• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    土壤中汞脅迫對牧草生理生化的影響

    2016-03-21 05:16:25王道涵杜俊楠李玉娥初世敬
    地球環(huán)境學(xué)報 2016年6期
    關(guān)鍵詞:堿草高羊茅脯氨酸

    王道涵,杜俊楠,李玉娥,初世敬

    (遼寧工程技術(shù)大學(xué) 環(huán)境科學(xué)與工程學(xué)院,阜新 123000)

    土壤中汞脅迫對牧草生理生化的影響

    王道涵,杜俊楠,李玉娥,初世敬

    (遼寧工程技術(shù)大學(xué) 環(huán)境科學(xué)與工程學(xué)院,阜新 123000)

    研究紫花苜蓿、披堿草、高羊茅三種牧草,在10個濃度梯度汞脅迫條件下發(fā)芽率、植株高度、過氧化物酶與過氧化氫酶活性、丙二醛與脯氨酸含量、可溶性蛋白及可溶性糖含量生理生化指標(biāo)的變化情況。旨在探索土壤中汞對牧草的影響機(jī)理,反映土壤中汞含量富集過多后對草原的影響。

    土壤;汞;牧草;生理生化

    自然界土壤中汞的來源主要通過大氣沉降、燃煤、火山爆發(fā)等形式釋放到環(huán)境中,在遷移轉(zhuǎn)化過程中,通過干、濕沉降的形式進(jìn)入土壤(王起超等,1999)。煤炭資源作為內(nèi)蒙古的支柱性礦產(chǎn)資源(黨民團(tuán)和劉娟,2005),2012年以來,內(nèi)蒙古部分大型煤炭企業(yè)融合電力行業(yè),大力發(fā)展燃煤電廠,促進(jìn)煤電一體化形式的發(fā)展。這同時預(yù)示著內(nèi)蒙古地區(qū)煤碳消耗量將有所增長。內(nèi)蒙古煤炭中平均汞含量為0.28 mg · kg-1,煤炭燃燒向大氣中排放的汞對環(huán)境的污染具有嚴(yán)重的影響(張靜靜等,2014)。

    污染源釋放出來的汞,一小部分依附于顆粒,數(shù)天內(nèi)沉降在離釋放源數(shù)公里的范圍內(nèi)。美國EPA估計(jì),美國燃煤電廠煙塵所含的汞約75%會進(jìn)入高層大氣循環(huán)。HgO和GEM是大氣汞的主要存在形態(tài),占大氣總汞的95%—99%,可在大氣中停留0.5—2年,最終通過水-氣等界面間HgO的交換和大氣干、濕沉降進(jìn)入地表冰雪和湖泊等介質(zhì)或其他陸地生態(tài)系統(tǒng),在土壤中與其他化合物形成絡(luò)合物(Gbor et al,2007;Lai et al,2007)。汞在土壤環(huán)境中由于受pH、有機(jī)配體、無機(jī)配體及Eh等因素的影響(汪霞等,2010),在微生物作用下,土壤汞的存在形態(tài)相互轉(zhuǎn)化,外源汞的不同形態(tài)汞向惰性汞轉(zhuǎn)化。陳麗萍和胡恭任(2009)提出連續(xù)提取汞相態(tài)分類法,將汞的形態(tài)分為可交換態(tài)、碳酸鹽結(jié)合態(tài)、鐵錳氧化物結(jié)合態(tài)、有機(jī)物結(jié)合態(tài)和殘?jiān)鼞B(tài),應(yīng)用最為廣泛。Leticia et al(2006)將土壤中汞分為可交換態(tài)汞、碳酸汞、鐵錳結(jié)合態(tài)汞、有機(jī)汞和殘留汞。相關(guān)研究(Bravo,2014;Meng,2014;Stolle et al,2014)表明在外源汞加入的條件下,種植植物后土壤中水溶解態(tài)的汞、腐植酸結(jié)合態(tài)汞的含量顯著減少,而有機(jī)質(zhì)結(jié)合態(tài)明顯增加,隨著外源汞加入量的增加,土壤中汞的殘?jiān)鼞B(tài)、有機(jī)質(zhì)結(jié)合態(tài)的含量減少,而交換態(tài)、碳酸鹽、鐵錳氧化態(tài)的含量相對增加(陳禮洪等,2015)。汞屬于非降解型有毒元素,毒性效應(yīng)是不可降解的。土壤中汞達(dá)到一定量時會影響植物的形態(tài)結(jié)構(gòu)和生理生化過程(付學(xué)吾等,2005)。土壤中汞被植物吸收后可通過多種途徑對植物產(chǎn)生影響,影響生物大分子的合成與功能,進(jìn)而導(dǎo)致組織功能異常、影響光合作用效率、影響植物生長發(fā)育、破壞植物體內(nèi)元素平衡等。汞可以影響植物細(xì)胞的分裂,導(dǎo)致植物細(xì)胞膜脂過氧化程度升高,從而抑制植物正常生長發(fā)育。

