• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and Molecular Simulations for Evaluating the Effect of Lubricity Improvers on the Property of Jet Fuel

    2016-03-22 06:36:05LiJinHuZexiangChenGuoxuTaoZhipingZhaoJie
    中國煉油與石油化工 2016年2期

    Li Jin; Hu Zexiang; Chen Guoxu; Tao Zhiping; Zhao Jie

    (1. Logistic Engineering University of PLA, Department of Oil Application and Management Engineering, Chongqing 401311; 2. Academy of Naval Logistic Technology and Equipment, Beijing 100072; 3. SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    Experimental and Molecular Simulations for Evaluating the Effect of Lubricity Improvers on the Property of Jet Fuel

    Li Jin1; Hu Zexiang2; Chen Guoxu1; Tao Zhiping3; Zhao Jie3

    (1. Logistic Engineering University of PLA, Department of Oil Application and Management Engineering, Chongqing 401311; 2. Academy of Naval Logistic Technology and Equipment, Beijing 100072; 3. SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    Since the 1990s, the kerosene fuel (code: JP-8) had been applied in the ground equipment provided with direct injection compression ignition engines in the U.S. Army, resulting in increased occurrence of injection pump failures. Anti-wear additives must be used in the single fuel due to its poor lubricity. In the present work, lubricity improvers were selected on the basis of molecular simulation theoretically and these agents were evaluated to improve the lubricity of jet fuel using the high frequency reciprocating rig (HFRR) apparatus and the ball-on-cylinder lubricity evaluator (BOCLE). It was revealed that dimer acid with higher value of adsorption energy on the Fe (110) plane surface had more ef fi cient lubricity promoting properties than that of naphthenic acid. The experimental results suggested that the dimer acid had a better tribological behavior compared with that of naphthenic acid used as lubricity improver of jet fuel. And addition of anti-wear additives at a dosage of 15 μg/g was able to promote the lubricity of jet fuel to a required level on BOCLE, while a higher concentration over 80 μg/g was needed to improve the lubricity to a demanded value of diesel on HFRR.

    jet fuel; diesel; lubricity; dimer acid; naphthenic acid; molecular simulation

    1 Introduction

    Most components within the fuel-injection system rely on the fuel for effective lubrication and wear resistance. Mandated use of low-sulfur fuel including the low-sulfur diesel and aviation fuels has to adopt hydro-treating at the refineries for removing sulfur compounds, which would also result in the removal of trace amounts of polar compounds necessary for effective lubrication and wear prevention[1]. After the World War II, the U.S. Department of Defense was moving toward the use of a single fuel in ground military aircraft, vehicles and equipment employed in the European battlefield[2-3]. Nonetheless, recurrent problems had been reported with the Stanadyne rotary fuel injection pump, such as mild scuffing, oxidative corrosion and wear failure[4], and especially in the 1990—1991 Operation “Desert Shield/ Storm” in Saudi Arabia a sharp rise of the occurrence of injection pump failures was experienced[5]. In order to improve the lubricity characteristics of diesel or kerosene fuel, a number of anti-wear additives quali fi ed under the MIL-I-25017 standard were evaluated by U.S. Army[6].

    These lubricity enhancers were commonly composed of dimeric organic acid, usually dilinoleic acid, as well as solvents and other additives[7-8].

    In recent years the molecular simulation was effectively applied to the research on the adsorption behavior of antiwear agents at the microscopic molecular level and the boundary lubrication nature of the thin protective metalmetal contact fi lm provided by lubricity additives[9-10]. The molecular flexibility calculated with the Kier flexibility calculation method could be used as the characteristic parameter to quantitatively assess the influence of alkyl chain of friction modifier on its friction-reducing and anti-wear ability[11]. The density functional theory (DFT) and molecular dynamics (MD) method were used to con fi rm that the lubricity enhancing properties of diesel lubricity improvers were mainly determined by the cohesive energy of adsorbed fi lms on the iron surface[12]. There were a few papers which reported that molecularsimulation was applied to the friction-reducing and antiwear properties of oil lubricants and anti-wear additives of diesel[13-18], but few domestic reports were related with the lubricity improver of jet fuel .

