• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    末次盛冰期以來長江鎮(zhèn)江段古河槽沉積特征

    2016-03-21 05:16:22劉衛(wèi)國夏慧敏曹光杰
    地球環(huán)境學(xué)報 2016年6期
    關(guān)鍵詞:河槽細(xì)砂粉砂

    劉衛(wèi)國,夏慧敏,曹光杰

    (1.臨沂大學(xué) 資源環(huán)境學(xué)院,臨沂 276005;2.臨沂市城市排水維護(hù)管理處,臨沂 276000)

    末次盛冰期以來長江鎮(zhèn)江段古河槽沉積特征

    劉衛(wèi)國1,2,夏慧敏1,曹光杰1

    (1.臨沂大學(xué) 資源環(huán)境學(xué)院,臨沂 276005;2.臨沂市城市排水維護(hù)管理處,臨沂 276000)

    選擇長江鎮(zhèn)江—揚州段作為研究對象。搜集整理了潤揚長江大橋地質(zhì)勘探鉆孔96個,根據(jù)鉆孔資料,繪制了長江古河槽地質(zhì)剖面示意圖。選擇了3個典型鉆孔分析其分層沉積特征。根據(jù)典型鉆孔及地質(zhì)剖面,結(jié)合參考文獻(xiàn)中的年代,分析了長江鎮(zhèn)江段的沉積環(huán)境特征。結(jié)論認(rèn)為:鎮(zhèn)江段長江古河槽在-77.34 m切割到基巖,約-60 m以下為末次盛冰期時的長江河槽,約-60 m—-40 m為晚冰期河床沉積,約-40 m以上、局部-55 m以上為全新世沉積。古河槽中的沉積物包括末次盛冰期的河床滯留沉積、之后海面上升引起的溯源堆積、全新世最大海侵時的河口砂壩沉積及三角洲平原形成以來的沉積在內(nèi),最厚處七十余米。下部的河床滯留沉積、溯源堆積,主要是粗砂礫石、細(xì)砂等;上部在河流、潮流及河口環(huán)境的共同作用下,形成了粉砂、亞粘土、淤泥質(zhì)亞粘土等互層的沉積。全新世最大海侵以來,北岸淤積速率快,主河床逐步向南偏移。

    末次盛冰期;長江鎮(zhèn)江段;古河槽;沉積特征

    關(guān)于末次冰期的古環(huán)境,一直是國內(nèi)外研究的熱點問題。末次冰期的古氣候環(huán)境是影響河流水文狀況及河道演變的重要因素,對河流古河道的研究不僅可以了解一個地區(qū)的河流地貌演變歷史,同時,對于預(yù)測未來環(huán)境變化具有重要意義。末次盛冰期,東海海面下降的幅度估算為130 m左右(中國科學(xué)院地理研究所和長江水利水電科學(xué)研究院,1985;楊懷仁等,1995),由于海面大幅度下降,導(dǎo)致長江下游河床發(fā)生強烈的溯源侵蝕,形成末次盛冰期時的長江古河槽。晚冰期以來,海面逐漸回升,在約7—6 ka BP時達(dá)到最高海面(耿秀山,1981;嚴(yán)欽尚和洪雪晴,1987),長江約在鎮(zhèn)江附近入海。其后長江口向東南推進(jìn),長江三角洲逐漸形成。關(guān)于長江下游古河谷,已有大量研究成果。方金琪(1990)、楊懷仁等(1995)、曹光杰等(2009,2010,2011,2012)研究認(rèn)為,南京段長江古深槽,深度達(dá)-90 m以下,并對古河谷沉積旋回進(jìn)行了劃分。李從先等(1996,1998,1999,2000)、張家強等(1998)、Li et al(2002)把鎮(zhèn)江以下長江古河谷末次盛冰期以來的沉積分為海侵層序與海退層序,具體為河床層序、河漫灘層序、淺海-河口灣層序、河口壩層序、汊道河床層序等。許世遠(yuǎn)等(1987)、王靖泰等(1981)及同濟(jì)大學(xué)海洋地質(zhì)系三角洲科研組(1978)研究認(rèn)為,長江三角洲的發(fā)育,具有明顯的階段性,分別為紅橋期、黃橋期、金沙期、海門期、崇明期、長興期,每個發(fā)育階段,皆以河口沙壩為核心,構(gòu)成了完整的三角洲沉積體系。鎮(zhèn)江段作為全新世最高海面時的河口段,沉積環(huán)境具有一定的典型性,但目前具體針對鎮(zhèn)江地區(qū)古河槽沉積的研究很少。本文通過對潤揚長江大橋附近鉆孔等的分析,探討末次盛冰期以來長江鎮(zhèn)江段古河谷的沉積特征。

