KN electronic universal testing machine.

    3 Results and Discussion

    3.1 Characterization of PMMA/HNTs composite nano fi bers

    Figure 1 shows the recorded SEM photos of the PMMA/ HNTs composite nanofibers containing different concentrations of HNTs. The diameter of composite nanofibers is about 800 nm and varies slightly with an increasing mass percentage of HNTs. When the mass percentage of HNTs reaches 25%, the surface morphology of the nanofibers still keeps smooth, with few notches and beads. Figure 2 and Table 1 give the elemental composition of PMMA and the PMMA/HNTs composite nano fi bers obtained by EDX analysis. It can be concluded that HNTs have been successfully electrospun in the PMMA polymer matrix.

    Figure 3 shows the FT-IR spectra of the PMMA/HNTs composite nanofibers with different mass percentage of HNTs. As for PMMA, the wavenumber at 2 900 cm-1is assigned to the stretching vibration absorption of —CH2radicals, and those at 1 438 cm-1and 1 480 cm-1are ascribed to the stretching vibration of C—H(CH2) radicals. Furthermore, the wavenumber at 1 388 cm-1and 1 733 cm-1is ascribed to the stretching vibration of CH3and O=C radicals, respectively. But as regards HNTs, the feature peaks at 1 105 cm-1and 1 033 cm-1are assigned to the stretching vibration of Si—O radicals. It can be seen that thespectra of PMMA/HNTs composite nanofibers are similar, and furthermore there is no difference as compared to that of PMMA. It suggests that HNTs in PMMA polymer matrix are relatively homogeneous and highly scattered.

    Figure 1 SEM photos of PMMA/HNTs composite nano fi bers with different mass percentages of HNTs

    Figure 2 EDX analysis of PMMA nano fi bers and PMMA/ HNTs composite nano fi bers

    Table 1 Elemental composition of PMMA and PMMA/ HNTs composite nanofibers identified by EDX analysis

    Figure 3 FT-IR spectrum of PMMA/HNTs in different percentages of HNTs

    Figure 4 presents the XRD patterns of HNTs, PMMA and PMMA/HNTs composite nanofibers. The typical feature peaks of HNTs are identified at about 2θ=12° and 20°, whereas the characteristic peaks of PMMA are identified at about 2θ=16° and 31°. Obviously, when the mass percentage of HNTs is 5%, the XRD pattern of the PMMA/HNTs composite nanofibers is consistent with that of PMMA. However, as the mass percentage of HNTs further increases to 10%, the characteristic peak of PMMA at 2θ=16° signi fi cantly shifts forwards at 2θ=14° of the PMMA/HNTs composite nanofibers, and furthermore the peak becomes sharper and stronger. Thecharacteristic peak at 2θ=31° also undergoes a slight shift. Afterwards, the characteristic peaks of the PMMA/HNTs composite nano fi bers vary insigni fi cantly when the mass percentage of HNTs further increases from 15% to 20% and 25%. This indicates that the crystalline structure of PMMA was affected by the content of HNTs in composites during the electrospinning process. It suggests that HNTs were highly dispersed in the PMMA polymer matrix.

    Figure 4 XRD spectra of PMMA/HNTs composite nano fi bers

    The DSC analysis results of PMMA and PMMA/HNTs composite nano fi bers are presented in Figure 5 and listed in Table 2. As the HNTs content increased from 5% to 25% in the composites, the glass transition temperature (Tg) of the PMMA/HNTs composite nano fi bers increased by 5.17 ℃from 101.30 ℃ of PMMA to 106.47 ℃ of PMMA/HNTs-25. This implies that the thermal stability of the PMMA/HNTs composite nanofibers is improved with an increasing HNTs content in the composites.