    The objective of this study attempts not only to simulate the adsorption of molecules of lubricity improver in jet fuel on metal surface theoretically, but also to evaluate the lubricity of jet fuel with the addition of lubricity enhancer by HFRR and BOCLE.

    2 Experimental

    According to the ISO 12156-1-2006 standard and the ASTM D5001 method, all tribological measurements were carried out by using the high frequency reciprocating rig (HFRR) and the ball-on-cylinder lubricity evaluator (BOCLE), with their test conditions presented in Table 1. The wear scars were checked using the photo microscope, and the results of lubricating property were referred to the corrected wear scar (WS1.4) values and wear scar diameters (WSD). The jet fuel was provided by the Maoming Petrochemical Company with its major properties listed in Table 2.

    A speci fi ed amount of oleic acid and water were added into the reactor, followed by introduction of activated clay and chemical catalyst to enter into reaction for several hours. After being treated by several laboratory chemical processes, the product was fi nally puri fi ed toobtain the synthesized dimer acid, which was veri fi ed to contain more than 95% of dipolymer. Naphthenic acid additive provided by the SINOPEC Corporation was qualified to meet the industry product standard specification SH/T 0766—2005. Both naphthenic acid and dimer acid were dissolved in the base fuel at different concentration levels.

    Table 2 Properties of jet fuel

    3 Results and Discussion

    3.1 Molecular simulation

    In this paper, the Forcite model in the software of Materials Studio 6.1 was used in molecular simulation. Both naphthenic acid and dimer acid were optimized with its parameters determined after 500 iterative calculations. The optimized model is shown in Figure 1, in which (a) stands for the molecular structure of naphthenic acid with a molecular weight of 226, and (b) represents the molecular structure of hydrogenateddimer acid with its molecular weight equating to 565.

    Figure 1 Optimized model of lubricity improvers

    Figure 2 Optimized model of the surface of Fe (110) plane

    The friction surface of Fe (110) plane was established by simulating the friction materials of tested ball, with its volume consisting of 3.724 nm×3.724 nm×5.134 nm (as shown in Figure 2)[19].

    The calculation formulas of molecular adsorption and its fl exibility[20]were as follows:

    Figure 3 Optimized adsorption model of anti-wear agents on the friction surface

    where:Eadsrepresents adsorption energy, andEmol/surfstands for total energy.Esurfrepresents the surface energy, andEmolis the molecular energy.Φis the flexibility parameter, andNAis the total number of atoms. BothK1andK2represent the derived index of molecular size, andr(sp3) represents the covalent radius of sp3bonding carbon. Thep1is the number of carbon-carbon single bonds, andp2stands for the amount of two continuous C—C single bonds. Therjrepresents the covalent radius ofjatom, andais the derived index of covalent atom.

    Based on the above model, the adsorption energy of lubricants and the molecular flexibility were obtained from the calculation of Material Studio 6.1. When the adsorption energy value is negative, it is an exothermic process. To some extent, the value is greater and the adsorption process is more stable. According to adsorption energy of lubricity improver and its corresponding acid radical as well as its molecular flexibility provided in Table 3, it is evident that the dimer acid has a better lubricity performance than naphthenic acid in theory.

    Table 3 The molecular adsorption energy and molecular flexibility of lubricity improver

    3.2 Tribological behavior

    The base fuel was tested to determine its lubricityperformance repeatedly for confirming the results. The lubricity performance of WS1.4and WSD is given in Table 2. It was obvious that the base fuel had poor lubricating properties.

    The impact of anti-wear agents on the lubrication properties of the base fuel on HFRR is outlined in Figure 4. Lower concentration of anti-wear agents ranging from 5 μg/g to 20 μg/g practically contributes no changes on the WS1.4of base fuel. Increasing the concentration from 40 μg/g to 80 μg/g can effectively improve the lubricity of the base fuel. When the concentration of anti-wear agent reaches 80 μg/g, the WS1.4value limit of 460 μm is easily satis fi ed to meet the requirements for commercial diesel fuels. In comparison with the naphthenic acid, the dimer acid showed a relatively good lubricating performance which was consistent with the calculated data listed in Table 3. The reason could be attributed to the two-carboxyl structure of dimer acid.