    汞可以通過土壤-植物的吸收、累積和富集效應(yīng),通過食物鏈的作用,進(jìn)而流向人類種群,并隨著食物鏈的逐級放大,逐步增大富集量,對人類健康產(chǎn)生危害。隨著草原燃煤電廠的發(fā)展建設(shè),燃煤煙氣中汞的排放,將隨時間的推移在草原土壤中逐步累積。

    本文通過模擬汞沉降后土壤對三種牧草生理生化特性的影響,研究汞脅迫下牧草生理生化特性,為揭示草原土壤累積汞后對牧草影響提供理論依據(jù)。

    1 材料與方法

    1.1 室內(nèi)盆栽試驗(yàn)

    試驗(yàn)材料為紫花苜蓿(Medicago sativa)、披堿草(Elymus dahuricus Turcz. ex Griseb.)、高羊茅(Festuca elata Keng ex E. Alexeev),牧草種子供試種子由中國科學(xué)院內(nèi)蒙古東烏珠穆沁旗草原站提供。試驗(yàn)土壤采自中國科學(xué)院內(nèi)蒙古東烏珠穆沁旗草原站草場。試驗(yàn)土壤基本理化性質(zhì)及汞含量見表1。

    表1 土壤理化參數(shù)及汞含量表Tab.1 Physicochemical statistics parameters and mercury contents of soil

    采用盆栽控制實(shí)驗(yàn),土樣風(fēng)干、研磨后過2 mm尼龍篩后混勻,每盆7 cm × 7 cm × 7 cm(高),裝土150 g(干重)。根據(jù)國家土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)三級標(biāo)準(zhǔn)結(jié)合土壤汞安全臨界值(黃玉芬,2011;洪曾純,2012),依照等比法設(shè)置處理水平間隔,模擬大氣汞沉降進(jìn)入本底土壤后影響,HgCl2處理設(shè)置10個水平添加外源汞T1—T10(0、0.5 mg · kg-1、1.0 mg · kg-1、1.5 mg · kg-1、2.0 mg · kg-1、4.0 mg · kg-1、8.0 mg · kg-1、16.0 mg · kg-1、32.0 mg · kg-1、64.0 mg · kg-1),3次重復(fù),土樣混勻,穩(wěn)定7天。供試種子篩選出的飽滿籽粒的種子(紫花苜蓿、披堿草、高羊茅)浸泡在蒸餾水中催芽,露白后選擇長勢均一的種子種花盆中,每盆種入15顆。日常以去離子水維持適宜水分,采用自然光照。培養(yǎng)7周后取樣進(jìn)行測定(胡宗英,2014)。

    1.2 測定方法

    過氧化物酶(POD)活性采用愈創(chuàng)木酚法測定(薛亮,2013)。過氧化氫酶(CAT)活性采用紫外吸收法測定(宋云華等,2007)。丙二醛(MDA)采用硫代巴比妥酸比色法測定(潘瑞熾,1994)。脯氨酸采用磺基水楊酸法測定(華東師范大學(xué)生物系植物生理教研室,1980)??扇苄缘鞍撞捎每捡R斯亮藍(lán)染色法測定。可溶性糖含量采用蒽酮法測定(北京師范大學(xué)生物系生化教研室,1982)。

    1.3 數(shù)據(jù)分析

    試驗(yàn)數(shù)據(jù)采用SPSS19.0軟件對所測數(shù)據(jù)統(tǒng)計(jì)分析,用平均值和標(biāo)準(zhǔn)誤差表示測定結(jié)果;采用WPS 2016制圖。

    2 結(jié)果與分析

    2.1 汞對牧草種子發(fā)芽率、植株高度的影響

    以第7天統(tǒng)計(jì)發(fā)芽植株數(shù)量與播種總量之比計(jì)算發(fā)芽率,可反映植株生長狀況。在最終收取植株樣品過程中,用刻度尺對植株高度進(jìn)行測量,記錄最終生長狀況。

