• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in the Composition of Volatiles Emitted from Newhall Nucellar Navel Oranges (Citrus Sinensis (L.) Osbeck)During Anaerobic Storage

    2016-03-19 18:36:07YANGGengZHANGYujieLIUShuluYUYuegang
    關(guān)鍵詞:荷爾安徽師范大學(xué)萜烯

    YANG Geng, ZHANG Yu-jie, LIU Shu-lu, YU Yue-gang

    (College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China)

    ?

    Changes in the Composition of Volatiles Emitted from Newhall Nucellar Navel Oranges (Citrus Sinensis (L.) Osbeck)During Anaerobic Storage

    YANG Geng,ZHANG Yu-jie,LIU Shu-lu,YU Yue-gang

    (College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China)

    Clssification No: TS207.3Document Code: APaper No:1001-2443(2016)04-0364-07

    Newhall nucellar navel oranges (Citrus sinensis (L.) Osbeck) originating as a limb sport of Washington navel oranges are native to USA and now widely planted in middle part of China. The fruit of Newhall is oval-shaped, 6.48-7.18cm in long and 6.65-7.71cm in diameter, and it weights approximately from 250 to 350 g for each orange, containing 15.5% for soluble solids, 85-105g L-1for sugars, 10-11g L-1for titratable acids and 0.47-0.64g L-1for vitamin C, respectively[1].

    Newhall nucellar navel oranges are the most popular navel orange cultivar in China because of their bright color, rich nutrition, sweet flavor and pleasant smelling. The attractive and pleasant flavor of citrus fruit is attributed to a combination of alcohols, aldehydes, ketones, esters, hydrocarbon terpenes, sulfur volatiles and so on in specific proportions[2-4]. For Newhall nucellar navel oranges, forty-two volaitle organic compounds including twenty-seven oxygenated volatiles, thirteen terpene hydrocarbons and three sulfides were identified and quantified in the gases from their fresh fruit in previous studies[5].

    During their commercial packing and storage, citrus fruit not excepting Newhall nucellar navel oranges are usually exposed under various anaerobic conditions such as storing in modified or controlled atmospheres, coating with waxes or films, packing in plastic liners and holding in containers or trailers[6,7,4]. These anaerobic or anoxia storage and handing process can inhibit deterioration development of fruit, but anaerobic metabolism is induced, leading to decreases in aroma-active volatiles and accumulation of off-flavor volatiles such as ethanol, acetaldehyde and ethyl acetate[8,9,6,4]. The composition changes of volatiles from citrus fruit could lead to an altered balance of orange aroma away from what is considered “fresh” or desirable and thus becoming “rotten”[2-4]. Thus, measurement of the composition changes of volatiles from citrus fruit based on relative percentage may serve reliable and convenient information for quality evaluation.

    Fresh Newhall nucellar navel oranges maintain their external and internal quality in regular atmospheres for only 2-3 weeks after harvest, and thus anaerobic or anoxia storage is often needed when they are to be kept for longer than 3 weeks after harvest. Consequently, in this study Newhall nucellar navel oranges were incubated under N2 atmospheres to stimulate anaerobic respiration in laboratory, and the relative compositional changes of volatiles and the possible artifacts of Newhall nucellar navel oranges were investigated during storage under anaerobic conditions for a period of 90 days.

    1 Materials and Methods

    1.1Materials and chemicals

    Fresh ripe Newhall nucellar navel oranges (Citrus sinensis (L.) Osbeck) were obtained from a commercial orchard in the city of Ganzhou in China in November 2012. Fruits at ripe stage were classified as those possessing totally orange-yellow color. Fruits were carefully selected for uniformity size, color, and absence of physical damage, and were randomly divided into three groups for the anaerobic treatment.

    All volatiles listed in Table 1 were purchased from Sigma-Aldrich Inc. (Saint Louis, MO, USA) and were of analytical grade.

    Table 1 Compositional changes of volatiles emitted from Newhall nucellar navel oranges during the anaerobic storagea

    續(xù)表1

    ChemicalsCompositions(%)b0(fresh)c361020304050607080903-heptanone*ndtrtrtrtrtrtrtrtrtrtrtr2,3-butanedionetr0.20.30.60.20.1trtrtrtrtrtr3-hydroxy-2-butanone*ndndndnd0.1ndndndndndndndEstersmethylformate*ndtrtrtrtr0.10.10.10.10.10.1trethylformatetrtr0.1tr0.20.40.30.20.40.20.20.11-methylpropylformate*ndtrtrtrtrtrtrtrtrtrtrtr3-methylbutylformate*ndndndndndtrtrtrtrtrtrtrmethylacetatetr0.70.80.91.21.21.61.81.81.71.31.1ethylacetate0.59.010.810.07.26.45.24.23.94.23.83.4propylacetatetrtrtrtr0.20.20.40.40.50.40.50.4butylacetatetr0.10.1trtrtrtrtrtrtrtrtr1-methylpropylacetate*ndndndtr0.20.81.11.21.31.00.90.72-methylpropylacetate*ndtr0.10.10.10.10.10.10.10.10.10.12-methylbutylacetate*ndtr0.1trtrtrtr0.10.10.10.1tr3-methylbutylacetate*nd0.30.60.30.10.20.10.20.20.10.20.13-methyl-2-butenylacetate*ndndtrtrtrtrtrtrtrtrtrtrmethylpropionate*ndndndndnd0.10.10.20.20.20.20.1ethylpropionate*ndtrtrtr0.30.40.50.50.70.40.40.4propylpropionate*ndndndndndtrtrtrtrtrtrtr1-methylpropylpropoinate*ndndndndndtr0.10.10.20.10.10.1methylbutyratetrtrndndndndndndndtrtrtrethylbutyrate0.10.10.00.00.00.10.10.10.10.10.10.1methylisobutyrate*ndndndndndndndndndtrtrtrethylvalerate*ndndndndndtrtrtrtrtrtrtrmethylisovalerate*ndndndndndndtrndtrtrtrtrmethylhexanionatetrtrtrtrtrtrtrtrtrtrtrtrAcetals1,1’-diethoxy-ethane*ndtrtrtrtrtrtrtrtrtrtrtr2,4,6-trimethyl-1,3,5-trioxane0.2tr0.10.10.10.10.10.10.2trtrtrtotaloxygenatedvolatilesd18.174.580.277.372.371.272.071.270.859.459.649.0Terpenoidhydrocarbonsisoprenetrtrtrtrtrtrtrtrtrtrtrtrα-thujene0.1trtrtr0.10.10.10.10.10.10.20.1camphenetrtrtrtrtrtrtrtrtrtrtrtrβ-pinene0.60.10.10.10.30.30.30.30.30.40.50.4α-terpinenetrtrtr0.10.30.40.40.40.40.40.70.5l-phellandrene0.90.20.10.30.60.70.60.60.70.70.90.7terpinolene0.80.40.30.50.40.70.70.60.70.40.50.6