    Figure 4 Impact of lubricity improver addition on the lubrication properties of jet fuel on HFRR

    Diversified curves showing the influence of lubricity promoters addition on wear scar diameter on BOCLE are given in Figure 5. The anti-wear additives showed great effect on improving the lubricity of jet fuel, and the WSD value limit of 0.65 mm could be satis fi ed when the additive concentration exceeded 15 μg/g. At an additive concentration of less than 20 μg/g, the lubricating property of dimer acid showed almost the same tribological behaviors as naphthenic acid. It is evident that the dimer acid has a better lubricity at concentration ranging from 20 μg/g to 80 μg/g, which complies with the calculated molecular adsorption energy listed in Table 3.

    Figure 5 Impact of lubricity improver addition on the lubrication properties of jet fuel on BOCLE

    It is verified that the addition of both naphthenic acid and dimer acid at concentrations exceeding 80 μg/g is necessary to keep the WS1.4value within the required limit of diesel fuel. In the BOCLE tests, both dimer acid and naphthenic acid at concentrations above 15 μg/g are apparently effective in promoting lubricity to the WSD value within the demanded limit of jet fuel. The lubrication experimental result con fi rming that dimer acid has a better tribological property than naphthenic acid is consistent with the outcome of molecular simulation theoretically. In conclusion, the evaluated lubricity improvers have a beneficial impact on the anti-wear properties of the base fuel at the proper concentration recommended.

    4 Conclusions

    The effect of synthesized dimer acid and naphthenic acids added to the fuel at different concentration levels on the tribological properties of jet fuel was evaluated on HFRR and BOCLE. The following conclusions could be drawn from this paper:

    1) According to both the WS1.4and WSD values of base fuel, the jet fuel without the lubricity promoter could not satisfy the lubrication needs of diesel fuel.

    2) Tests of fuel samples on HFRR and BOCLE have revealed that the dimer acid serving as the lubricity improver of jet fuel has a better lubricating performance as compared to naphthenic acid, which could be attributed to their different adsorption energy on the iron surface as calculated by molecular simulation.

    3) The concentration of anti-wear agents should beabove 80 μg/g to meet the lubricity requirements of diesel fuel in HFRR test, while the lubricity of jet fuel could be satis fi ed at an additive concentration of 15 μg/g determined during the BOCLE tests.

    [1] Wei D, Spikes H A. The lubricity of diesel fuels[J]. Wear, 1986, 111(2): 217-235

    [2] Lacey P I. Wear analysis of diesel engine fuel injection pumps from military ground equipment fueled with Jet A-1[R]. Virginia. The Defense Technical Information Center of USA, AD-A239022, 1991

    [3] Lacey P I. The relationship between fuel lubricity and diesel injection system wear[R]. Virginia: The Defense Technical Information Center of USA. AD-A247927, 1992, 1

    [4] Lacey P I, Lestz S J. Failure analysis of fuel injection pumps from generation sets fueled with Jet A-1[R]. Virginia. The Defense Technical Information Center of USA, ADA234930, 1991, 1

    [5] P.I. Lacey. S J Lestz. Fuel lubricity equipment for diesel injection systems[R]. Virginia. The Defense Technical Information Center of USA, AD-A235972, 1991, 2

    [6] Lacey P I. Fuel lubricity additive evaluation[R]. Virginia. The Defense Technical Information Center of USA, ADA326098, 1995

    [7] Black B H, Wechter M A, Hardy D R. Determination of corrosion inhibitor or lubricity enhancer additives in jet fuels by size-exclusion chromatography[J]. Journal of Chromatography, 1988, 437(1): 203-210

    [8] Black B H. Determination and use of isothermal adsorption constants of jet fuel lubricity enhancer additives[J]. Ind Eng Chem Res, 1989, 28(5): 618-622

    [9] Hsu S M, Gates R S. Boundary lubricating fi lms: formation and lubrication mechanism[J]. Tribol Int, 2005, 38(3): 305-312

    [10] Awad M K, Mustafa M R, Abo Elnga M M. Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface[J]. J Mol Struct (THEOCHEM), 2010, 959(1/3): 66-74