    根據(jù)對植株生長情況的監(jiān)測記錄,整理并分析可知(表2),高濃度Hg2+抑制了三種牧草的種子萌發(fā)及植株高度。土壤中Hg2+濃度低于8.0 mg · kg-1時,紫花苜蓿種子發(fā)芽率比對照組有所提高,依照Hg2+濃度,分別提高了4.32%,16.70%,25.14%,37.52%,8.44%和8.44%,影響程度先增高后降低。當(dāng)Hg2+濃度大于8.0 mg · kg-1時,種子發(fā)芽率降低,降低隨Hg2+濃度升高而增強(qiáng)。披堿草和高羊茅種子發(fā)芽率隨土壤中Hg2+濃度升高而逐步降低,分別由降低2.36%至44.93%和6.85%至52.25%,Hg2+濃度越高對發(fā)芽率影響幅度越大。這一現(xiàn)象的出現(xiàn)原因可能由于,汞對紫花苜蓿種子萌芽初期有短暫的促進(jìn)作用(高大翔等,2008),但高濃度則表現(xiàn)為抑制作用。

    隨Hg2+濃度升高,三種牧草植株高度比對照組始終呈降低趨勢,降低幅度分別由9.50%至52.99%,3.69%至27.95%,10.11%至48.57%。這與潘瑞熾曾指出的汞抑制植物根系正常發(fā)育,使植株變矮的這一理論相符(潘瑞熾,1994)。

    表2 Hg2+對牧草發(fā)芽率及植株高度影響Tab.2 Impact on grass germination rate and plant height of Hg2+

    2.2 汞對牧草過氧化物酶(POD)、過氧化氫酶(CAT)活性的影響

    過氧化物酶(POD)是普遍存在于植物體內(nèi)的較高活性酶。植物生長發(fā)育中,其活性不斷發(fā)生變化,與呼吸作用、光合作用及生長素的氧化等緊密相關(guān)。POD在生物體內(nèi)可以消除對氧自由基、過氧化物,抑制自由基對膜脂的過氧化作用,防止對膜造成損傷和破壞,同時POD還參與膜外活性氧的產(chǎn)生。由于植物對汞害的敏感性與POD酶變化間存在著一定的關(guān)系,因此可將POD酶帶的變化視為一種生化指標(biāo)(母波等,2007),來檢測植物受汞脅迫后的損害程度并篩選耐汞植物品種。過氧化氫酶(CAT)可以減少植物中的H2O2,降低H2O2在體內(nèi)積累而限制潛在的氧傷害。植物細(xì)胞具有產(chǎn)生和清除自由基兩個過程,二者協(xié)調(diào)一致,自由基才能保持在低含量水平,防止細(xì)胞受自由基毒害。汞能引起植物產(chǎn)生O-和H2O2等自由基,并隨著汞處理濃度的增加而上升(劉建新,2005)。CAT、POD是植物對膜脂過氧化的酶促防御系統(tǒng)的保護(hù)酶。

    本文研究表明(圖1),在土壤中Hg2+脅迫下,Hg2+濃度低于1.5 mg · kg-1時,紫花苜蓿POD活性呈上升趨勢,當(dāng)Hg2+濃度大于1.5 mg · kg-1時,紫花苜蓿POD活性呈下降趨勢。披堿草POD活性整體呈上升趨勢。高羊茅POD活性平穩(wěn)。說明三種牧草相比較,披堿草抑制自由基對膜脂過氧化作用能力最強(qiáng)。

    圖1 Hg2+脅迫對牧草POD活性的影響Fig.1 The effects of Hg2+stress on the POD in pasture

    在土壤中Hg2+脅迫下,Hg2+濃度低于2.0 mg · kg-1時,三種牧草CAT活性均呈上升趨勢,當(dāng)Hg2+濃度高于2.0 mg · kg-1時,皆出現(xiàn)降低趨勢,其中披堿草在Hg2+濃度高于32.0 mg · kg-1時活性升高;高羊茅在Hg2+濃度高于16.0 mg · kg-1時活性持續(xù)升高(圖2)。數(shù)據(jù)表明,三種牧草在Hg2+濃度較低時,通過提升CAT活性,清除植物中的H2O2,避免細(xì)胞受自由基毒害。當(dāng)Hg2+濃度過高時CAT酶表達(dá)受到抑制,導(dǎo)致CAT活性降低。

    2.3 汞對牧草丙二醛、脯氨酸含量的影響

    丙二醛(MDA)是膜質(zhì)過氧化的產(chǎn)物, MDA含量可以反映膜質(zhì)過氧化程度,反映植物遭受逆境傷害的程度。細(xì)胞毒性物質(zhì)破壞膜結(jié)構(gòu),并與膜結(jié)構(gòu)上的酶和蛋白質(zhì)發(fā)生作用并使細(xì)胞失去固有活性,通過與蛋白質(zhì)分子發(fā)生聚合,類囊體膨脹變形、排列順序改變,最終導(dǎo)致細(xì)胞基粒消失等葉綠體超微結(jié)構(gòu)發(fā)生改變(梁勝偉等,2009)。MDA可使葉綠素含量減少,導(dǎo)致光合作用減弱。汞通過作用于細(xì)胞膜上磷脂,使細(xì)胞膜透性改變。植物在汞脅迫下,細(xì)胞內(nèi)活性自由基含量增加,膜中不飽和脂肪酸產(chǎn)生過氧化反應(yīng),從而使膜的結(jié)構(gòu)和功能遭到破壞。