    Figure 5 DSC analysis of PMMA/HNTs composite fi bers

    Table 2 Relationship between the Tg values of PMMA/ HNTs composite nanofibers and the HNTs content

    3.2 Mechanical properties of PMMA/HNTs composite nano fi bers

    Table 3 lists the relationship between the mechanical properties of the PMMA/HNTs composite nano fi bers and the mass percentage of HNTs. It is well known that the inorganic micro-fibers functioning as fillers such as the glass fi ber can enhance the strength and toughness of the polymer. More interestingly, the enhancing effect of many types of nanofibers is significantly higher than those of microfibers thanks to the microstructure interaction of polymer and nano fi bers, such as CNT[13-14]. So far, HNTs serving as a type of nanofibers still have exhibited an excellent enhanced ability in polymer[15-16]. Compared to PMMA, the tensile modulus of the PMMA/HNTs composite fi brofelt containing 15% of HNTs is increased to 18.750 MPa, while the tensile strength is enhanced to 3.581 MPa, being by 81.67% and 4.09% higher than those of PMMA, respectively. This outcome should be attributed to the fact that the highly dispersed and oriented HNTs fi llers were wrapped inside the polymer nano fi bers by means of electrospinning, which could improve the anisotropy of the polymer crystal structure. More regretfully, the elongation at break of the PMMA/HNTs composites nanofibers containing 15% of HNTs slumps obviously by about 28% as compared to that of PMMA, indicating that the toughness of the composite nano fi bers is reduced. As the mass percentage of HNTs further increases to more than 15%, the tensile modulus and the tensile strength continue to fall off. This phenomenon should be attributed to the fact that the agglomeration of HNTs nanotubes takes place, which would subsequently decrease their degree of anisotropy. Moreover, the agglomeration of the nanotubes increases the weak van der Walls interaction between the nanotube bundles and the walls of the wrapped nanofibers. However, these interactions are negligible at a lower mass percentage of nanotubes out of the directional anisotropy[17].

    Table 3 Mechanical properties of PMMA/HNTs fibrofelt

    4 Conclusions

    The PMMA/HNTs composite nanofibers with good mechanical properties were prepared by electrospinning technique. The glass transition temperature (Tg) of the PMMA/HNTs composite nanofibers was improved by about 5.17 ℃, exhibiting a promising thermal stability. Meanwhile, the tensile modulus and tensile strength of the PMMA/HNTs composite nano fi bers containing 15% of HNTs were enhanced by about 81.67% and 4.09%, respectively, as compared to those of PMMA.

    Acknowledgment: This work was supported by the Talent Introduction Fund of Yangzhou University (2012), the Key Research Project—Industry Foresight and General Key Technology of Yangzhou (YZ2015020), the Innovative Talent for the Green Yangzhou Golden Phoenix Program (yzlyjfjh2015CX073), the Jiangsu Province Science and Technology Support Project (BE2014613), and the Six Talent Peaks of Jiangsu Province (2014-XCL-013). The authors also acknowledge the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The data of this paper were originated from the Test Center of the Yangzhou University.

    [1] Zheng Zhong, Cao Qi, Wang Xianyou. PVC-PMMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries[J]. Ionics, 2012, 18(1/2): 47-53

    [2] Chen H C, Liu C L, Bai C C, et al. Morphology and photophysical properties of DB-PPV/PMMA luminescent electrospun fi bers[J]. Macromol Chem Phys, 2009, 210(11): 918-925

    [3] Song Fei, Wang Xiuli, Wang Yuzhong. Fabrication of novel thermo-responsive electrospun nanofibrous mats and their application in bioseparation[J]. Eur Polym J, 2011, 47(10): 1885-1892

    [4] Reddy C S, Zak A, Zussman E. WS2nanotubes embedded in PMMA nanofibers as energy absorptive material[J]. J Mater Chem, 2011, 21(40): 16086-16093

    [5] Ji Shanzuo, Li Yang, Yang Mujie, Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 644-649

    [6] Preda N, Evanghelidis A, Enculescu M. Zinc oxide electroless deposition on electrospun PMMA fi ber mats[J]. Mater Lett, 2015, 138(1): 238-242

    [7] Bae H S, Haider A, Selim K M K. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine[J]. J Polym Res, 2013, 20(7): 2427-2432

    [8] Liu Mingxian, Guo Baochun, Du Mingliang, et al. Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene[J]. Polymer, 2009, 50(13): 3022-3030