    aTable includes all identified chemicals and percentages add to 100% for each sample.bMean percentage of individual volatile constituents from triplicate experiments.cDays of incubation.dSum of alcohols, aldehydes, ketones, esters and acetals.*Artifact volatiles. nd, not detected. tr, trace (<0.05%).

    1.2Anaerobic treatment

    For laboratory simulation study, about 2 kg fresh shredded Newhall nucellar navel oranges were weighed and placed in glass reactors with a volume of approximately 8 L. Treatments were tested in triplicate and incubated at room temperature (25±0.5℃) for 90 days. Pure N2gas was maintained between 40-60mL min-1per reactor, which was identified in preliminary work as sufficient to ensure that the O2containers were less than 0.5% for the anaerobic storage. When sampling, 1L Teflon sampling bags (SKC Inc., USA) was used to collect gas from the air outlet of each reactor. Volatile measurements were performed on days 0, 3, 6, 10, 20, 30, 40, 50, 60, 70, 80 and 90 during the incubation.

    1.3Volatiles analysis

    Volatiles were analyzed by an Entech Model 7100 Preconcentrator (Entech Instruments Inc., CA, USA) coupled with a gas chromatography/mass spectrum (GC/MS, Agilent 5973N). Detailed analysis steps were described elsewhere[10].

    1.4Statistical Analysis

    Statistical analysis was performed using SPSS 10.0 for Windows. A one-way ANOVA was performed to test the significant variance between the samples. A post hoc examination was conducted to test the significance using the LSD test. The significance level was set as p<0.05.

    2 Results and Discussion

    2.1General

    Fig.1 Typical chromatograms showing selected volatiles from fresh Newhall nucellar navel oranges at day 0 when fresh(A) and at day 50(B).

    As presented in Fig.1, differences between the chromatogram of the fresh oranges and that of the oranges at day 50 were noticeable. Several new peaks of artifact compounds occurred at day 50. The peak identities and their relative percentages, and the artifacts identified, are listed in Table 1 according to functional classes. In total, sixty-seven volatiles were identified, among which twenty-four volatile chemicals were absent in gases of fresh Newhall nucellar navel oranges and occurred as artifacts in the following storage process, consisting of 3 alcohols(2-butanol, 2-pentanol and 2-methyl-3-buten-2-ol), 3 aldehydes(2-methypropanal, 2-methylbutanal and pentanal), 2 ketones(3-heptanone and 3-hydroxy-2-butanone), 15 esters(methyl formate, 1-methylpropyl formate, 3-methylbutyl formate, 1-methylpropyl acetate, 2-methylpropyl acetate, 2-methylbutyl acetate, 3-methylbutyl acetate, 3-methyl-2-butenyl acetate, methyl propionate, ethyl propionate, propyl propionate, 1-methylpropyl propionate, methyl isobutyrate, ethyl valerate and methyl isovalerate) and 1 acetals (1,1’-diethoxy-ethane) (Table 1 and Fig.1(B)). The concentration of total volatile chemicals gradually rose up to 2729.1μg L-1upon 90 days of storage, approximately 5 times higher than that at day 0(558.8 μg L-1)(Fig.2), and the percentage of total artifact volatiles increased with storage time and attained the peak at day 70, sharing 15.9% of total volatile chemicals released (Table 1). For volatile groups or individual volatile chemicals, their compositions changed significantly during the anaerobic storage of Newhall nucellar navel oranges.

    The numbered peaks indicate compounds: 1 acetaldehyde; 2 methanol; 3 ethanol; 4 methyl acetate; 5 2-propanol; 6 2-methyl-propanal; 7 1-propanol; 8 2-butanone; 9 ethyl acetate; 10 2-butanol; 11 2-methyl-1-propanol; 12 2-methyl-butanal; 13 1-butanol; 14 ethyl propionate; 15 propyl acetate;16 3-methyl-1-butanol; 17 2-methyl-1-butanol; 18 1-methylpropyl acetate; 19 2-methylpropyl acetate; 20 2-methyl-3-buten-2-ol; 21 2,4,6-trimethyl-1,3,5-trioxane; 22 ethyl butyrate; 23 butyl acetate; 24 3-hexen-1-ol; 25 1-hexanol; 26 3-methylbutyl acetate; 27 2-methylbutyl acetate; 28 α-thujene; 29 α-pinene; 30 camphene; 31 sabinene; 32 β-pinene; 33 β-myrcene; 34 l-phellandrene; 35 Δ-3-carene; 36 α-terpinene; 37 limonene; 38 γ-terpinene; 39 terpinolene.