    圖2 Hg2+脅迫對牧草CAT活性的影響Fig.2 The effects of Hg2+stress on the CAT in pasture

    脯氨酸(Pro)作為植物蛋白質(zhì)的組分可以以游離態(tài)廣泛存在于植物體中。脯氨酸一方面作為植物細(xì)胞質(zhì)內(nèi)滲透調(diào)節(jié)物質(zhì),另一方面可以穩(wěn)定生物大分子結(jié)構(gòu)、降低細(xì)胞酸性、解除氨毒以及調(diào)節(jié)細(xì)胞氧化還原勢(馬成倉和洪法水,1998)。植物內(nèi)脯氨酸含量可以代表植物抗逆性,脯氨酸含量高則抗逆性強(qiáng)。同時脯氨酸還有降低細(xì)胞內(nèi)水勢的作用,從而能較高效的對于各種酶系以及復(fù)合體蛋白的四級結(jié)構(gòu)起到保護(hù)作用,維持細(xì)胞系統(tǒng)在逆境中的穩(wěn)定性,降低膜脂過氧化。脯氨酸的合成主要在線粒體中進(jìn)行,主要分布于線粒體及細(xì)胞質(zhì)基質(zhì)中,從而提高細(xì)胞質(zhì)的滲透壓,對細(xì)胞質(zhì)與液泡間的滲透壓差調(diào)節(jié),使在滲透脅迫下的葉綠體和線粒體仍能維持較好的水分狀況,保障光合作用和呼吸作用的運(yùn)行。

    在土壤中Hg2+脅迫下,紫花苜蓿丙二醛含量持續(xù)降低;披堿草丙二醛含量亦呈下降趨勢,至Hg2+濃度高于32.0 mg · kg-1后出現(xiàn)較前一處理濃度下,其含量升高;高羊茅丙二醛含量則呈先降低后升高的趨勢,當(dāng)土壤Hg2+濃度高于1.5 mg · kg-1時,丙二醛含量逐漸升高(圖3)。說明在土壤中Hg2+脅迫下,高濃度時,高羊茅膜脂過氧化程度高,植物細(xì)胞膜受Hg2+脅迫影響大,而紫花苜蓿和披堿草膜脂過氧化程度相對較輕。

    圖3 Hg2+脅迫對牧草丙二醛含量的影響Fig.3 The effects of Hg2+stress on the contents of MDA in pasture

    同時,紫花苜蓿脯氨酸含量較無脅迫狀態(tài)有明顯下降,并保持平穩(wěn)趨勢;披堿草脯氨酸含量較無脅迫狀態(tài)有明顯升高,且當(dāng)土壤Hg2+濃度達(dá)到64.0 mg · kg-1時,含量增加幅度較大,比對照組增加252.78%;高羊茅脯氨酸含量呈升高趨勢,且土壤Hg2+濃度高于8.0 mg · kg-1時,含量急劇升高(圖4)。說明三種牧草中,高羊茅對于Hg2+脅迫,抗逆性最強(qiáng)。

    圖4 Hg2+脅迫對牧草脯氨酸含量的影響Fig.4 The effects of Hg2+stress on the contents of proline in pasture

    2.4 汞對牧草可溶性蛋白、可溶性糖含量的影響

    植物細(xì)胞中可溶性蛋白含量直接可以反映細(xì)胞內(nèi)蛋白質(zhì)合成、變性及降解等狀態(tài)(徐小蓉等,2011)。Hg2+能增加細(xì)胞內(nèi)核糖體,核糖體亞基及多聚核糖體的數(shù)量,促進(jìn)蛋白質(zhì)合成。由于低濃度的Hg2+作用DNA后,刺激了DNA的活性,促進(jìn)了有關(guān)基因的表達(dá)。可溶性糖屬于植物的逆境指標(biāo)。可溶性糖越多,植物抗性越強(qiáng) ,呈正比關(guān)系。在作物的碳素營養(yǎng)中,可溶性糖作為營養(yǎng)物質(zhì)可以合成纖維素并組成細(xì)胞壁;轉(zhuǎn)化并組成其他有機(jī)物如核苷酸、核酸等;分解產(chǎn)物是其他許多有機(jī)物合成的原料,為作物的各種合成過程和各種生命活動提供了所需的能量。