    1 資料與方法

    1.1 鉆孔資料的搜集整理

    搜集潤揚長江大橋附近(圖1)工程地質(zhì)鉆孔96個,內(nèi)容包括鉆孔地理坐標(biāo)、鉆孔深度、不同沉積層的厚度及部分鉆孔不同深度上的顆粒級配等。選擇ZK19、ZK27和ZK11作為典型鉆孔,分析各沉積層特征。

    圖1 長江鎮(zhèn)江段位置示意圖Fig.1 Location of the Yangtze River in Zhenjiang reach

    1.2 繪制古河槽地質(zhì)剖面圖

    在GCS_Krasovsky_1940地理坐標(biāo)系統(tǒng)下,對鉆孔進(jìn)行配準(zhǔn)定位,選出在同一方向上的鉆孔。運用ArcGIS9,計算鉆孔之間的距離。根據(jù)鉆孔的距離及深度,分別確定橫比例尺、縱比例尺。根據(jù)確定的比例尺,繪制潤揚長江大橋附近長江橫斷面地質(zhì)剖面簡圖,用Mapinfo軟件,繪制地質(zhì)剖面示意圖(圖2)。

    圖2 潤揚長江大橋附近古河谷地質(zhì)剖面示意圖Fig.2 The stratigraphical cross-section of the Yangtze River incised-valley near the Runyang Bridge

    1.3 相鄰斷面的地層比對

    根據(jù)在南京長江四橋附近古深槽兩側(cè)階地上采集的14C樣品的年代及參考文獻(xiàn)中鎮(zhèn)江段鉆孔(圖1中K1、K2)地層的年代,對鎮(zhèn)江段長江河槽沉積層位年代進(jìn)行比對推斷。

    2 典型鉆孔分層沉積特征

    長江北汊中的ZK19孔,北汊南北兩岸上的ZK27、ZK11孔(圖1、圖2),沉積厚度大,沉積層較完整,分別對應(yīng)了長江古深槽及深槽兩側(cè)的埋藏階地,可以作為典型鉆孔進(jìn)行分析。

    2.1 ZK19孔分層沉積特征

    該孔位于長江北汊現(xiàn)代河床上,孔口標(biāo)高-14.64 m,孔深96.10 m,沉積層厚62.70 m,到達(dá)基巖的高程為-77.34 m,是古河槽到基巖深度的最深點。沉積層自上而下為:

    -14.64—-46.64 m為粉砂、細(xì)砂互層。-14.64—-23.44 m:細(xì)砂,黃灰色,飽和,中等密實,分選性較好;-23.44—-28.54 m:粉砂,黃灰色,飽和,中等密實,分選性較好,含云母碎片;-28.54—-35.94 m:細(xì)砂,灰色,飽和,中等密實,分選性一般,含少量中粗砂,偶爾有礫石,礫徑2—5 mm,含云母碎片,含磨損的貝殼碎片;-35.94—-37.34 m:亞粘土,黃灰色,飽和,軟塑狀,具層理,夾薄層粉砂;-37.34—-46.64 m:粉砂,灰色,飽和,中等密實—密實,分選性較好,偶爾含石英質(zhì)礫石,含云母碎片,具層理,局部夾薄層亞粘土。在-43.64 m含少量腐殖質(zhì),部分層位含有海相生物有孔蟲及過渡相介形蟲。