    Fig.2 Concentrations of three volatile groups and total volatile compounds released from Newhall nucellar navel oranges during the anaerobic storage. Error bars represent the standard deviation

    2.2Change in oxygenated volatiles

    Fifty-one oxygenated volatiles were determined during the anaerobic storage of Newhall nucellar navel oranges(Table 1), and the concentration of total oxygenated volatiles increased rapidly to attain the maximum(1924.2μg L-1) at day 50, about 18 times higher than that at day 0(101.7 μg L-1)(Fig.2). Methanol, ethanol, 2-butanol, acetaldehyde, 2-butanone and ethyl acetate dominated and were the most important oxygenated volatiles. For the total oxygenated volatiles or major oxygenated compounds except acetaldehyde, their relative percentages showed a significant increasing trend during the anaerobic incubation. The relative percentage of total oxygenated volatiles increase from 18.1% to 49.0% upon 90 days of anaerobic storage, attaining the maximum (80.2%) at day 6. Also, oxygenated compounds were the most predominant function group after 3 days, although they were less than terpenes to some extent again after 90 days. The observably growing oxygenated volatiles were methanol (from 0.8% to 5.9%), ethanol (from 13.9% to 15.6%), 2-butanol (from 0.0% to 11.1%), 2-butanone (from>0.05% to 8.1%) and ethyl acetate (from 0.5% to 3.4%). Particular for ethanol, its ratio reached the peak (59.0%) at day 3 and it became the first abundant volatile chemicals. 2-Butanol and ethyl acetate were the third abundant volatile chemicals at day 40 and at day 3, respectively. For acetaldehyde, it decreased steadily to 0.1% at day 90, but its concentration actually increased and reached a peak at day 50 during the anaerobic storage.

    The relative changes of the oxygenated compounds from Newhall nucellar navel oranges on the anaerobic storage were in accordance with reports on commercial packing and storage of navel oranges[7]. The considerable enhancements of the oxygenated compounds could be related to secondary metabolites of orange substrates from biochemical reaction caused by enzymes[11]or microorganisms[12,13]. The production of alcohols, aldehydes, ketones and esters from fruit under anoxic or anaerobic conditions had been reported[9,6]. For example, methanol, ethanol, acetaldehyde and ethyl acetate as anaerobic metabolites were reported to be strongly accumulated in fruit such as mandarin[14], grapefruit[14]and pear[15]on storage under conditions favoring anaerobiosis. As well known, ethanol as major component of wines is produced from anaerobic fermentation of substrates, and its biosynthesis in fruit such as apples enhanced at greater rate under hypoxic or anoxic storage conditions[9]. 2-Butanol as undirable constituent was found in spirits of grape pomace, which fermented under anaerobic conditions[16]. 2-Butanone had been reported in gases purged and trapped from cherry fruit homogenates after storage under controlled atmosphere (anoxic condition)[8]. The production of esters in fruit could be attributed to esterification of various alcohol moieties and acetyl CoA[9]. Actually, a good correlation were between total alcohols and total esters (r=0.77,p<0.01), particularly between ethanol and ethyl acetate (r=0.90,p<0.01). As also reported by[8], qualitative and quantitative changes in ester production, particularly ethyl acetate, were coincident with the accumulation of ethanol. Acetals were usually produced during the anaerobic fermentation of fruit and grain. For example, 1,1’-diethoxy-ethane was present in grape wine[17]and Chinese ‘Yanghe Daqu’ liquor, which was made from the anaerobic fermentation of grains[18].

    2.3Change in isoprene and monoterpenes

    As shown in Table 1, isoprene was merely a trivial constituent detected in emitted volatiles and was under 0.05% during the whole anaerobic storage. β-Myrcene, sabinene, α-pinene and Δ-3-carene were the major monoterpenes in addition to limonene during the anaerobic storage of Newhall nucellar navel oranges. During the early 6 days, the concentration of total monoterpenes decreased sharply from 457.1μg L-1to 288.6μg L-1(Fig.2). Also, the relative percentages of total monoterpenes decreased abruptly from 81.9% to 19.8%, as much loss of limonene (from 54.9% to 15.8%), β-myrcene (from 10.8% to 1.8%), sabinene (from 6.6% to 0.8%), α-pinene (from 5.0% to 0.4%) and Δ-3-carene (from 2.0% to 0.3%). Some slight dropping also occurred for α-thujene (from 0.1% to <0.05%), β-pinene (from 0.6% to 0.1%), l-phellandrene (from 0.9% to 0.1%) and terpinolene (from 0.8% to 0.3%). The decrease of monoterpene hydrocarbons from Newhall nucellar navel oranges during the early stage was in accordance with reports on storage of some citrus fruit oil such as Yuzu[19], and Daidai[20]. The monoterpene hydrocarbons can be lost through chemical process and/or physical process. Chemical degradation such as polymerization, oxidation and rearrangement of monoterpene was reported by[19]. For example, limonene could be oxidized to cis- and trans-limonene oxides as artifacts in the citrus fruit oil[12]and also be cyclized to camphene, α-pinene and β-pinene as previously noted[21]. Mycrene could be cyclized to γ-terpinene, α-terpinene, limonene and terpinolene[21]. This process would imply an increase of some monterpenes such as α-pinene and β-pinene and terpinolene, which was inconsistent with the data in this study. For this reason, we assume that this process can be neglible for the loss of monoterpenes. Physical evaporation of inherited constituents could be mainly responsible for the observed relative decrease of monnoterpnes. Oranges as a pool of monoterpenes were shredded before incubation, making these compounds not to be locked in clumps but volatilize rapidly due to increased surface area. For camphene, α-terpinene and γ-terpinene, their percentages were merely trivial and kept steady during the early 6 days of anaerobic incubation, but their concentrations had a decreasing trend.