    [11] Liu Qiong, Long Jun, Wu Zhiqiang, et al. Effect of alkyl chain characteristics of friction modifier on frictionreducing[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(2): 189-193

    [12] Luo Hui, Fan Weiyu, Li Yang. Effects of fatty acids on low-sulfur diesel lubricity: Experimental investigation, DFT calculation and MD simulation[J]. China Petroleum Processing and Petrochemical Technology, 2013, 15(2): 74-81

    [13] Feng Lijuan, Yang Huaiyu, Wang Fuhui. Inhibition behavior of ascorbic benzoate for steel rebar in alkaline solution[J]. Acta Chimica Sinica, 2011, 69(20): 2359-2367

    [14] Cruz J, Martinez R, Genesca J, et al. Experimental and theoretical study of 1-(2-ethylamino)- 2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media[J]. J Electroanal Chem, 2004, 566(1): 111-121

    [15] Duda Y, Govea-Rueda R, Galicia M. Corrosion inhibitors: design, performance, and computer simulations[J]. J Phy Chem, 2005, 109(47)B: 22674-22684

    [16] Xia S W, Qiu M, Yu L M, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance[J]. Corrosion Sci, 2008, 50(7): 2021-2029

    [17] Li W H, He Q, Pei C L, et al. Experimental and theoretical investigation of adsorption behavior of new triazole derivatives as inhibitors for mild steel corrosion in acid media[J]. Electrochem Acta, 2007, 52(22): 6386-6394

    [18] Chen Boshui, Gao Lingyue, Fang Jianhua, et al. Lubricant biodegradation enhancers: Designed chemistry and engineered technology[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(3): 102-110

    [19] Green fi eld M, Ohtani H. Molecular dynamics simulation study of model friction modifier additives confined between two surfaces[J].Tribology Letters, 1999, 7(2/3): 137-145

    [20] Kier L B. An index of molecular flexibility from kappa shape attributes[J]. Quantitative Structure-Activity Relationships, 1989, 8(3): 221-224

    Received date: 2015-12-05; Accepted date: 2016-02-28.

    Professor Chen Guoxu, E-mail: chen_ guoxu@21cn.com.