    -46.64—-77.34 m為細(xì)砂、礫砂互層,分選性差。-46.64—-53.54 m:細(xì)砂,灰色,飽和,密實,分選性較好,含中粗砂,頂部為粉砂;-53.54—-64.74 m:礫砂,灰色、淺灰色,分選性較差,飽和,密實,礫石石英質(zhì),亞圓形,含卵石,直徑2—3 cm;-64.74—-66.24 m:細(xì)砂,灰色,飽和,密實,分選性差,含較多中粗砂顆粒;-66.24—-70.04 m:主要是礫石,淺灰—黃灰色,飽和,密實,礫石石英質(zhì),亞圓形,粒徑3—6 mm,充填中粗砂為主,含少量卵石,直徑5—6 cm不等,底部含卵石較多;-70.04— -75.24 m:粉砂,灰色,飽和,密實,分選性較好,含中粗砂顆粒;-75.24— -77.34 m:礫砂,灰色,飽和,密實,分選性差,充填粉細(xì)砂為主,含卵石,亞圓形,直徑2— 6 cm。

    -77.34 m以下為灰綠雜肉紅色碎裂巖。

    2.2 ZK27孔分層沉積特征

    該孔位于長江北汊南岸世業(yè)洲上,孔口標(biāo)高3.61 m,孔深92.90 m,沉積層厚度60.75 m,鉆孔到達(dá)基巖處位于古河槽埋藏階地上。沉積物自上而下為:

    3.61 — -31.19 m為粉砂、亞粘土層。3.61—2.71 m:粘土,灰黃色,軟塑狀,濕潤,飽和,含少量腐殖質(zhì);2.71—-1.99 m:淤泥質(zhì)亞粘土,灰色,流塑狀,飽和,具層理,夾粉砂薄層;-1.99—-6.19 m:淤泥質(zhì)亞粘土與粉砂互層(淤泥質(zhì)亞粘土,灰褐色,流塑狀;粉砂,灰色,松散),單層厚度約1—5 mm,含腐殖質(zhì);-6.19 —-16.49 m:粉砂,黃灰色、灰色,分選性較好,飽和,中等密實,具層理,頂部為亞砂土,向下顆粒逐漸變粗;-16.49—-31.19 m:粉砂,黃灰色,分選性較好,飽和,中等密實—密實,含云母碎片,向下顆粒變粗,含少量中砂,含有海相生物有孔蟲及過渡相介形蟲。

    -31.19—-57.14 m為細(xì)砂、礫砂層。-31.19—-42.49 m:細(xì)砂,灰黃色、灰色,分選性較好,飽和,密實,含少量云母碎片及腐殖質(zhì),-36.39—-39.39 m含較多中砂;-42.49 —-44.59 m:粉砂夾亞粘土(粉砂,灰色,分選性較好,飽和,中等密實;亞粘土,黃灰色,軟塑狀);-44.59—-53.39 m:細(xì)砂,灰色,飽和,中等密實—密實,分選性較差,含卵礫石,含云母碎片;-53.39—-57.14 m:礫砂,灰色,飽和,密實,分選性差,含少量卵石。-54.49—-54.69 m夾青灰色粉砂。

    -57.14 m以下為構(gòu)造角礫巖。

    2.3 ZK11孔分層沉積特征

    該孔位于長江北汊北岸上,孔口標(biāo)高4.47 m,孔深96.35 m,沉積層厚度70.85 m,鉆孔到達(dá)基巖處位于古河槽埋藏階地上。沉積物自上而下為:

    4.47 — -41.53 m為粉砂、亞粘土層。4.47 —2.17 m:粘土,灰黃色、褐黃色,軟塑狀,濕潤,飽和,含植物根系和灰黑色斑點狀腐殖物;2.17—0.43 m:淤泥質(zhì)亞粘土,灰色、黃灰色,夾亞砂土,飽和,流塑狀,具層理,底部夾黃綠色粉細(xì)砂;0.43—-7.03 m:粉砂夾亞粘土,青灰色,含灰褐色腐殖質(zhì),飽和,松散,上部粉砂為主,較均質(zhì);-7.03—-12.53 m:淤泥質(zhì)亞粘土夾粉砂。淤泥質(zhì)亞粘土,灰褐色,飽和,流塑狀。粉砂,灰色,薄層狀,單層厚度一般小于2 cm,稍松—中等密實,其中-8.43—-8.93 m為均質(zhì)粉砂,分選性好;-12.53—-25.83 m:粉砂,灰色,含云母碎片,飽和,中等密實,具層理,夾亞粘土薄層(-13.53—-16.23 m為黃綠色粉砂,-16.23—-17.53 m、-25.03—-25.53 m為灰褐色軟塑狀亞粘土夾粉砂);-25.83—-30.53 m:粉砂,青灰色、灰色,含云母碎片,飽和,中等密實,具層理,夾灰褐色軟塑狀亞粘土和腐殖質(zhì)薄層;-30.53—-41.53 m:粉砂,黃灰色,含云母碎片,夾腐殖質(zhì)薄層,飽和,中等密實—密實;部分層位含有海相生物有孔蟲及過渡相介形蟲。