    After the early 6 days of incubation, the concentration of total terpenes increased progressively to reach the peak upon 90 days (1391.9μg L-1), about three times higher than that at day 0 (457.1μg L-1) (Fig.2). The relative percentages of total monoterpenes and all monoterpene hydrocarbons except camphene also grew steadily until the end of the experiment. Monoterpenes shared 51.0% of total volatiles released and became the prevailed class upon 90 day again. The preminently enhanced monoterpenes were limonene (from 15.8% to 36.0%), β-myrcene (from 1.8% to 6.6%), α-pinene (from 0.4% to 2.9%) and Δ-3-carene (from 0.3% to 1.4%). Some slight growing also occurred for α-thujene (from <0.05% to 0.1%), β-pinene (from 0.1% to 0.4%), l-phellandrene (from 0.1 to 0.7%), α-terpinene (from <0.05 to 0.5%), γ-terpinene (from 0.2% to 0.8%), terpinolene (from 0.3% to 0.6%) and sabinene (from 0.8% to 1.0%). For camphene, its percentage still kept trivial and steady. The results indicated that monoterpenes emitted after 6 days were mainly secondary production, most probably the microbial degradation of pectin, which had high contents in oranges and would emit a high rate of monoterpenes when biologically metabolized.

    References:

    [1]CHEN J. Newhall Navel Oranges[M]. Beijing: Jindun Press. (In Chinese). 2006:1-12.

    [2]BRAT P, REGA B, ALTER P, REYNES M, BRILLOUET J-M. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice[J]. Journal of Agricultural & Food Chemistry, 2003,51:3442-3447.

    [3]ROUSEFF R L, PEREZ-CACHO P R, JABALPURWALA F. Historical review of citrus flavor research during the past 100 years[J]. Journal of Agricultural & Food Chemistry, 2009,57:8115-8124.

    [4]TIETEL Z, PLOTTO A, FALLIK E, LEWINSOHN E, PORAT R. Taste and aroma of fresh and stored mandarins[J]. Journal of the Science of Food and Agriculture, 2011,91:14-23.

    [5]WANG X M, WU T. Chemical composition analysis of volatile components in Newhall navel oranges[J]. Food Science, 2013,34(06),160-163.(In Chinese)

    [6]PESIS E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration[J]. Postharvest Biology and Technology, 2015,37:1-19.

    [7]OBENLAND D, COLLIN S, SIEVERT J, et al. Commercial packing and storage of navel oranges alters aroma volatiles and reduces flavor quality[J]. Postharvest Biology and Technology, 2008,47:159-167.

    [8]MATTHEIS J P, BUCHANAN D A, FELLMAN J K. Volatile constituents of Bing sweet cherry fruit following controlled atmosphere storage[J]. Journal of Agricultural & Food Chemistry, 1997,45:212-216.

    [9]RUDELL D R, MATTINSON D S, MATTHEIS J P, et al. Investigations of aroma volatile biosynthesis under anoxic conditions and in different tissues of “Redchief Delicious” apple fruit (Malus domestica Borkh.). Journal of Agricultural & Food Chemistry, 2002,50:2627-2632.

    [10]WANG X M, WU T. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments[J]. Environmental Science & Technology, 2008,42:3265-3270.

    [11]PETERSON D, REINECCIUS G A. Biological Pathways for the Formation of Oxygen-Containg Aroma Compounds[M]//In: Reineccius G A, Reineccius T A. Eds., Heteroatomic Aroma Compounds Washington: American Chemical Society, 2002:227-242.

    [12]PEREZ-CACHO P R, ROUSEFF R L. Fresh squeezed orange juice odor: A Review[J]. Critical Reviews in Food Science and Nutrition, 2008,48:681-695.

    [13]ARREBOLA E, SIVAKUMAR D, KORSTEN L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus[J]. Biological Control, 2010,53:122-128.

    [14]SHI J X, PORAT R, GOREN R, GOLDSCHMIDT E E. Physiological responses of ‘Murcott’mandarins and ‘Star Ruby’ grapefruit to anaerobic stress conditions and their relation to fruit taste, quality and emission of off-flavor volatiles[J]. Postharvest Biology and Technology, 2005,38:99-105.

    [15]MATTHEIS J P, RUDELL D. Responses of ‘d’Anjou’ pear (Pyrus communis L.) fruit to storage at low oxygen setpoints determined by monitoring fruit chlorophyll fluorescence[J]. Postharvest Biology and Technology, 2011,60:125-129.

    [16]SILVA M L, MALCATA F X. Relationships between storage conditions of grape pomace and volatile composition of spirits obtained therefrom[J]. American Journal of Enology and Viticulture, 1998,49:56-63.

    [17]LEE S-J, NOBLE A C. Characterization of odor-active compounds in californian chardonnay wines using GC-olfactometry and GC-mass spectrometry[J]. Journal of Agricultural & Food Chemistry, 2003,51:8036-8044.

    [18]FAN W L, QIAN M C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’ liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry[J]. Flavour and Fragrance Journal, 2006,21:333-342.

    [19]NJOROGE S M, UKEDA H, SAWAMURA M. Changes in the volatile composition of Yuzu (Citrus junos Tanaka) cold-pressed oil during storage[J]. Journal of Agricultural & Food Chemistry, 1996,44:550-556.