    www.www免费av| 成年版毛片免费区| 国产精品电影一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 一级黄色大片毛片| 中文字幕人成人乱码亚洲影| 亚洲av熟女| 欧美乱妇无乱码| 国产精品美女特级片免费视频播放器| 国产色爽女视频免费观看| 欧美日韩国产亚洲二区| 97碰自拍视频| 久久精品综合一区二区三区| 久久久国产成人免费| 色av中文字幕| 波野结衣二区三区在线| 欧美三级亚洲精品| 成人三级黄色视频| 亚洲性夜色夜夜综合| 男插女下体视频免费在线播放| 男人狂女人下面高潮的视频| 在线国产一区二区在线| 国产精品综合久久久久久久免费| 丰满人妻一区二区三区视频av| 日本免费a在线| 给我免费播放毛片高清在线观看| 欧美国产日韩亚洲一区| 老司机深夜福利视频在线观看| 精品国产亚洲在线| 国产欧美日韩一区二区三| 极品教师在线免费播放| 在线免费观看不下载黄p国产 | 黄色视频,在线免费观看| 亚洲精品久久国产高清桃花| 亚洲男人的天堂狠狠| 99国产精品一区二区三区| 国产高清视频在线播放一区| 美女高潮喷水抽搐中文字幕| 女人十人毛片免费观看3o分钟| 午夜精品在线福利| 日本三级黄在线观看| 在线播放无遮挡| 国产熟女xx| 成人av一区二区三区在线看| 91av网一区二区| 国产精品,欧美在线| 国产欧美日韩精品亚洲av| 丰满的人妻完整版| 丰满的人妻完整版| 波多野结衣高清作品| 国产野战对白在线观看| 自拍偷自拍亚洲精品老妇| 五月伊人婷婷丁香| 欧美日韩黄片免| 亚洲中文字幕一区二区三区有码在线看| 在线观看一区二区三区| 狠狠狠狠99中文字幕| 欧美成人一区二区免费高清观看| 男人狂女人下面高潮的视频| 婷婷精品国产亚洲av| 日本与韩国留学比较| 一二三四社区在线视频社区8| 一个人免费在线观看电影| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添小说| 麻豆久久精品国产亚洲av| 亚洲片人在线观看| 亚洲精品久久国产高清桃花| 淫秽高清视频在线观看| 俺也久久电影网| 日本三级黄在线观看| 免费看光身美女| 日本五十路高清| 一二三四社区在线视频社区8| 精品一区二区三区视频在线| 国产高清三级在线| 亚洲电影在线观看av| 久久婷婷人人爽人人干人人爱| 国内毛片毛片毛片毛片毛片| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频| 99久久成人亚洲精品观看| 内射极品少妇av片p| av天堂在线播放| 天堂√8在线中文| 成人无遮挡网站| 特大巨黑吊av在线直播| 欧美+日韩+精品| 波多野结衣高清无吗| 国产欧美日韩精品亚洲av| 久久久久九九精品影院| 欧美另类亚洲清纯唯美| 欧美精品啪啪一区二区三区| 欧美在线黄色| 啪啪无遮挡十八禁网站| 首页视频小说图片口味搜索| 窝窝影院91人妻| 欧美日韩瑟瑟在线播放| 国产野战对白在线观看| 性色av乱码一区二区三区2| 国产成人aa在线观看| 国产激情偷乱视频一区二区| 久久热精品热| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 国产一区二区三区视频了| 免费av毛片视频| 精品久久久久久久末码| 老女人水多毛片| 中文资源天堂在线| 嫩草影视91久久| 亚洲18禁久久av| 91久久精品国产一区二区成人| 久久性视频一级片| 中国美女看黄片| 很黄的视频免费| 亚洲欧美日韩高清在线视频| a级一级毛片免费在线观看| 亚洲最大成人中文| 国产高清三级在线| 97超级碰碰碰精品色视频在线观看| 欧美xxxx性猛交bbbb| 精品日产1卡2卡| 国产午夜精品论理片| 成人毛片a级毛片在线播放| 免费电影在线观看免费观看| 欧美xxxx黑人xx丫x性爽| 亚洲男人的天堂狠狠| 国产精品亚洲一级av第二区| 香蕉av资源在线| 色播亚洲综合网| 亚洲天堂国产精品一区在线| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 熟女人妻精品中文字幕| 91狼人影院| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清| 国产成人av教育| 99热这里只有精品一区| 国产视频一区二区在线看| 他把我摸到了高潮在线观看| 欧美成狂野欧美在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩人妻高清精品专区| 嫩草影院精品99| 热99re8久久精品国产| 国产激情偷乱视频一区二区| 成人三级黄色视频| 国产成人影院久久av| 