    [9] Rooj S, Das A, Thakur V, et al. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes[J]. Mater Des, 2010, 31(4): 2151-2156

    [10] Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents[J]. Prog Poly Sci, 2013, 38(10): 1690-1719

    [11] Pasbakhsh P, Ismail H, Fauzi M N A. EPDM/modified halloysite nanocomposites[J]. Appl Clay Sci, 2010, 48(3): 405-413

    [12] Li Huihua, Luo Binghong, Qin Xiaopeng, et al. Preparation of PLLA/g-HNTs composite nanofiber membranes by electrospinning and studies on their properties[J]. Acta Polymerica Sinica, 2015 (1): 31-40 (in Chinese)

    [13] Awasthi K, Yadav T P, Mishra P R, et al. Investigation on carbon nanomaterials: Coaxial CNT-cylinders and CNT-polymer composite[J]. Bull Mater Sci, 2008, 31(3): 313-318

    [14] Cai J Y, Min J, Miao M, et al. Enhanced mechanical performance of CNT/Polymer composite yarns by gammairradiation[J]. Fiber Polym, 2014, 15(2): 322-325

    [15] Liu Mingxian, Jia Zhixin, Jia Demin. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Prog Polym Sci, 2014, 39(8): 1498-1525

    [16] Jia Zhixin, Luo Yuanfang, Guo Baochun, et al. Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE[J]. Polym Plast Technol Eng, 2009, 48(6): 607-613

    [17] Jeong J S, Moon J S, Jeon S Y, et al. Mechanical properties of electrospun PVA/MWNTs composite nanofibers[J]. Thin Solid Films, 2007, 515(12): 5136-5141

    Received date: 2015-12-11; Accepted date: 2016-03-02.

    Dr. Prof. Cheng Zhilin, E-mail: zlcheng224@126.com.