    在土壤中Hg2+脅迫下,三種牧草可溶性蛋白質(zhì)含量在較低濃度下,皆高于無脅迫狀態(tài),隨著脅迫濃度升高,逐步降低,至高濃度脅迫狀態(tài)下又出現(xiàn)升高(圖5)。三種牧草出現(xiàn)含量變化趨勢改變的濃度不同,表明三種牧草DNA活性受Hg2+脅迫影響程度不同:Hg2+脅迫濃度低于8 mg · kg-1或高于16 mg · kg-1時會促進(jìn)紫花苜蓿蛋白質(zhì)的合成;Hg2+脅迫濃度低于16 mg · kg-1或高于32 mg · kg-1時會促進(jìn)披堿草蛋白質(zhì)的合成;Hg2+脅迫始終促進(jìn)高羊茅蛋白質(zhì)的合成。同時,分析可溶性糖含量(圖6),Hg2+脅迫下紫花苜蓿可溶性糖含量降低,高羊茅在汞濃度高于32 mg · kg-1時含量升高,披堿草在Hg2+脅迫狀態(tài)下可溶性糖含量始終高于無脅迫狀態(tài)。說明在積累糖類物質(zhì)中,披堿草有較明顯優(yōu)勢。

    圖5 Hg2+脅迫對牧草可溶性蛋白含量的影響Fig.5 The effects of Hg2+stress on the contents of soluble protein in pasture

    圖6 Hg2+脅迫對牧草可溶性糖含量的影響Fig.6 The effects of Hg2+stress on the contents of soluble sugar in pasture

    3 討論與結(jié)論

    土壤中汞脅迫對紫花苜蓿、披堿草、高羊茅三種牧草生理生化特征影響如下:(1)發(fā)芽率:低濃度Hg2+脅迫下,會促進(jìn)紫花苜蓿種子發(fā)芽率,高濃度則抑制;Hg2+脅迫會降低披堿草和高羊茅種子發(fā)芽率,而且濃度越高,發(fā)芽率越低。(2)植株高度:Hg2+脅迫下,三種植株高度皆降低。(3)過氧化物酶活性:隨著Hg2+濃度升高,紫花苜蓿POD活性先上升后降低;披堿草POD活性上升;高羊茅POD活性保持平穩(wěn)。(4)過氧化氫酶活性:三種牧草CAT活性,隨著Hg2+濃度升高,先上升后降低。(5)丙二醛含量:隨著Hg2+濃度升高,紫花苜蓿丙二醛含量降低;披堿草和高羊茅丙二醛含量先降低后升高。(6)脯氨酸含量:Hg2+脅迫下,紫花苜蓿中脯氨酸含量下降,并保持平穩(wěn);披堿草和高羊茅脯氨酸含量上升。(7)可溶性蛋白含量:三種牧草皆表現(xiàn)為先升高后降低,高濃度脅迫下再升高的變化規(guī)律。(8)可溶性糖含量:在Hg2+脅迫下,紫花苜蓿可溶性糖含量降低,披堿草和高羊茅含量上升。

    北京師范大學(xué)生物系生化教研室. 1982. 基礎(chǔ)生物化學(xué)實(shí)驗(yàn) [M]. 北京:人民教育出版社: 142 – 162. [Beijing Normal University. Department of Biology. Biochemistry Teaching and Research Section. 1982. Foundation biochemistry experiment [M]. Beijing: People's Education Press: 142 – 162.]

    陳禮洪,趙康平,蔣柱武,等. 2015. 土壤汞污染對油菜的氧化脅迫效應(yīng)[J].環(huán)境化學(xué), 34(2): 241 – 246. [Chen L H, Zhao K P, Jiang Z W, et al. 2015. Oxidative stress induced by mercury contaminated soil onBrassica juncea[J].Environmental Chemistry, 34(2): 241 – 246.]

    陳麗萍, 胡恭任. 2009. 土壤和沉積物中汞的提取與檢測方法研究進(jìn)展[J].環(huán)境與健康雜志, 26(6): 557 – 560. [Chen L P, Hu G R. 2009. The extraction and determination of mercury in soil and sediment are reviewed [J].Environment and Health, 26(6): 557 – 560.]

    黨民團(tuán),劉 娟. 2005. 中國汞污染的現(xiàn)狀及防止對策[J].應(yīng)用化工, 34(7): 394 – 396. [Dang M T, Liu J. 2005. The current situation of mercury pollution in China and preventing countermeasures [J].Applied Chemical Industry, 34(7): 394 – 396.]

    付學(xué)吾,馮新斌,王少鋒, 等. 2005. 植物中汞的研究進(jìn)展[J].礦物巖石地球化學(xué)通報, 3(24): 232 – 238. [Fu X W, Feng X B, Wang S F, et al. 2005. The research progress of mercury in plants [J].Bulletin of Mineralogy Petrology and Geochemistry, 3(24): 232 – 238.]