99久久成人亚洲精品观看| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 亚洲精品乱码久久久v下载方式| 中文字幕熟女人妻在线| 欧美一区二区国产精品久久精品| 亚洲午夜理论影院| 免费黄网站久久成人精品 | 直男gayav资源| 最新在线观看一区二区三区| 精品人妻一区二区三区麻豆 | 国内少妇人妻偷人精品xxx网站| 国产男靠女视频免费网站| 久久99热这里只有精品18| 免费高清视频大片| 18禁在线播放成人免费| 午夜免费激情av| 18禁黄网站禁片午夜丰满| 一卡2卡三卡四卡精品乱码亚洲| 九色国产91popny在线| 亚洲一区二区三区不卡视频| 国产高清视频在线观看网站| 亚洲成a人片在线一区二区| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 制服丝袜大香蕉在线| 国产日本99.免费观看| 天堂av国产一区二区熟女人妻| 一进一出抽搐gif免费好疼| 久久久精品欧美日韩精品| 麻豆av噜噜一区二区三区| 久久久久久久久久成人| 精品国产三级普通话版| 美女xxoo啪啪120秒动态图 | 亚洲美女黄片视频| 女人十人毛片免费观看3o分钟| 精品人妻一区二区三区麻豆 | 99久久99久久久精品蜜桃| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 99国产精品一区二区蜜桃av| 看黄色毛片网站| 精品国产三级普通话版| 欧美黄色淫秽网站| 在线观看av片永久免费下载| 搡老妇女老女人老熟妇| 亚洲人成网站高清观看| 日本与韩国留学比较| 美女cb高潮喷水在线观看| 99久久99久久久精品蜜桃| 美女大奶头视频| or卡值多少钱| 亚洲久久久久久中文字幕| 在线观看免费视频日本深夜| 18禁在线播放成人免费| 真实男女啪啪啪动态图| av福利片在线观看| 亚洲一区二区三区不卡视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 啦啦啦韩国在线观看视频| 成人国产一区最新在线观看| а√天堂www在线а√下载| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看 | 日韩欧美精品免费久久 | 日韩欧美三级三区| 给我免费播放毛片高清在线观看| 看免费av毛片| 国产野战对白在线观看| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 日韩欧美在线乱码| 一区福利在线观看| 日本一二三区视频观看| 欧美高清成人免费视频www| 美女免费视频网站| 禁无遮挡网站| 中文字幕高清在线视频| 欧美精品啪啪一区二区三区| 国产精品女同一区二区软件 | 99久久精品一区二区三区| 久久久久精品国产欧美久久久| 乱码一卡2卡4卡精品| 国产欧美日韩精品一区二区| 中文字幕人成人乱码亚洲影| 高清毛片免费观看视频网站| 三级毛片av免费| 国产精品一区二区三区四区免费观看 | 婷婷六月久久综合丁香| 好男人在线观看高清免费视频| 窝窝影院91人妻| 亚洲自拍偷在线| 国产精品久久久久久人妻精品电影| 高清在线国产一区| 亚洲 国产 在线| 乱人视频在线观看| 久久精品国产亚洲av天美| 成人特级黄色片久久久久久久| 国产高清视频在线观看网站| 国产成人av教育| 国产探花极品一区二区| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 亚洲电影在线观看av| 久久精品综合一区二区三区| 一级av片app| 免费无遮挡裸体视频| 亚洲精品色激情综合| 国内毛片毛片毛片毛片毛片| 精品欧美国产一区二区三| 真人做人爱边吃奶动态| 男女下面进入的视频免费午夜| 禁无遮挡网站| 在线播放无遮挡| 草草在线视频免费看| 真人一进一出gif抽搐免费| 看黄色毛片网站| 精品人妻1区二区| 久久久久久久午夜电影| 一级av片app| 在线观看66精品国产| 国产成人福利小说| 老司机午夜福利在线观看视频| 亚洲av二区三区四区| 久久精品影院6| 久久草成人影院| 中文字幕av在线有码专区| 国产精品一区二区性色av| 久久久久久久久大av| 国产av不卡久久| 欧美日韩瑟瑟在线播放| 免费看光身美女| 757午夜福利合集在线观看| 一级毛片久久久久久久久女| 亚洲精华国产精华精| 特大巨黑吊av在线直播| 精品久久久久久久人妻蜜臀av| 国产老妇女一区| 亚洲美女视频黄频| 国产高清有码在线观看视频| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 9191精品国产免费久久| 日本免费一区二区三区高清不卡| 丰满的人妻完整版| 中亚洲国语对白在线视频| 欧美国产日韩亚洲一区| 