    -41.53— -59.33 m為細(xì)砂、中砂。-41.53—-48.03 m:細(xì)砂,灰色,飽和,中等密實,分選性較差,含有少量石英質(zhì)礫石,其中-45.53 —-48.03 m為粉砂,夾灰黑色腐殖質(zhì)薄層;-48.03—-59.33 m :中砂,灰色,飽和,中等密實—密實,分選性差,含有石英質(zhì)礫石,亞圓形,由上向下顆粒變粗,其中-55.53—-59.03 m為粗砂,底部為粉砂,夾腐殖質(zhì)薄層。

    -59.33— -66.38 m為細(xì)砂礫砂。-59.33—-63.23 m:礫砂,灰色,分選性較好,飽和,密實,充填粉細(xì)沙;-63.23—-66.38 m:細(xì)沙,灰色,飽和,密實,含有少量石英質(zhì)礫石,亞圓形。

    -66.38 m以下為強風(fēng)化沉火山凝灰角礫巖。

    3 討論

    3.1 古河槽沉積層年代

    潤揚長江大橋附近地質(zhì)剖面圖顯示,古河槽南岸在ZK27、ZK49、ZK53孔附近,有三級古埋藏階地,高程分別約為-60 m、-40 m、-27 m。上游南京長江四橋附近在約-60 m、-40 m處也有埋藏階地,在約-60 m埋藏階地上沉積層樣品(-59.33 m)的14C年代為(14682 ± 110 a BP),在約-40.46 m處階地上沉積物樣品的14C年代為(13287 ± 161 a BP)(曹光杰等,2010)。古長江約-60 m、-40 m的埋藏階地形成于同一時期,據(jù)此推斷,該段約-60 m以下的河槽為末次盛冰期時的長江河槽,約-40 m 的階地為晚冰期的埋藏階地。

    世業(yè)洲下游長江南岸鉆孔K1(圖1)深度接近基巖處(-26.57 m)粉質(zhì)粘土樣品中腐殖泥的14C年代為(8925 ± 900 a BP)(陳希祥,2001);北岸K2孔(圖1)約在-65 m深度到達(dá)基巖,在約-55 m處為明顯不整合面,下部為砂礫層,上部為粉細(xì)砂層,在-54.68 m處細(xì)砂中腐殖泥的14C年代為(2150 ± 60 a BP)(陳希祥,2001)。據(jù)此推斷,該段河槽約-60 m至約-40 m為晚冰期沉積,約-40 m以上,江北局部約-55 m以上的沉積,屬于全新世以來的沉積。

    3.2 沉積層與沉積環(huán)境

    據(jù)典型鉆孔及古河槽地質(zhì)剖面分析,鎮(zhèn)江段長江古河槽的沉積物包括末次盛冰期時的河床滯留沉積、之后海面上升引起的溯源堆積、全新世最大海侵時的河口砂壩沉積及三角洲平原形成以來的沉積在內(nèi),最厚處七十余米。剖面自下而上依次為粗砂礫石、細(xì)砂、粉細(xì)砂互層、粉砂、淤泥質(zhì)亞粘土、亞粘土與粘土等,下部細(xì)砂、粗砂、礫石等交錯分布,分選性差。