    高大翔,郝建朝,李子芳,等. 2008. 汞脅迫對水稻生長及幼苗生理生化的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 27(1): 58 – 61. [Gao D X, Hao J C, Li Z F, et al. 2008. Mercury stress on rice growth and physiological and biochemical effects [J].Journal of Agro-Environment Science, 27(1): 58 – 61.]

    洪曾純. 2012. 福建16種蔬菜土壤汞安全臨界值的研究[D].福州: 福建農(nóng)林大學(xué). [Hong Z C. 2012. Research of soil mercury safety threshold 16 kinds of vegetables in Fujian [D]. Fuzhou: Fujian Agriculture and Forestry University.]

    胡宗英. 2014. 不同鹽堿脅迫對披堿草和紫花苜蓿種子萌發(fā)的影響[D]. 長春: 吉林農(nóng)業(yè)大學(xué). [Hu Z Y. 2014. Different salinity-alkalinity stress on alkali grass and the infl uence of alfalfa seed germination [D]. Changchun: Jilin Agricultural University.]

    華東師范大學(xué)生物系植物生理教研室. 1980. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:高等教育出版社: 88. [East China Normal University. Department of Biology. Plant Physiology Teaching-research Section. 1980. Plant physiology experiment instruction [M]. Beijing: Higher Education Press: 88.]

    黃玉芬. 2011. 土壤汞對作物的毒害及臨界值研究[D]. 福州:福建農(nóng)林大學(xué). [Huang Y F. 2011. Mercury poisoning crops and soil research [D]. Fuzhou: Fujian Agriculture and Forestry University.]

    梁勝偉,胡新文,段瑞軍,等. 2009. 海馬齒對無機(jī)汞的耐性和吸附積累[J].植物生態(tài)學(xué)報, 33(4): 638 – 645. [Liang S W, Hu X W, Duan R J, et al. 2009. Hippocampal tooth on patience and adsorption of inorganic mercury accumulation [J].Chinese Journal of Plant Ecology, 33(4): 638 – 645.]

    劉建新. 2005. Hg2+對豌豆幼苗生長和生理代謝的影響[J].寧夏大學(xué)學(xué)報(自然科學(xué)版), 26(1): 67 – 70. [Liu J X. Hg2+effects on pea seedling growth and physiological metabolism [J].Journal of Ningxia University (Natural Science Edition), 26(1): 67 – 70.]

    馬成倉,洪法水. 1988. 汞對小麥種子萌發(fā)和幼苗生長作用機(jī)制初探[J].植物生態(tài)學(xué)報, 22(4): 373 – 378. [Ma C C, Hong F S. 1988. Mercury on mechanism of a preliminarystudy on the seed germination and seedling growth of wheat [J].Chinese Journal of Plant Ecology, 22(4): 373 – 378. ]

    母 波,韓善華,張英慧, 等. 2007. 汞對植物生理生化的影響[J].中國微生態(tài)學(xué)雜志, 12(19): 582 – 583. [Mu B, Han S H, Zhang Y H, et al. 2007. The infl uence of mercury on plant physiological and biochemical [J].Chinese Journal of Microecology, 12(19): 582 – 583.]

    潘瑞熾. 1994. 植物生理學(xué)上冊 [M].第二版. 北京:高等教育出版社: 57. [Pan R C. 1994. Plant Physiology (Ⅰ) [M]. Second Edition. Beijing: Higher Education Press: 57.]

    宋云華,鐘建明,馬瓊媛, 等. 2007. 不同紫花苜蓿種子處理技術(shù)的比較研究[J].牧草科學(xué), 3(136): 26 – 27. [Song Y H, Zhong J M, Ma Q Y, et al. 2007. A comparative study of different alfalfa seed treatment technology [J].Grass Science, 3(136): 26 – 27.]

    汪 霞,南忠仁,武文飛,等. 2010. 干旱區(qū)綠洲土壤中重金屬的形態(tài)分布及生物有效性研究[J].生態(tài)環(huán)境學(xué)報, 19(7): 1663 – 1667. [Wang X, Nan Z R, Wu W F, et al. 2010. The formation distribution of heavy metals in soil oases in arid areas and biological effectiveness research [J].Ecology and Environmental Sciences, 19(7): 1663 – 1667.]

    王起超,沈文國,麻壯偉. 1999. 中國燃煤汞排放量估算[J].中國環(huán)境科學(xué), 19(4): 318 – 321. [Wang Q C, Shen W G, Ma Z W. 1999. China coal mercury emissions estimates [J].China Environmental Science, 19(4): 318 – 321.]