国产极品精品免费视频能看的| 久久精品国产清高在天天线| 国产黄色小视频在线观看| 欧美黄色淫秽网站| 一本综合久久免费| 亚洲av成人不卡在线观看播放网| 欧美一区二区国产精品久久精品| 热99re8久久精品国产| 免费一级毛片在线播放高清视频| 国产午夜福利久久久久久| 香蕉av资源在线| 国产精品久久久久久人妻精品电影| 男人狂女人下面高潮的视频| 国产成+人综合+亚洲专区| 免费av不卡在线播放| 久久婷婷人人爽人人干人人爱| 国产精品三级大全| 少妇的逼好多水| 97超级碰碰碰精品色视频在线观看| 国产精品人妻久久久久久| 国产真实伦视频高清在线观看 | 在线观看午夜福利视频| 美女 人体艺术 gogo| 亚洲美女搞黄在线观看 | 又粗又爽又猛毛片免费看| 深夜精品福利| 一个人观看的视频www高清免费观看| 性欧美人与动物交配| 激情在线观看视频在线高清| 亚洲欧美日韩无卡精品| 国内毛片毛片毛片毛片毛片| 国产69精品久久久久777片| 国产午夜精品论理片| 最好的美女福利视频网| 亚洲成人中文字幕在线播放| 我要看日韩黄色一级片| aaaaa片日本免费| 黄色丝袜av网址大全| 久99久视频精品免费| 天堂网av新在线| 女同久久另类99精品国产91| 大型黄色视频在线免费观看| 国产精品,欧美在线| 日韩高清综合在线| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看 | 精品一区二区三区视频在线| 亚洲国产精品合色在线| 床上黄色一级片| 蜜桃久久精品国产亚洲av| 国产三级中文精品| 国产精华一区二区三区| 免费看光身美女| 亚洲熟妇熟女久久| 99久久成人亚洲精品观看| 日韩欧美国产一区二区入口| 啪啪无遮挡十八禁网站| 国产精品久久久久久亚洲av鲁大| 国产蜜桃级精品一区二区三区| 深夜精品福利| 免费人成视频x8x8入口观看| 国产av一区在线观看免费| av专区在线播放| 又紧又爽又黄一区二区| 少妇高潮的动态图| 亚洲精品在线观看二区| 少妇的逼水好多| 人妻夜夜爽99麻豆av| 综合色av麻豆| 精品熟女少妇八av免费久了| 午夜精品一区二区三区免费看| 91狼人影院| 国内揄拍国产精品人妻在线| 男女之事视频高清在线观看| 在线播放国产精品三级| 伦理电影大哥的女人| 免费av毛片视频| 国产真实乱freesex| 国产伦精品一区二区三区四那| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 免费黄网站久久成人精品 | 欧美激情久久久久久爽电影| avwww免费| 国产成人影院久久av| 精品人妻一区二区三区麻豆 | 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久久久毛片| 97热精品久久久久久| 国产毛片a区久久久久| 最近最新免费中文字幕在线| 国产在线男女| 国产av不卡久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 岛国在线免费视频观看| 日日摸夜夜添夜夜添小说| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩中字成人| 很黄的视频免费| 波野结衣二区三区在线| 搡老妇女老女人老熟妇| 在线播放无遮挡| 亚洲av成人av| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 757午夜福利合集在线观看| 久久性视频一级片| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 日本在线视频免费播放| av欧美777| 非洲黑人性xxxx精品又粗又长| 国产成+人综合+亚洲专区| 国产精品爽爽va在线观看网站| 人人妻人人看人人澡| 亚洲熟妇熟女久久| 免费黄网站久久成人精品 | 90打野战视频偷拍视频| 级片在线观看| 国产极品精品免费视频能看的| 国产一区二区在线av高清观看| 国产成人aa在线观看| 亚洲中文日韩欧美视频| 久久精品人妻少妇| 国产精品三级大全| 女人被狂操c到高潮| 亚洲专区国产一区二区| 国产成人福利小说| 51午夜福利影视在线观看| 免费一级毛片在线播放高清视频| 午夜影院日韩av| АⅤ资源中文在线天堂| 如何舔出高潮| 日韩免费av在线播放| 黄色视频,在线免费观看| 赤兔流量卡办理| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 国产精品,欧美在线| 天堂网av新在线| 国产高清视频在线观看网站| 亚洲在线自拍视频| 精品午夜福利在线看| 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 