    末次冰期最盛期,由于海面下降,侵蝕基準(zhǔn)面降低,長江縱比降大,流水動力作用強勁,攜砂能力強,沉積了較粗顆粒的卵礫石等河床滯留沉積物。晚冰期,隨著海面波動中回升,河流開始溯源堆積和側(cè)蝕,沉積物顆粒較粗,分選性較差。前期河床滯留沉積,后期溯源加積與側(cè)蝕,表明河水搬運能力由強到弱,水面由窄到寬的沉積搬運過程。

    全新世最高海面時,長江河口位于鎮(zhèn)江、揚州附近,形成河口砂壩沉積。在河口砂壩分流影響下,長江分為南北兩個汊道,并開始了漲、落潮分流,在科氏力的影響下,漲潮流北偏,落潮流南偏。漲潮流與徑流相互削弱,致使北汊道逐漸衰退。該河段全新世剖面下段的粉細(xì)砂層即相當(dāng)于海侵期的河口沙壩及邊灘沉積,而上段的粉砂與淤泥質(zhì)亞粘土層是沙壩被岸灘歸并后的三角洲濱岸沉積。濱岸平原形成后,雖大幅度的沉積與侵蝕水動力條件已不具備,但局部性新構(gòu)造運動及地形、微地貌的改變,均影響著河谷的均衡調(diào)整。北岸濱岸平原地勢平坦,入江水道密集,季節(jié)性徑流攜帶有大量泥沙入江,粘土、亞粘土、亞砂土不斷疊積,使北岸淤積速度加快,灘地日愈拓寬。南岸臨近山丘,地勢雖起伏較大,但入江泥沙量遠(yuǎn)小于北岸,在落潮流強大的沖刷作用下,致使長江主汊逐漸南移。河道在自北而南總趨勢下,曾受局部因素影響而有多次的南北往復(fù)擺動,現(xiàn)今仍在向南侵蝕。從K1孔、K2孔的兩個樣品14C年代看,K2孔樣品采集點的深度大,但樣品14C年代小,說明了長江北岸K2孔附近原是主河床,全新世以來北岸淤積速率快,河道逐漸向南侵蝕的過程。

    下部的細(xì)砂層與下伏層呈侵蝕不整合接觸,反映為沉積不連續(xù)、侵蝕缺失。上部的亞粘土與粉砂互層段含較多的腐殖質(zhì)及海陸過渡相生物貝殼碎屑,反映了水流周期性波動、水生生物發(fā)育的潮汐影響的邊灘環(huán)境。含有海相生物有孔蟲及過渡相介形蟲,反映了半咸水潮間帶環(huán)境。粉細(xì)砂含有被磨蝕的貝殼碎片,反映了邊灘浪擊的水動力條件、潮汐作用明顯。底部細(xì)砂層含少量卵礫石,且南部與基巖接觸,表明沉積前曾為強烈剝蝕環(huán)境,所含卵礫石系晚冰期被侵蝕沖刷后的滯留沉積物。

    4 結(jié)論

    鎮(zhèn)江段長江古河槽最深處在-77.34 m切割到基巖,約-60 m以下為末次盛冰期時的長江河槽,約-60 m—-40 m為晚冰期河床沉積,約-40 m以上、江北局部-55 m以上為全新世沉積。

    古河槽中的沉積物包括末次盛冰期的河床滯留沉積、之后海面上升引起的溯源堆積、全新世最大海侵時的河口砂壩沉積及三角洲平原形成以來的沉積在內(nèi),最厚處七十余米。下部的河床滯留沉積、溯源堆積,主要是粗砂礫石、細(xì)砂等;上部在河流、潮流及河口環(huán)境的共同作用下,形成了粉砂、亞粘土、淤泥質(zhì)亞粘土等互層的沉積。

    全新世最大海侵以來,北岸淤積速率快,主河床逐步向南偏移。

    曹光杰, 爨景波, 李彥彥. 2012. 長江江蘇段末次盛冰期古河槽特征[J].地理科學(xué), 32(8): 986 – 992. [Cao G J, Cuan J B, Li Y Y. 2012. Characteristics of the Yangtze River Paleo-valley in Jiangsu Province in the Last Glacial Maximum [J].Scientia Geographica Sinica, 32(8): 986 – 992.]