    徐小蓉,張習(xí)敏,楊立昌, 等. 2011. 汞脅迫對蜈蚣草生理特征的影響[J].安徽農(nóng)業(yè)科學(xué), 39(24): 14772 – 14774. [Xu X R, Zhang X M, Yang L C, et al. 2011. The infl uence of mercury stress on the centipede grass physical characteristics [J].Journal of Anhui Agricultural Sciences, 39(24): 14772 – 14774.]

    薛 亮. 2013. 銻礦區(qū)植物重金屬積累特征及其耐銻機(jī)理研究[D]. 北京: 中國林業(yè)科學(xué)研究院. [Xue L. 2013. Antimony and antimony resistance mechanism of plant heavy metal accumulation characteristics research [D]. Beijing: Chinese Academy of Forestry Sciences. ]

    張靜靜, 鄭 娜, 周秋紅, 等. 2014. 內(nèi)蒙古自治區(qū)原煤中汞含量分布及燃煤大氣汞排放量估算[J].環(huán)境化學(xué), 33(9): 1613 – 1614. [Zhang J J, Zheng N, Zhou Q H, et al. 2014. The Inner Mongolia autonomous region distribution of mercury content in the raw coal and coal to estimate atmospheric mercury emissions [J].Environmental Chemistry, 33(9): 1613 – 1614.]

    Bravo A G, Cosio C, Amouroux D. 2014. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant [J].Water Research, 49: 391 – 405.

    Gbor P K, Wen D, Meng F, et al. 2007. Modeling of mercury emission, transport and deposition in North America [J].Atmospheric Environment, 41(6): 1135 – 1149.

    Lai S O, Holsen T M, Han Y J, et al. 2007. Estimation of mercury in sediment loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS) [J].Atmospheric Environment, 41(37): 8205 – 8218.

    Leticia G R, Mercedes V R, Martn E J. 2006. Geochemistry of mercury in sediment of oyster areas in Sonora, Mexico [J].Marine Pollution Bulletin, 52(4): 453 – 458.

    Meng M, Li B, Shao J J, et al. 2014. Accumulation of total mercury and methylmercury in rice plant [J].Environmental Pollution, 184: 179 – 186.

    Stolle R, Koeser H, Gutberlet H. 2014. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fi red power plants [J].Applied Catalysis B: Environmental, 144: 486 – 497.

    The infl uence of mercury in the soil stress on physiological characteristics of forage

    WANG Daohan, DU Junnan, LI Yu'e, CHU Shijing
    (Engineering and Environmental Research School, Liaoning Technical University, Fuxin 123000, China)