    [20]NJOROGE S M, UKEDA H, SAWAMURA M. Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage[J]. Journal of Agricultural & Food Chemistry, 2003,51:4029-4035.

    [21]DIECKMANN R H, PALAMAND S R. Autoxidation of some constituents of hops. I. The monoterpene hydrocarbon, myrcene[J]. Journal of Agricultural & Food Chemistry, 1974,22:498-503.

    date:2015-10-21

    Sponsored by National Natural Science Foundation of China(41273095 and 41103067).

    The composition of volatiles emitted from Newhall nucellar navel oranges were investigated during laboratory-controlled anaerobic storage for a period of 90 days, using preconcentrator coupled with gas chromatography-mass spectrum (GC-MS). Major relative changes occurred for oxygenated volatiles and monoterpene hydrocarbons, while no observable changes were found for sulfides. Before storage, terpenoid hydrocarbons and oxygenated volatiles dominated, with the most abundance of limonene, ethanol, β-myrcene, sabinene, α-pinene, acetaldehyde and Δ-3-carene. During the early 6 days of storage, terpenoid hydrocarbons decreased sharply as much loss of limonene, β-myrcene, sabinene, α-pinene and Δ-3-carene, while oxygenated volatiles increased abruptly and became the first predominant class, with observable growing of methanol, ethanol and ethyl acetate. After 6 days of storage, terpenoid hydrocarbons rose up progressively with storage time, whereas oxygenated volatiles dropped down gradually until the end of the experiment. It is worth noting that twenty-four oxygenated volatiles as artifacts were formed, with predominance of 2-butanol and methyl acetate.

    volatiles; compositions; newhall nucellar navel oranges; anaerobic storage

    紐荷爾臍橙(Citrus sinensis (L.) Osbeck)厭氧保存過(guò)程中揮發(fā)性風(fēng)味物質(zhì)組成變化

    楊耿,張玉潔,劉書(shū)路,于越剛

    (安徽師范大學(xué) 環(huán)境科學(xué)與工程學(xué)院,安徽 蕪湖241003)

    采用預(yù)濃縮系統(tǒng)與氣相色譜質(zhì)譜聯(lián)用技術(shù)分析檢測(cè)紐荷爾臍橙在實(shí)驗(yàn)室控制厭氧條件下保存90天過(guò)程中釋放出來(lái)的揮發(fā)性風(fēng)味物質(zhì)組成變化.結(jié)果表明,紐荷爾臍橙厭氧保存過(guò)程中含氧化合物和萜烯化合物兩類(lèi)揮發(fā)性風(fēng)味物質(zhì)組成比例變化明顯,含硫化合物變化不明顯.在尚未保存前,紐荷爾臍橙釋放出來(lái)的揮發(fā)性風(fēng)味物質(zhì)主要是含氧化合物和萜烯化合物兩類(lèi)化合物,其中檸檬烯、乙醇、β-月桂烯、檜烯、α-蒎烯,乙醛和蒈烯是最主要的成分.在保存的前6天,由于檸檬烯、β-月桂烯、檜烯、α-蒎烯和蒈烯5種化合物大量減少導(dǎo)致萜烯類(lèi)化合物比例隨時(shí)間急劇下降,同時(shí)由于甲醇、乙醇和乙酸乙酯3種化合物大量增加使得含氧化合物比例隨時(shí)間急劇升高,成為最主要的揮發(fā)性風(fēng)味物質(zhì).在保存6天以后到實(shí)驗(yàn)結(jié)束,萜烯類(lèi)化合物比例隨時(shí)間逐漸增高,而含氧化合物比列隨時(shí)間逐漸降低.特別值得注意的是紐荷爾臍橙保存過(guò)程中有24種含氧化合物是新生成的,其中最主要是2-丁醇和乙酸甲酯.

    揮發(fā)性風(fēng)味物質(zhì);紐荷爾臍橙;厭氧保存

    Author’s brief:YANG Geng(1968-),F(xiàn)emale,born in Tongcheng,Anhui Province, senior experimentalist.

    引用格式:楊耿,張玉潔,劉書(shū)路,等.紐荷爾臍橙(Citrus sinensis (L.) Osbeck)厭氧保存過(guò)程中揮發(fā)性風(fēng)味物質(zhì)組成變化[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(4):364-370.