    国产精品99久久99久久久不卡| 免费少妇av软件| 黄色成人免费大全| 免费看a级黄色片| 国产精品九九99| 一级片免费观看大全| 免费不卡黄色视频| 久久精品国产综合久久久| 动漫黄色视频在线观看| 91精品三级在线观看| 中亚洲国语对白在线视频| 中文字幕色久视频| 成人永久免费在线观看视频| 亚洲全国av大片| 亚洲成av片中文字幕在线观看| 又大又爽又粗| 在线播放国产精品三级| 手机成人av网站| 免费少妇av软件| 免费看美女性在线毛片视频| 很黄的视频免费| 91麻豆av在线| 精品欧美一区二区三区在线| 精品一品国产午夜福利视频| 国产欧美日韩一区二区三| 国产亚洲欧美在线一区二区| 99国产精品一区二区蜜桃av| 啪啪无遮挡十八禁网站| 日韩大码丰满熟妇| 亚洲成av人片免费观看| 国产欧美日韩综合在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品av在线| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆 | 夜夜躁狠狠躁天天躁| 久久久久久久久中文| 女性被躁到高潮视频| 97人妻天天添夜夜摸| 国产99白浆流出| 日韩 欧美 亚洲 中文字幕| 91麻豆精品激情在线观看国产| 女性生殖器流出的白浆| 一级片免费观看大全| 精品无人区乱码1区二区| 久久久久精品国产欧美久久久| 99国产精品99久久久久| 国语自产精品视频在线第100页| 国产成人欧美| 美女午夜性视频免费| 19禁男女啪啪无遮挡网站| 男女下面插进去视频免费观看| 国产欧美日韩综合在线一区二区| 91麻豆av在线| 久久国产亚洲av麻豆专区| 亚洲中文日韩欧美视频| 成人国产综合亚洲| 神马国产精品三级电影在线观看 | www国产在线视频色| 真人一进一出gif抽搐免费| 这个男人来自地球电影免费观看| 成人手机av| 欧美成狂野欧美在线观看| 电影成人av| 日韩一卡2卡3卡4卡2021年| 法律面前人人平等表现在哪些方面| svipshipincom国产片| 成人精品一区二区免费| 国产免费男女视频| 日韩欧美国产一区二区入口| 中文字幕人成人乱码亚洲影| 88av欧美| 一边摸一边抽搐一进一小说| 午夜成年电影在线免费观看| 久久久久久久久中文| 亚洲国产高清在线一区二区三 | 久久精品亚洲熟妇少妇任你| av天堂在线播放| 国产蜜桃级精品一区二区三区| 久久久国产精品麻豆| 免费搜索国产男女视频| 日韩有码中文字幕| 国产精品永久免费网站| 9热在线视频观看99| 男人舔女人的私密视频| 最好的美女福利视频网| 亚洲视频免费观看视频| 国产黄a三级三级三级人| 久久精品成人免费网站| 如日韩欧美国产精品一区二区三区| 欧美大码av| 国产亚洲精品一区二区www| 欧美亚洲日本最大视频资源| 韩国精品一区二区三区| 久久精品人人爽人人爽视色| 18美女黄网站色大片免费观看| 美女 人体艺术 gogo| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 动漫黄色视频在线观看| 午夜a级毛片| 99在线人妻在线中文字幕| 久久中文字幕一级| 国产欧美日韩综合在线一区二区| 在线播放国产精品三级| netflix在线观看网站| 黑人巨大精品欧美一区二区mp4| 国产精品 国内视频| 国产成人影院久久av| 亚洲天堂国产精品一区在线| 可以在线观看毛片的网站| 亚洲国产精品合色在线| 国产亚洲精品久久久久久毛片| 少妇粗大呻吟视频| 国产欧美日韩一区二区三区在线| 亚洲片人在线观看| 国产一卡二卡三卡精品| 琪琪午夜伦伦电影理论片6080| 亚洲人成77777在线视频| 国产精品日韩av在线免费观看 | 人妻久久中文字幕网| 免费在线观看日本一区| 国产精品国产高清国产av| 妹子高潮喷水视频| 欧美日本亚洲视频在线播放| 欧美老熟妇乱子伦牲交| 99久久国产精品久久久| 亚洲av五月六月丁香网| 女性生殖器流出的白浆| √禁漫天堂资源中文www| 亚洲精品在线美女| 国产伦人伦偷精品视频| 9色porny在线观看| 日韩欧美国产一区二区入口| 18美女黄网站色大片免费观看| 人妻丰满熟妇av一区二区三区| 此物有八面人人有两片| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 欧美亚洲日本最大视频资源| 两个人视频免费观看高清| 久久伊人香网站| 丝袜在线中文字幕| 51午夜福利影视在线观看| 国内久久婷婷六月综合欲色啪| 久久久久久免费高清国产稀缺| 美女高潮到喷水免费观看| 在线av久久热| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 国产av一区在线观看免费| 少妇粗大呻吟视频| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 色在线成人网| 久久午夜亚洲精品久久| 欧美国产精品va在线观看不卡| 