    曹光杰, 王 建, 李彥彥. 2010. 南京長江四橋附近長江古河谷沉積層序[J].地層學(xué)雜志, 34(4): 389 – 393. [Cao G J, Wang J, Li Y Y. 2010. Sedimentary sequences of the Yangtze River Paleo-valley near the No.4 Nanjing Yangtze River Bridge since LGM [J].Journal of Stratigraphy, 34(4): 389 – 393.]

    曹光杰, 王 建, 張學(xué)勤, 等. 2009. 末次盛冰期長江南京段河槽特征及古流量[J].地理學(xué)報, 64(3): 331 – 338. [Cao G J, Wang J, Zhang X Q, et al. 2009. Characteristics and runoff volume of the Yangtze River's Paleovalley at Nanjing reach in the Last Glacial Maximum [J].Acta Geographica Sinica, 64 (3): 331 – 338.]

    曹光杰, 張金寶. 2011. 末次盛冰期以來長江下關(guān)—棲霞山段下切深度及沉積旋回[J].冰川凍土, 33(2): 432 – 435. [Cao G J, Zhang J B. 2011. The downcutting depth and sedimentary cycles of the Yangtze River's Paleochannel in the Xiaguan—Qixia Mountain reach since the Last Glacial Maximum [J].Journal of Glaciology and Geocryology, 33(2): 432 – 435.]

    陳希祥. 2001. 鎮(zhèn)江—揚州長江河谷第四系沉積演變特征[J].地層學(xué)雜志, 25(1): 51 – 54. [Chen X X. 2001. Evolutionary characteristics of the quaternary sediments in the Yangtze valley between Yanzhou and Zhenjiang [J].Journal of Stratigraphy, 25(1): 51 – 54.]

    方金琪. 1990. 晚冰期以來海面上升對長江中下游河段影響的數(shù)值模擬[J].中國科學(xué)( B輯), 19(8): 870 – 878. [Fang J Q. 1990. The numerical analog of the sea-level rise affecting the Yangtze River middle and lower reaches since late iceage [J] .Science in China ( Series B), 19(8): 870 – 878 .]

    耿秀山. 1981.中國東部晚更新世以來的海水進(jìn)退[J].海洋學(xué)報, 3(1): 114 – 128. [Geng X S. 1981. The transgression and regression since the Late Pleistocene of east China [J].Acta Oceanologica Sinica, 3(1): 114 – 128.]

    李從先,陳慶強,范代讀,等. 1999. 末次盛冰期以來長江三角洲地區(qū)的沉積相和古地理[J].古地理學(xué)報, 1(4): 12 – 25. [Li C X, Chen Q Q, Fan D D, et al. 1999. Palaeogeography and palaeoenvironment in Changjiang Delta since Last Glaciation [J].Journal of Palaeogeography, 1(4): 12 – 25.]

    李從先,范代讀,張家強. 2000. 長江三角洲地區(qū)晚第四紀(jì)地層及潛在環(huán)境問題[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 20(3): 1 – 7. [Li C X, Fan D D, Zhang J Q. 2000. Late Quaternary stratigraphical framework and potential environmental problems in the Yangtze Delta Area [J].Marine Geology & Quaternary Geology, 20(3): 1 – 7.]

    李從先, 汪品先. 1998.長江晚第四紀(jì)河口地層學(xué)研究[M].北京:科學(xué)出版社: 12. [Li C X, Wang P X. 1998. Researches on stratigraphy of the Late Quaternary period in Yangtze River mouth [M]. Beijing: Science Press: 12.]

    李從先, 張桂甲. 1996. 晚第四紀(jì)長江三角洲高分辨率層序地層學(xué)的初步研究[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 16(3): 13 – 24. [Li C X, Zhang G J. 1996. Researches on high resolution sequence stratigraphy of the Yangtze Delta during Late Quaternary period [J].Marine Geology & Quaternary Geology, 16(3): 13 – 24.]

    同濟(jì)大學(xué)海洋地質(zhì)系三角洲科研組. 1978. 全新世長江三角洲的形成和發(fā)育[J].科學(xué)通報, 23(5): 310 – 314. [Study Group on the Delta of the Marine Geology Department in Tongji University. 1978. The formed and growth of Yangtze Delta in Holocene Epoch [J].Chinese Science Bulletin, 23(5): 310 – 314.]