    DOI:10.14182/J.cnki.1001-2443.2016.04.011

    猜你喜歡
    荷爾安徽師范大學(xué)萜烯
    4-萜烯醇對(duì)沙門(mén)菌的抗菌機(jī)制
    漫步在森林當(dāng)中為何讓人感覺(jué)心情舒暢?
    輻射松與杉木在高溫干燥中萜烯類(lèi)釋放濃度研究*
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    一種改性萜烯酚樹(shù)脂及其制備方法及其在輪胎胎面膠中的應(yīng)用
    Hemingway’s Marriage in Cat in the Rain
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    紐荷爾臍橙揮發(fā)性風(fēng)味成分分析
    元陽(yáng)梯田
    海峽影藝(2012年1期)2012-11-30 08:17:00
    缺硼條件下兩種不同砧木“紐荷爾”臍橙礦質(zhì)元素含量變化的比較
    ponron亚洲| 亚洲成av人片免费观看| 嫩草影院精品99| 亚洲精品国产精品久久久不卡| 天堂√8在线中文| 麻豆av在线久日| 久久草成人影院| 国产av麻豆久久久久久久| 三级男女做爰猛烈吃奶摸视频| 丁香欧美五月| 51午夜福利影视在线观看| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| av福利片在线观看| 国产成人系列免费观看| 久久中文字幕人妻熟女| 国产成人av教育| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 丰满人妻一区二区三区视频av | 一进一出好大好爽视频| 俺也久久电影网| 成年免费大片在线观看| 欧美绝顶高潮抽搐喷水| 亚洲成人久久性| 免费电影在线观看免费观看| 久久亚洲真实| 中文字幕最新亚洲高清| 国产亚洲精品久久久久久毛片| 国产主播在线观看一区二区| 久久天躁狠狠躁夜夜2o2o| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 美女免费视频网站| cao死你这个sao货| 久久伊人香网站| 国内精品一区二区在线观看| www日本黄色视频网| 日韩欧美免费精品| 亚洲avbb在线观看| 麻豆成人av在线观看| avwww免费| 亚洲精品中文字幕一二三四区| 在线免费观看不下载黄p国产 | 日本a在线网址| 国产视频内射| 欧美激情久久久久久爽电影| 2021天堂中文幕一二区在线观| 琪琪午夜伦伦电影理论片6080| 国产精品 国内视频| 色综合欧美亚洲国产小说| 香蕉久久夜色| 日韩欧美国产一区二区入口| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 人人妻人人看人人澡| 成人国产一区最新在线观看| 国产精品九九99| 男插女下体视频免费在线播放| 伦理电影免费视频| 我的老师免费观看完整版| 美女黄网站色视频| av女优亚洲男人天堂 | 噜噜噜噜噜久久久久久91| 在线看三级毛片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区字幕在线| 夜夜看夜夜爽夜夜摸| 国产三级中文精品| 视频区欧美日本亚洲| 国产麻豆成人av免费视频| 国产1区2区3区精品| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 99在线视频只有这里精品首页| 国产aⅴ精品一区二区三区波| 亚洲av五月六月丁香网| www.999成人在线观看| av女优亚洲男人天堂 | cao死你这个sao货| 久久久精品大字幕| 波多野结衣高清无吗| 淫秽高清视频在线观看| 老司机午夜十八禁免费视频| 欧美日韩瑟瑟在线播放| 精品乱码久久久久久99久播| 久99久视频精品免费| 看片在线看免费视频| 999久久久国产精品视频| 欧美一区二区国产精品久久精品| 成人鲁丝片一二三区免费| 757午夜福利合集在线观看| 一a级毛片在线观看| 91久久精品国产一区二区成人 | 一级毛片高清免费大全| 神马国产精品三级电影在线观看| 亚洲欧美一区二区三区黑人| 国内久久婷婷六月综合欲色啪| 国产精品一区二区精品视频观看| 亚洲熟妇中文字幕五十中出| 1024手机看黄色片| 久久精品国产综合久久久| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| 日本精品一区二区三区蜜桃| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 日韩欧美精品v在线| 亚洲av熟女| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| АⅤ资源中文在线天堂| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 亚洲精品美女久久av网站| 国产美女午夜福利| 国语自产精品视频在线第100页| 一进一出好大好爽视频| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 午夜福利欧美成人| 国产成人影院久久av| 怎么达到女性高潮| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 亚洲 欧美一区二区三区| 久久欧美精品欧美久久欧美| 久久久久久久精品吃奶| 99热精品在线国产| 91av网一区二区| a级毛片在线看网站| 中文在线观看免费www的网站| 999久久久精品免费观看国产| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 亚洲 欧美 日韩 在线 免费| 黄色女人牲交| av女优亚洲男人天堂 | 99riav亚洲国产免费| 黄色丝袜av网址大全| 在线看三级毛片| www日本在线高清视频| 丰满的人妻完整版| 在线观看免费午夜福利视频| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 国产美女午夜福利| 变态另类成人亚洲欧美熟女| 视频区欧美日本亚洲| 亚洲欧美精品综合久久99| 国语自产精品视频在线第100页| 中文字幕人妻丝袜一区二区| 美女 人体艺术 gogo| 搞女人的毛片| 男女床上黄色一级片免费看| 91麻豆av在线| 亚洲电影在线观看av| a级毛片a级免费在线| 99久国产av精品| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 俺也久久电影网| 人人妻人人看人人澡| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 