    Background, aim, and scopeParts of large-scale coal enterprises in Inner Mongolia have been striving to develop coal-fired power plants and promoting the integration of coal and electricity, which indicates the rapid increase of coal consumption in the region of Inner Mongolia. During the coal combustion, the phenomenon of mercury emissions into the atmosphere appears, which has a serious impact on environmental pollution. This paper aims to explore the mechanism of how mercury in soil influences the growth of forage, and the effect to grassland caused by high mercury content in soil.Materials and methodsIn this study, test materials for alfalfa, cover with alkali grass, festuca arundinacea, grass seed were seeds from East Wuzhu Muqinqi grassland station in Inner Mongolia of Chinese Academy of Sciences. Test the soil collected from East Wuzhu Muqinqi grassland station in Inner Mongolia of Chinese Academy of Sciences. Peroxidase (POD) activity of guaiacol method is used to determine. Catalase (CAT) activity using ultraviolet absorption spectrometry. Malondialdehyde (MDA) using glucosinolates barbituric acid colorimetric method. Proline using sulfosalicylic acid method. Soluble protein using coomassie brilliant blue staining method. Soluble sugar content determination by anthrone method.ResultsAlkali grass and festuca arundinacea seed germination rate gradually reduced with Hg2+concentration in the soil, briefl y in the early years of alfalfa seed germination, but high concentration of inhibition. In this paper, research has shown that, under the stress of Hg2+in soil, Hg2+concentration is lower than 1.5 mg · kg-1, alfalfa POD activity is on the rise, when the Hg2+concentration is greater than 1.5 mg · kg-1, alfalfa POD activity falling. Cover with alkali grass POD activity as a whole is on the rise. Tall fescue POD activity smoothly. Under the stress of Hg2+in soil, Hg2+concentration is lower than 2.0 mg · kg-1, the three kinds of forage grass CAT are on the rise, and when the concentration of Hg2+ishigher than 2.0 mg · kg-1, all show the tendency of lower. The duration of alfalfa malondialdehyde content reduced; cover with alkali grass malondialdehyde content also is on the decline, to Hg2+concentration is higher than 32.0 mg · kg-1after the previous deal with higher concentration of content; festuca arundinacea MAD content tends to reduce the rising trend, after first when soil Hg2+concentration is higher than 1.5 mg · kg-1, malondialdehyde content increased. Three kinds of grass under the low concentration, soluble protein content were higher than that of no stress state, with increasing stress concentration, reduce gradually, appeared rise to high levels of stress condition. Three kinds of forage grass appears content change trend of the change of different concentrations of DNA showed that three kinds of forage grass active Hg2+stress influence degree is different. Analysis of soluble sugar content, soluble sugar content of alfalfa under Hg2+stress reduction, tall fescue in mercury concentration higher than 32 mg · kg-1with elevated levels, cover with alkali grass in Hg2+stress state soluble sugar content is higher than no stress state. Instructions in the accumulation of soluble sugars, alkali grass has more obvious advantages.DiscussionThe normal development of mercury inhibition of plant roots and make plant becomes short. POD in organism can eliminate oxygen free radical, superoxide, inhibit free radicals on membrane lipid peroxidation, preventing damage to membrane damage and, at the same time outside the POD also participated in the fi lm the generation. CAT can be reduced by H2O2in plants, and reduced H2O2accumulation in the body and limiting oxygen damage potential. CAT, POD is enzymatic defense system of plants to membrane lipid peroxidation of protective enzyme. Mercury by acting on the cell membrane phospholipids, make the cell membrane permeability change. Plants under the stress of mercury, active free radicals content in cells, membrane peroxidation of unsaturated fatty acids, which makes the structure and function of membrane is destroyed. MDA content can refl ect the degree of membranous peroxide, reflect the extent to which plants suffer adversity harm. Plants can represent proline content in plant resistance, high proline content, strong resistance. Soluble protein content in plant cells can directly refl ect the state of intracellular protein synthesis, denaturation and degradation. Proline and reduce the effect of the water in the cell, which can be more effi cient for a variety of enzymes and complex protein quaternary structure protection, system stability in the adversity of cell and reduce the membrane lipid peroxidation. Soluble sugar of plant adversity. The more soluble sugar, the stronger the resistance of plants, there was a positive relationship.ConclusionsUnder Hg2+stress, inhibition of grass seed germination rate, and the higher the concentration of, the lower the germination rate, affect the plant height. Peroxidase activity and CAT activity and MDA content, proline content and soluble protein content, soluble sugar content changes under the stress of mercury, and the higher the concentration, the greater the long-term accumulated after mercury will have an impact on the prairie grasses.Recommendations and perspectivesCurrent grassland mercury accumulation quantity is less, but should attach importance to the control of mercury from coal-fi red power plants, to prevent the accumulation of prairie grass pollution, prevent the mercury in coal from entering the food chain, ecological health.

    soil; mercury; grass; physiological and biochemical

    WANG Daohan, E-mail: wangdaohan@sina.com

    10.7515/JEE201606008

    2016-04-01;錄用日期:2016-05-06

    Received Date:2016-04-01;Accepted Date:2016-05-06

    (美國)國家地理空氣與水保護(hù)基金資助項(xiàng)目(GEFC30-14)

    Foundation Item:National Geographic Air and Water Protection of Funded Projects, US (GEFC30-14)

    王道涵,E-mail: wangdaohan@sina.com

    猜你喜歡
    堿草高羊茅脯氨酸
    施肥對垂穗披堿草的影響研究進(jìn)展
    國家藥監(jiān)局批準(zhǔn)脯氨酸恒格列凈片上市
    中老年保健(2022年3期)2022-11-21 09:40:36
    原生草
    美文(2022年18期)2022-10-20 23:07:14
    羊草混播披堿草的好處及栽培技術(shù)
    外源水楊酸對鹽脅迫高羊茅生長和生理的影響
    溫度對水城高羊茅種子萌發(fā)特性的影響
    植物體內(nèi)脯氨酸的代謝與調(diào)控
    高羊茅草坪夏季病害防治對策分析
    反式-4-羥基-L-脯氨酸的研究進(jìn)展
    干旱脅迫對馬尾松苗木脯氨酸及游離氨基酸含量的影響
    五大连池市| 黔南| 疏勒县| 葵青区| 朝阳县| 甘南县| 河北区| 淮北市| 定南县| 新郑市| 全椒县| 双桥区| 北碚区| 太康县| 蓝山县| 延津县| 武城县| 溧水县| 正定县| 泸西县| 渭源县| 三门峡市| 虹口区| 奇台县| 华容县| 逊克县| 云龙县| 德州市| 昌都县| 巩义市| 彭山县| 张家口市| 尼木县| 新竹县| 岳阳县| 随州市| 石家庄市| 商河县| 岳阳县| 大丰市| 普陀区|