    王靖泰, 郭蓄民, 許世遠(yuǎn), 等. 1981. 全新世長江三角洲的發(fā)育[J].地質(zhì)學(xué)報, 55(1): 67 – 81. [Wang J T, Guo X M, Xu S Y, et al. 1981. Evolution of the Holocene Changjiang Delta [J].Acta Geologica Sinica, 55(1): 67 – 81.]

    許世遠(yuǎn), 王靖泰, 李 萍. 1987. 論長江三角洲發(fā)育的階段性[M] //嚴(yán)欽尚, 許世遠(yuǎn). 長江三角洲現(xiàn)代沉積研究. 上海: 華東師范大學(xué)出版社: 264 – 277. [Xu S Y, Wang J T, Li P. 1987. The evolution stage of the Yangtze River Delta [M]// Yan Q S, Xu S Y. Recent Yangtze Delta Deposits. Shanghai: East China Normal University Press: 264 – 277.]

    嚴(yán)欽尚, 洪雪晴. 1987. 長江三角洲南部平原全新世海侵問題[M] //嚴(yán)欽尚, 許世遠(yuǎn). 長江三角洲現(xiàn)代沉積研究. 上海:華東師范大學(xué)出版社: 92 – 102. [Yan Q S, Hong X Q. 1987. The transgression of northern plain in Yangtze Delta during Holocene Epoch [M]// Yan Q S, Xu S Y. Recent Yangtze Delta Deposits. Shanghai: East China Normal University Press: 92 – 102.]

    楊懷仁, 徐 馨, 楊達(dá)源, 等. 1995. 長江中下游環(huán)境變遷與地生態(tài)系統(tǒng)[M].南京:河海大學(xué)出版社. [Yang H R, Xu X, Yang D Y, et al. 1995. Environmental changes and ecosystem in the Yangtze River's middle and lower reaches [M]. Nanjing: Hohai University Press.]

    張家強, 張桂甲, 李從先. 1998. 長江三角洲晚第四紀(jì)地層層序特征[J].同濟(jì)大學(xué)學(xué)報, 26(4): 438 – 442. [Zhang J Q, Zhang G J, Li C X. 1998. Characteristics of the Late Quaternary stratigraphic sequence in the Changjiang River Delta area [J].Journal of Tongji University, 26(4): 438 – 442.]

    中國科學(xué)院地理研究所,長江水利水電科學(xué)研究院. 1985.長江中下游河道特性及其演變[M].北京: 科學(xué)出版社. [Chinese Academy of Sciences. Institute of Geography, Yangtze River Institute of Water Resources and Hydro-Power Research. 1985. Channel properties and evolution in the Yangtze River's Middle and Lower Reaches [M]. Beijing: Science Press.]

    Li C X, Wang P, Sun H P, et al. 2002. Late Quaternary incisedvalley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J].Sedimentary Geology, 152: 133 – 158.

    The Yangtze river's paleo-valley sedimentary characteristics in Zhenjiang reach since the Last Glacial Maximum

    LIU Weiguo1,2, XIA Huimin1, CAO Guangjie1
    (1. College of Resources & Environment, Linyi University, Linyi 276005, China; 2. Drainage Maintenance Management Offi ce of Linyi City, Linyi 276000, China)