日韩成人在线观看一区二区三区| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 黑人巨大精品欧美一区二区mp4| 变态另类丝袜制服| 欧美中文综合在线视频| 精品一区二区三区视频在线观看免费| 在线观看美女被高潮喷水网站 | 91久久精品国产一区二区成人 | 国产精品乱码一区二三区的特点| 99在线人妻在线中文字幕| 成年免费大片在线观看| 两个人的视频大全免费| 成人午夜高清在线视频| 窝窝影院91人妻| 啦啦啦免费观看视频1| a在线观看视频网站| 亚洲av片天天在线观看| 深夜精品福利| 欧美黄色淫秽网站| 精品电影一区二区在线| 欧美xxxx黑人xx丫x性爽| 亚洲在线自拍视频| 热99在线观看视频| 国产精品美女特级片免费视频播放器 | 亚洲国产精品久久男人天堂| 国产精品综合久久久久久久免费| av视频在线观看入口| 在线播放国产精品三级| 动漫黄色视频在线观看| 在线观看美女被高潮喷水网站 | 最近在线观看免费完整版| 欧美最黄视频在线播放免费| 国产私拍福利视频在线观看| 老司机午夜福利在线观看视频| 久久国产精品影院| 久久中文字幕一级| 美女被艹到高潮喷水动态| 色在线成人网| 日韩高清综合在线| 亚洲av五月六月丁香网| 免费大片18禁| 麻豆一二三区av精品| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 999久久久精品免费观看国产| 男女之事视频高清在线观看| 99热精品在线国产| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面| 悠悠久久av| 色播亚洲综合网| 国产精品野战在线观看| 丰满人妻一区二区三区视频av | 天堂影院成人在线观看| 亚洲国产看品久久| 欧美中文日本在线观看视频| 成人国产一区最新在线观看| 一本久久中文字幕| 国产乱人伦免费视频| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 亚洲精品色激情综合| 欧美中文日本在线观看视频| 久久久久亚洲av毛片大全| 亚洲黑人精品在线| 亚洲av成人一区二区三| 欧美黑人欧美精品刺激| 精品日产1卡2卡| 激情在线观看视频在线高清| 99国产综合亚洲精品| 亚洲人成网站高清观看| 国产免费av片在线观看野外av| 很黄的视频免费| 全区人妻精品视频| 最近最新免费中文字幕在线| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 最新美女视频免费是黄的| 波多野结衣高清无吗| 国产精华一区二区三区| 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 欧美极品一区二区三区四区| 97碰自拍视频| 一本一本综合久久| 久久香蕉精品热| 国产伦人伦偷精品视频| 欧美高清成人免费视频www| 欧美黑人欧美精品刺激| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 热99re8久久精品国产| 99视频精品全部免费 在线 | 国产99白浆流出| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| 女生性感内裤真人,穿戴方法视频| 国产av一区在线观看免费| 在线视频色国产色| av片东京热男人的天堂| 日韩精品青青久久久久久| 中亚洲国语对白在线视频| 特级一级黄色大片| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 成人三级黄色视频| 国产69精品久久久久777片 | 欧美国产日韩亚洲一区| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 精品国产亚洲在线| 国产精华一区二区三区| 亚洲成人免费电影在线观看| 免费看十八禁软件| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 小蜜桃在线观看免费完整版高清| 亚洲精品美女久久av网站| 成人18禁在线播放| 国内揄拍国产精品人妻在线| 精品久久久久久成人av| 美女黄网站色视频| 国产精品久久电影中文字幕| avwww免费| 又爽又黄无遮挡网站| 久久久久久人人人人人| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 亚洲精华国产精华精| 亚洲自偷自拍图片 自拍| 国产午夜精品久久久久久| 久久久久久久久免费视频了| 深夜精品福利| 久久久精品大字幕| 免费高清视频大片| 国产综合懂色| 香蕉av资源在线| 欧洲精品卡2卡3卡4卡5卡区| 草草在线视频免费看| 精品午夜福利视频在线观看一区| www日本黄色视频网| 色视频www国产| 亚洲专区中文字幕在线| 亚洲成人久久爱视频| 国内精品美女久久久久久| 嫁个100分男人电影在线观看| 免费看光身美女| 舔av片在线| 脱女人内裤的视频| 国产一区在线观看成人免费| 老司机午夜福利在线观看视频| 亚洲精品一区av在线观看| 国产成人av教育| 欧美一区二区精品小视频在线| 一本一本综合久久| 每晚都被弄得嗷嗷叫到高潮| 好男人在线观看高清免费视频| 亚洲电影在线观看av| 久久久久国内视频| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 国产精品99久久99久久久不卡| 国产成人精品久久二区二区91| 欧美日韩国产亚洲二区| 欧美日韩乱码在线| 亚洲国产精品合色在线| 夜夜爽天天搞| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频| 亚洲精品一卡2卡三卡4卡5卡| 91在线精品国自产拍蜜月 | 国产不卡一卡二| 最新在线观看一区二区三区| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 久久久久久人人人人人| 在线免费观看不下载黄p国产 | 日本三级黄在线观看| 国产一区在线观看成人免费| 欧美中文综合在线视频| 欧美午夜高清在线| 99热这里只有是精品50| 亚洲熟妇熟女久久| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 在线十欧美十亚洲十日本专区| 偷拍熟女少妇极品色| netflix在线观看网站| 国产精品九九99| 亚洲av中文字字幕乱码综合| 久久久久久久午夜电影| 91在线观看av| 日韩欧美免费精品| 曰老女人黄片| 免费搜索国产男女视频| 99视频精品全部免费 在线 | 国产精品影院久久| 国产单亲对白刺激| 久久亚洲精品不卡| 真实男女啪啪啪动态图| 变态另类丝袜制服| 亚洲午夜理论影院| 国产精品av久久久久免费| 久久精品国产综合久久久| 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 