少妇被粗大的猛进出69影院| x7x7x7水蜜桃| 精品少妇一区二区三区视频日本电影| 嫩草影院精品99| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 久久九九热精品免费| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 国内精品久久久久久久电影| 黄网站色视频无遮挡免费观看| 美女高潮到喷水免费观看| 91麻豆av在线| 亚洲精品国产区一区二| 69av精品久久久久久| 国产在线精品亚洲第一网站| 成人三级黄色视频| 波多野结衣一区麻豆| 一本大道久久a久久精品| 免费av毛片视频| 麻豆国产av国片精品| 国产熟女xx| av视频免费观看在线观看| 99精品久久久久人妻精品| 免费在线观看视频国产中文字幕亚洲| 一二三四社区在线视频社区8| x7x7x7水蜜桃| 欧美日韩黄片免| 欧美日韩乱码在线| 黄色a级毛片大全视频| 精品人妻1区二区| 亚洲国产欧美一区二区综合| 国产亚洲精品av在线| 国产精品久久久久久精品电影 | 真人做人爱边吃奶动态| 一a级毛片在线观看| 后天国语完整版免费观看| 9191精品国产免费久久| АⅤ资源中文在线天堂| 精品日产1卡2卡| 亚洲一区二区三区色噜噜| 欧美日韩亚洲综合一区二区三区_| 天堂影院成人在线观看| 免费少妇av软件| 精品欧美国产一区二区三| 日韩国内少妇激情av| av视频免费观看在线观看| 美女 人体艺术 gogo| 久热爱精品视频在线9| 国产精品日韩av在线免费观看 | 黄色视频不卡| www.熟女人妻精品国产| 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 91九色精品人成在线观看| 欧美激情 高清一区二区三区| 97超级碰碰碰精品色视频在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲av电影在线进入| 日韩欧美国产在线观看| 欧美av亚洲av综合av国产av| 久99久视频精品免费| 9热在线视频观看99| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 日韩免费av在线播放| av超薄肉色丝袜交足视频| 看片在线看免费视频| 在线观看一区二区三区| 成人国语在线视频| 日韩欧美国产一区二区入口| 久久香蕉激情| 精品不卡国产一区二区三区| 国产成人精品久久二区二区91| 国产精品电影一区二区三区| 国产精品香港三级国产av潘金莲| 操美女的视频在线观看| 亚洲精品国产区一区二| 色播亚洲综合网| 麻豆一二三区av精品| 国产私拍福利视频在线观看| 性欧美人与动物交配| 国产一级毛片七仙女欲春2 | av天堂久久9| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 999精品在线视频| 啪啪无遮挡十八禁网站| 欧美国产精品va在线观看不卡| 国产午夜精品久久久久久| 午夜久久久在线观看| 亚洲 国产 在线| 久久久久国内视频| 精品福利观看| 久久精品国产亚洲av高清一级| 色在线成人网| 久久香蕉激情| 国产一区二区三区视频了| 国产成人精品无人区| 国产成人精品久久二区二区免费| 亚洲av成人av| av天堂久久9| 欧美在线黄色| 国产成人欧美在线观看| 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 999久久久国产精品视频| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 国产亚洲欧美在线一区二区| 亚洲 欧美一区二区三区| 色综合亚洲欧美另类图片| 少妇的丰满在线观看| 久久久久久人人人人人| 两性夫妻黄色片| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 丁香六月欧美| 日韩三级视频一区二区三区| 黑人欧美特级aaaaaa片| 欧美午夜高清在线| www.熟女人妻精品国产| 日本 av在线| 女人被狂操c到高潮| 91字幕亚洲| 嫁个100分男人电影在线观看| www日本在线高清视频| videosex国产| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 他把我摸到了高潮在线观看| 国产精品永久免费网站| 日韩欧美一区视频在线观看| 欧美丝袜亚洲另类 | 国产成人欧美在线观看| 午夜福利18| 久99久视频精品免费| 国产99白浆流出| 在线观看午夜福利视频| 久热爱精品视频在线9| av视频在线观看入口| 91在线观看av| 美女高潮到喷水免费观看| 国产在线精品亚洲第一网站| 午夜福利,免费看| 色尼玛亚洲综合影院| 中文字幕人成人乱码亚洲影| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 1024视频免费在线观看| 麻豆成人av在线观看| 狠狠狠狠99中文字幕| 