    Background, aim, and scopeThe palaeoenvironment during the Last Glacial has always been a hot research topic both at home and abroad. Research on paleochannel can not only help to understand the river evolutionary history of an area, but also function as an important means of predicting the environmental changes in the future. During the Last Glacial Maximum, the large drop in base level of the East China Sea led to strong headward erosion in the downstream of the Yangtze River so that the river formed a deep incised valley. In order to investigate the sedimentary characteristics of the incised valley in the lower reaches of the Yangtze River, the Zhenjiang reach of the Yangtze River was selected as the research reach.Materials and methods96 geological exploration boreholes were collected from the Runyang Yangtze River Bridge and then the stratigraphical cross-section of the Yangtze River incisedvalley was plotted based on the borehole data. 3 typical boreholes were selected to analyze their layered sedimentary characteristics. According to the typical boreholes and the stratigraphical cross-section, combined with the sediment dating results known from relevant references, the characteristics of thesedimentary environment of the Yangtze River in the Zhenjiang reach was analyzed and researched.ResultsThe incised valley of the Yangtze River in the Zhenjiang reach cuts into the bedrock at -77.34 m and the stratigraphical cross-section reveals the existence of the first, the second and the third buried bedrock terraces at about -60 m, -40 m and -27 m. The thickness of the sediments in the deep incised valley reached more than 70 meters.DiscussionNear the Nanjing No. 4 Bridge, the14C age of the sediments in buried terraces at about -63 m is (14682 ± 110) a BP, (13287 ± 161) a BP at about -40.46 m. The buried terraces at about -60 m and -40 m of the ancient Yangtze River formed in the same period. Therefore, the deep incised valley that is below -60 m is estimated to form the Yangtze River Valley at the LGM, the terraces at about -40 m is estimated to form the buried bedrock terraces in the Late Glacial.ConclusionsIn the Zhenjiang reach, the deep incised valley that is below -60 m is estimated to form the Yangtze River Valley at the LGM, the deposit at about -60 m—-40 m is believed to have been shaped since the Late Glacial and above about -40 m (locally -55 m) shaped since the Holocene. The total thickness of the sediments in the deep incised valley is more than 70 meters including the riverbed lag deposition during the LGM, headward deposition caused by sea-level rising, estuary sand dam deposition at the maximum transgression during the Holocene and the deposition since the formation of delta plain. The composition of the riverbed lag deposition and headward deposition in the lower part is mainly sandgravel, fi ne sand and so on; silty sand, loam, muddy loam and other composition in the upper part resulted from the combined action of river, tide and estuarine environment. Since the Holocene, the deposition rate in the north bank of the Yangtze River became faster and the main riverbed gradually shifted to the south.Recommendations and perspectivesThe conclusion is not persuasive enough due to the lack of direct dating data. Future research will focus on choosing the appropriate place for drilling and collecting samples and then further analyzing the age of sediments as well as the characteristics of sedimentary environment.

    Last Glacial Maximum; Zhenjiang reach of the Yangtze River; Paleo-valley of the Yangtze River; sedimentary characteristics

    CAO Guangjie, E-mail: guangjiecao@163.com

    10.7515/JEE201606004

    2016-05-24;錄用日期:2016-06-20

    Received Date:2015-05-24;Accepted Date:2016-06-20

    國家自然科學(xué)基金項目(41372182,40871010)

    Foundation Item:National Natural Science Foundation of China (41372182, 40871010)

    曹光杰,E-mail: guangjiecao@163.com

    猜你喜歡
    河槽細(xì)砂粉砂
    典型粉砂地層盾構(gòu)選型及施工參數(shù)研究
    阿克肖水庫古河槽壩基處理及超深防滲墻施工
    Nitric oxide detection methods in vitro and in vivo
    特細(xì)砂混凝土的研究現(xiàn)狀及研究展望
    躍進(jìn)總干渠粉砂地基上節(jié)制閘抗滑穩(wěn)定性分析
    長江口北槽河槽地形變化及深水航道回淤特征分析
    水道港口(2015年1期)2015-02-06 01:25:31
    地下連續(xù)墻在富水粉砂層中降水加固成槽施工技術(shù)
    細(xì)砂路基典型病害及其成因機理研究
    作為路基填料的細(xì)砂液化風(fēng)險分析與評價
    古河槽防滲處理中存在的問題及后期處理措施
    从化市| 龙南县| 新河县| 沙雅县| 腾冲县| 黔西县| 额尔古纳市| 耒阳市| 定安县| 井研县| 樟树市| 来凤县| 武陟县| 增城市| 大余县| 高要市| 沁阳市| 胶州市| 宾阳县| 栖霞市| 田东县| 保定市| 万宁市| 南召县| 南丰县| 岫岩| 紫阳县| 昌江| 家居| 广安市| 沂水县| 绥中县| 沛县| 西吉县| 新津县| 易门县| 江油市| 庄河市| 迭部县| 色达县| 旌德县|