亚洲天堂国产精品一区在线| 宅男免费午夜| 久久人妻av系列| 欧美午夜高清在线| 日韩欧美在线二视频| 亚洲无线观看免费| 免费大片18禁| 老司机深夜福利视频在线观看| a级毛片a级免费在线| 在线播放国产精品三级| 男女床上黄色一级片免费看| 欧美一级a爱片免费观看看| 久久热精品热| 老鸭窝网址在线观看| 亚洲av二区三区四区| 久久亚洲真实| 熟女电影av网| 少妇人妻精品综合一区二区 | 亚洲真实伦在线观看| 岛国在线免费视频观看| 中文亚洲av片在线观看爽| 久久性视频一级片| 三级国产精品欧美在线观看| 欧美乱妇无乱码| 日韩精品中文字幕看吧| 日本 欧美在线| 黄色日韩在线| 色精品久久人妻99蜜桃| 国产探花极品一区二区| 日韩欧美一区二区三区在线观看| 中文字幕免费在线视频6| 一a级毛片在线观看| 欧美成人免费av一区二区三区| 亚洲精品成人久久久久久| 男人狂女人下面高潮的视频| 午夜福利18| 国产淫片久久久久久久久 | 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 日韩欧美国产在线观看| 亚洲色图av天堂| 国产精华一区二区三区| 悠悠久久av| 中文字幕精品亚洲无线码一区| 亚洲av中文字字幕乱码综合| 天堂√8在线中文| 亚洲在线观看片| 搡老岳熟女国产| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 又爽又黄无遮挡网站| 在线免费观看的www视频| 免费在线观看日本一区| 性色av乱码一区二区三区2| 少妇熟女aⅴ在线视频| 欧美在线一区亚洲| 成年版毛片免费区| 简卡轻食公司| 91午夜精品亚洲一区二区三区 | 18美女黄网站色大片免费观看| 中文亚洲av片在线观看爽| 真人一进一出gif抽搐免费| 免费看a级黄色片| 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 国产精品久久久久久久久免 | 波野结衣二区三区在线| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 日韩欧美一区二区三区在线观看| 一级av片app| 国产精品av视频在线免费观看| 欧美国产日韩亚洲一区| 国产精品日韩av在线免费观看| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 91字幕亚洲| 1024手机看黄色片| 亚洲自拍偷在线| 精品一区二区三区av网在线观看| 在线观看美女被高潮喷水网站 | 欧美性感艳星| 国产午夜福利久久久久久| 一级av片app| 十八禁网站免费在线| 国产亚洲精品av在线| 俺也久久电影网| 日韩欧美精品v在线| 天堂网av新在线| 亚洲av熟女| 一区二区三区高清视频在线| 色av中文字幕| 久久久久久久午夜电影| 国产老妇女一区| 成人鲁丝片一二三区免费| 波多野结衣高清作品| 欧美激情久久久久久爽电影| bbb黄色大片| 国产欧美日韩一区二区三| 久久久久免费精品人妻一区二区| 神马国产精品三级电影在线观看| 久久伊人香网站| 亚洲狠狠婷婷综合久久图片| 日韩中文字幕欧美一区二区| 欧美丝袜亚洲另类 | 亚洲黑人精品在线| 波多野结衣高清无吗| 最近最新中文字幕大全电影3| 制服丝袜大香蕉在线| 免费在线观看影片大全网站| 亚洲不卡免费看| 国产精品自产拍在线观看55亚洲| 国产老妇女一区| 国产成人欧美在线观看| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 亚洲五月婷婷丁香| 日韩中字成人| 人人妻人人看人人澡| 美女cb高潮喷水在线观看| av国产免费在线观看| 天堂av国产一区二区熟女人妻| 成人无遮挡网站| 2021天堂中文幕一二区在线观| 午夜精品一区二区三区免费看| 免费人成视频x8x8入口观看| 国产精品综合久久久久久久免费| 亚洲一区高清亚洲精品| 黄色女人牲交| 丁香六月欧美| 五月伊人婷婷丁香| 中国美女看黄片| 精品国产亚洲在线| 亚洲成a人片在线一区二区| 久久99热这里只有精品18| a级一级毛片免费在线观看| 久久久精品欧美日韩精品| av福利片在线观看| 狂野欧美白嫩少妇大欣赏| 午夜影院日韩av| 高清在线国产一区| 久久久久久久午夜电影| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 3wmmmm亚洲av在线观看| av在线老鸭窝| 久久久精品欧美日韩精品| 网址你懂的国产日韩在线| 嫁个100分男人电影在线观看| 日韩免费av在线播放| 国产精品久久久久久久久免 | 男女之事视频高清在线观看| 国产精品98久久久久久宅男小说| 精品欧美国产一区二区三|