精品国产国语对白av| 国产一区二区激情短视频| 国产精品一区二区免费欧美| 99精品欧美一区二区三区四区| 色尼玛亚洲综合影院| 国产不卡一卡二| 狂野欧美激情性xxxx| 97碰自拍视频| 日韩一卡2卡3卡4卡2021年| 日韩免费av在线播放| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 久久天躁狠狠躁夜夜2o2o| 在线十欧美十亚洲十日本专区| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 露出奶头的视频| 亚洲精品av麻豆狂野| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 少妇被粗大的猛进出69影院| 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 天堂影院成人在线观看| 国产免费av片在线观看野外av| 国产亚洲欧美精品永久| 男女下面进入的视频免费午夜 | 国产精品一区二区免费欧美| 中文字幕人妻丝袜一区二区| 看免费av毛片| www.999成人在线观看| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 国产日韩一区二区三区精品不卡| 岛国视频午夜一区免费看| 制服人妻中文乱码| 精品乱码久久久久久99久播| 50天的宝宝边吃奶边哭怎么回事| 91精品三级在线观看| 亚洲在线自拍视频| 变态另类丝袜制服| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 国产伦一二天堂av在线观看| 少妇裸体淫交视频免费看高清 | www国产在线视频色| 波多野结衣av一区二区av| 夜夜夜夜夜久久久久| 女人高潮潮喷娇喘18禁视频| 中文字幕色久视频| avwww免费| 色av中文字幕| 色综合亚洲欧美另类图片| 高清在线国产一区| 在线免费观看的www视频| 久久热在线av| АⅤ资源中文在线天堂| 热re99久久国产66热| 91成年电影在线观看| 亚洲国产欧美网| 午夜福利免费观看在线| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 亚洲一区中文字幕在线| 久久精品成人免费网站| 不卡一级毛片| 女警被强在线播放| 午夜免费成人在线视频| 成人国语在线视频| 一区福利在线观看| 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 国产99久久九九免费精品| 在线天堂中文资源库| 国产99久久九九免费精品| 黄色视频不卡| 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 曰老女人黄片| 国产成人影院久久av| 精品国产超薄肉色丝袜足j| 青草久久国产| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 精品日产1卡2卡| 久久亚洲精品不卡| 久久影院123| 午夜福利,免费看| 中文字幕久久专区| 亚洲狠狠婷婷综合久久图片| 超碰成人久久| 视频在线观看一区二区三区| 久久久久久免费高清国产稀缺| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 99久久国产精品久久久| 亚洲国产精品sss在线观看| 亚洲av电影不卡..在线观看| 宅男免费午夜| 窝窝影院91人妻| 90打野战视频偷拍视频| 久久精品亚洲熟妇少妇任你| 久久精品成人免费网站| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 波多野结衣av一区二区av| 一卡2卡三卡四卡精品乱码亚洲| 国产av一区二区精品久久| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 亚洲 欧美一区二区三区| 90打野战视频偷拍视频| 色婷婷久久久亚洲欧美| 十八禁人妻一区二区| 亚洲中文字幕一区二区三区有码在线看 | 色尼玛亚洲综合影院| 欧美老熟妇乱子伦牲交| 真人做人爱边吃奶动态| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 啦啦啦观看免费观看视频高清 | 一本综合久久免费| 久久久久久久久久久久大奶| 国产一级毛片七仙女欲春2 | 一级毛片高清免费大全| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 99香蕉大伊视频| 亚洲精品在线观看二区| 国产精品久久电影中文字幕| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 久久人妻福利社区极品人妻图片| 欧美不卡视频在线免费观看 | 男女下面插进去视频免费观看| 久久国产精品影院| 99香蕉大伊视频| 91成人精品电影| 欧美中文综合在线视频| 