国产成人精品久久二区二区91| 超碰成人久久| 亚洲五月天丁香| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 久久香蕉精品热| 欧美成狂野欧美在线观看| 不卡一级毛片| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| aaaaa片日本免费| 午夜福利18| 久久草成人影院| 男人舔女人下体高潮全视频| 国产精品 欧美亚洲| 亚洲乱码一区二区免费版| 久久草成人影院| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 香蕉av资源在线| 黄色丝袜av网址大全| 国产免费av片在线观看野外av| 国产 一区 欧美 日韩| 亚洲18禁久久av| 看免费av毛片| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 母亲3免费完整高清在线观看| 老熟妇乱子伦视频在线观看| 十八禁人妻一区二区| 全区人妻精品视频| 久99久视频精品免费| 人人妻,人人澡人人爽秒播| 亚洲成a人片在线一区二区| 精品久久久久久,| 狂野欧美激情性xxxx| 亚洲自拍偷在线| 91麻豆av在线| 宅男免费午夜| 一区二区三区国产精品乱码| 亚洲精品中文字幕一二三四区| 国产精品99久久99久久久不卡| 一本久久中文字幕| 亚洲 国产 在线| 国产69精品久久久久777片 | 亚洲欧洲精品一区二区精品久久久| 香蕉av资源在线| 免费观看精品视频网站| 偷拍熟女少妇极品色| 手机成人av网站| 麻豆av在线久日| 国产极品精品免费视频能看的| 亚洲精华国产精华精| 国产精品久久久久久久电影 | 精品久久久久久久久久免费视频| 综合色av麻豆| 曰老女人黄片| 欧美成狂野欧美在线观看| 日韩人妻高清精品专区| 成年女人毛片免费观看观看9| 最近最新中文字幕大全电影3| av中文乱码字幕在线| 国产单亲对白刺激| 国产精品一及| 日本一本二区三区精品| 嫩草影院精品99| 成人国产综合亚洲| 久久午夜亚洲精品久久| 人人妻,人人澡人人爽秒播| 亚洲欧美精品综合久久99| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清| 久久久精品欧美日韩精品| 色老头精品视频在线观看| 午夜免费激情av| 精品一区二区三区视频在线观看免费| 亚洲欧美激情综合另类| 国产又色又爽无遮挡免费看| 国产 一区 欧美 日韩| 国产亚洲欧美在线一区二区| www日本在线高清视频| 久久久久九九精品影院| 久久欧美精品欧美久久欧美| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 亚洲一区二区三区不卡视频| 最近最新免费中文字幕在线| 午夜福利高清视频| 中出人妻视频一区二区| 亚洲av免费在线观看| 亚洲中文日韩欧美视频| 国产成人精品无人区| 精品国产亚洲在线| 成年免费大片在线观看| 久久天堂一区二区三区四区| 国产亚洲精品综合一区在线观看| 成人午夜高清在线视频| 老汉色∧v一级毛片| 久久久久性生活片| 日本 av在线| 免费在线观看日本一区| 51午夜福利影视在线观看| 欧美日韩综合久久久久久 | 亚洲国产高清在线一区二区三| 国产美女午夜福利| 一区福利在线观看| 国内精品久久久久精免费| 亚洲狠狠婷婷综合久久图片| 亚洲精品一卡2卡三卡4卡5卡| av女优亚洲男人天堂 | 淫妇啪啪啪对白视频| 中文字幕人妻丝袜一区二区| 亚洲无线观看免费| 免费大片18禁| 动漫黄色视频在线观看| 国产亚洲欧美98| 久久精品国产清高在天天线| 国产精品永久免费网站| 99在线人妻在线中文字幕| 不卡av一区二区三区| 男插女下体视频免费在线播放| 午夜福利在线在线| 国产高清videossex| 淫秽高清视频在线观看| 三级男女做爰猛烈吃奶摸视频| 女警被强在线播放| 久久精品国产亚洲av香蕉五月| 国产av麻豆久久久久久久| 国产成人精品无人区| 悠悠久久av| 色综合欧美亚洲国产小说| 波多野结衣高清作品| 香蕉久久夜色| 国产亚洲精品久久久com| 每晚都被弄得嗷嗷叫到高潮| 欧美极品一区二区三区四区| 国产午夜精品久久久久久| 岛国在线观看网站| av女优亚洲男人天堂 | 免费观看精品视频网站| 亚洲av熟女| 一区二区三区高清视频在线| 91麻豆av在线| 国产午夜精品久久久久久| 成人国产综合亚洲| bbb黄色大片| 男女做爰动态图高潮gif福利片| 国产伦精品一区二区三区四那| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 午夜福利成人在线免费观看| 国产av不卡久久| 婷婷亚洲欧美| 在线观看免费午夜福利视频| 草草在线视频免费看| 午夜日韩欧美国产| 99riav亚洲国产免费| 男女午夜视频在线观看| 亚洲人成网站高清观看| 91在线精品国自产拍蜜月 | 欧美性猛交黑人性爽| 91在线观看av| 亚洲五月婷婷丁香| 美女大奶头视频| 免费观看精品视频网站| 国产精品久久久久久人妻精品电影| 成年女人看的毛片在线观看| 欧美乱妇无乱码| 国产乱人视频| 亚洲第一欧美日韩一区二区三区| 久久久久久久久中文| 国产精品99久久久久久久久| 69av精品久久久久久| 欧美日韩黄片免| 夜夜夜夜夜久久久久| 亚洲国产精品999在线| www.精华液| 欧美黑人欧美精品刺激| 看免费av毛片| 观看美女的网站| 一二三四在线观看免费中文在| 黄片大片在线免费观看| 日韩中文字幕欧美一区二区| 99精品久久久久人妻精品| 男女午夜视频在线观看| 少妇的丰满在线观看| 欧美在线黄色| 午夜福利免费观看在线| 亚洲午夜理论影院| 亚洲欧美日韩卡通动漫| 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色| 91麻豆精品激情在线观看国产| 国产1区2区3区精品| 久久中文字幕一级| 色老头精品视频在线观看| 欧美成狂野欧美在线观看| 国产精品影院久久| 蜜桃久久精品国产亚洲av| 久久久久亚洲av毛片大全| 午夜福利成人在线免费观看| 久久中文看片网| 国产激情偷乱视频一区二区| 99国产综合亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 精品欧美国产一区二区三| 亚洲真实伦在线观看| www.精华液| 天堂动漫精品| 亚洲专区字幕在线| 黄片大片在线免费观看| 波多野结衣高清无吗| 成人三级做爰电影| 亚洲av成人av| 久久久久久久久中文| 欧美在线一区亚洲| 欧美日韩精品网址| 欧美色视频一区免费| 男女午夜视频在线观看| 在线播放国产精品三级| 国产精品日韩av在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久视频播放| 精品电影一区二区在线| 午夜福利成人在线免费观看|