88av欧美| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 欧美亚洲日本最大视频资源| 国产区一区二久久| 久久精品国产亚洲av香蕉五月| 久久久久精品国产欧美久久久| 长腿黑丝高跟| 亚洲专区字幕在线| 久久精品成人免费网站| 国产欧美日韩一区二区三区在线| 中出人妻视频一区二区| 日韩欧美三级三区| 在线观看舔阴道视频| 色播亚洲综合网| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 欧美国产日韩亚洲一区| 国产午夜精品久久久久久| 无限看片的www在线观看| 麻豆av在线久日| 欧美一区二区精品小视频在线| 欧美丝袜亚洲另类 | 久久 成人 亚洲| 欧美日韩乱码在线| 亚洲熟女毛片儿| 美女 人体艺术 gogo| 国产又色又爽无遮挡免费看| 精品国产乱子伦一区二区三区| 国产av精品麻豆| av免费在线观看网站| 男人操女人黄网站| 国产三级在线视频| 亚洲欧洲精品一区二区精品久久久| 在线天堂中文资源库| 两性午夜刺激爽爽歪歪视频在线观看 | 久久婷婷人人爽人人干人人爱 | 国产成人精品久久二区二区91| 亚洲电影在线观看av| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久成人aⅴ小说| 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 国产视频一区二区在线看| 热99re8久久精品国产| 国产一区在线观看成人免费| 高潮久久久久久久久久久不卡| av在线天堂中文字幕| 久热爱精品视频在线9| 国产精品美女特级片免费视频播放器 | 国产国语露脸激情在线看| 久久国产精品男人的天堂亚洲| 国产日韩一区二区三区精品不卡| 国产av精品麻豆| 亚洲欧美日韩另类电影网站| 亚洲人成伊人成综合网2020| av视频免费观看在线观看| 看片在线看免费视频| 日韩av在线大香蕉| 纯流量卡能插随身wifi吗| 婷婷丁香在线五月| 变态另类丝袜制服| 亚洲午夜精品一区,二区,三区| 99在线视频只有这里精品首页| 国产成人系列免费观看| 亚洲欧美日韩高清在线视频| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 欧美黄色淫秽网站| 99精品欧美一区二区三区四区| 国产成+人综合+亚洲专区| 大香蕉久久成人网| 波多野结衣av一区二区av| 久久久久久久久免费视频了| 中文字幕另类日韩欧美亚洲嫩草| 黄网站色视频无遮挡免费观看| 两人在一起打扑克的视频| 日韩欧美一区二区三区在线观看| 99久久99久久久精品蜜桃| 这个男人来自地球电影免费观看| av中文乱码字幕在线| 久久午夜综合久久蜜桃| 免费看美女性在线毛片视频| 激情视频va一区二区三区| 欧美丝袜亚洲另类 | 久久精品亚洲精品国产色婷小说| 午夜福利视频1000在线观看 | 成人18禁高潮啪啪吃奶动态图| 久久中文字幕人妻熟女| 久久久久久免费高清国产稀缺| 国产单亲对白刺激| АⅤ资源中文在线天堂| 成年版毛片免费区| 精品无人区乱码1区二区| 一进一出好大好爽视频| 一本综合久久免费| 制服诱惑二区| 国产不卡一卡二| 看片在线看免费视频| 色精品久久人妻99蜜桃| 女人高潮潮喷娇喘18禁视频| 久久人妻av系列| 性色av乱码一区二区三区2| 免费在线观看影片大全网站| 成人亚洲精品av一区二区| 国产三级黄色录像| 亚洲欧美日韩另类电影网站| 欧美丝袜亚洲另类 | 亚洲最大成人中文| 久99久视频精品免费| 黄色女人牲交| 国产亚洲精品一区二区www| 亚洲成av人片免费观看| 午夜福利欧美成人| 看片在线看免费视频| 一边摸一边抽搐一进一小说| 午夜福利18| 脱女人内裤的视频| 色精品久久人妻99蜜桃| 久久人人精品亚洲av| 日韩大尺度精品在线看网址 | 国产欧美日韩一区二区三区在线| 国产精品 欧美亚洲| av在线天堂中文字幕| 色哟哟哟哟哟哟| 国产成人啪精品午夜网站| 日韩视频一区二区在线观看| 999久久久精品免费观看国产| 色综合欧美亚洲国产小说| 久久久久久久午夜电影| 亚洲人成网站在线播放欧美日韩| 久久草成人影院| av有码第一页| 国产视频一区二区在线看| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 久热爱精品视频在线9| 在线av久久热| 国产精品九九99| 久久香蕉精品热| 精品午夜福利视频在线观看一区| 久久久国产精品麻豆| 日本黄色视频三级网站网址| 国产亚洲欧美精品永久| 精品久久久久久久毛片微露脸| 国产99白浆流出| 国产成人啪精品午夜网站| 亚洲九九香蕉| 欧美一区二区精品小视频在线| 天堂影院成人在线观看| 亚洲av第一区精品v没综合| 嫩草影视91久久| 国产日韩一区二区三区精品不卡| 亚洲av熟女| 亚洲精品一区av在线观看| 高潮久久久久久久久久久不卡| 国产精品 国内视频| 无遮挡黄片免费观看|