田宜靈,邱麗娟,曹利千,朱榮嬌
(1. 天津大學(xué)理學(xué)院,天津 300072;2. 天津化學(xué)化工協(xié)同創(chuàng)新中心,天津 300072)
?
疏水締合聚丙烯酰胺臨界膠束濃度的測定及微觀結(jié)構(gòu)的研究
田宜靈1, 2,邱麗娟1, 2,曹利千1, 2,朱榮嬌1, 2
(1. 天津大學(xué)理學(xué)院,天津 300072;2. 天津化學(xué)化工協(xié)同創(chuàng)新中心,天津 300072)
摘 要:以勝利油田提供的疏水締合聚丙烯酰胺(HAPAM)為主要研究對象,通過電導(dǎo)率法和熒光光譜分析法測定了HAPAM的臨界膠束濃度(CMC),用黏度法測定了HAPAM的臨界締合濃度(CAC),并分析了該聚合物的疏水締合行為和性能.通過掃描電鏡(SEM)、原子力顯微鏡(AFM)和冷凍蝕刻技術(shù)觀察了不同質(zhì)量濃度下HAPAM溶液的微觀結(jié)構(gòu).結(jié)果表明:該HAPAM分子在溶液中隨著質(zhì)量濃度的增大,疏水締合作用逐漸增強(qiáng),進(jìn)而形成超分子聚集體;隨著質(zhì)量濃度進(jìn)一步增加,高分子鏈?zhǔn)嗷ヅ鲎病⒗p繞的幾率增加,最終形成網(wǎng)孔密集的空間網(wǎng)絡(luò)結(jié)構(gòu).
關(guān)鍵詞:疏水締合聚丙烯酰胺(HAPAM);臨界膠束濃度(CMC);臨界締合濃度(CAC);微觀結(jié)構(gòu);電導(dǎo)率;熒光光譜分析;掃描電鏡(SEM);原子力顯微鏡(AFM)
網(wǎng)絡(luò)出版時(shí)間:2014-09-26. 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/doi/10.11784/tdxbz201405077.html.
20世紀(jì)80年代中期,許多學(xué)者[1-2]提出了疏水締合聚合物(hydrophobically associating polymers,HAP)的概念,即在聚合物親水性大分子主鏈上共價(jià)鍵合少量疏水基團(tuán)(摩爾分?jǐn)?shù)大約為2%~5%)的一類新型水溶性聚合物.由于HAP分子以親水基團(tuán)為主鏈,使得其可以在水中具有一定的溶解度,而引入的疏水基團(tuán)又使其具有一定的憎水性.因此,為了保持聚合物分子溶液的穩(wěn)定性,疏水基團(tuán)就會(huì)自發(fā)地靠在一起,盡可能減少與水的接觸面積.這樣由于靜電、氫鍵或疏水相互作用,HAP分子間或分子內(nèi)就會(huì)產(chǎn)生具有一定強(qiáng)度而又可逆的締合.這里把這種疏水基團(tuán)自發(fā)地相互聚集、靠攏的作用稱為“疏水效應(yīng)”,由于疏水效應(yīng)而相互聚集、締合的疏水基團(tuán)所形成的微小空間稱為“疏水微區(qū)”.當(dāng)HAP溶液濃度較低時(shí),HAP分子間距離較遠(yuǎn),發(fā)生分子間締合的機(jī)會(huì)較小,即使存在分子內(nèi)締合,也會(huì)因?yàn)镠AP溶液濃度太低而使疏水締合效應(yīng)很弱.當(dāng)溶液的濃度達(dá)到臨界締合點(diǎn)后,本來分散的分子鏈?zhǔn)_始相互聚集、靠攏,分子間的締合作用開始形成,逐漸聚集形成分子聚集體,而聚合物主鏈之間也交錯(cuò)盤繞,網(wǎng)狀結(jié)構(gòu)逐漸形成;隨著溶液濃度的繼續(xù)增加,疏水效應(yīng)進(jìn)一步增強(qiáng),進(jìn)而形成更大的三維網(wǎng)狀結(jié)構(gòu)[3-5],表現(xiàn)出獨(dú)特的溶液性質(zhì),溶液的表觀黏度大幅度增加,耐溫、耐鹽、抗剪切性能增強(qiáng)[6-7].由于其具有獨(dú)特的締合行為及流變性質(zhì)[8-10],這類聚合物已被廣泛應(yīng)用于涂料、化妝品、食品、藥物載體、三次采油及水處理等方面.
目前分析聚合物分子在溶液中的行為和微觀結(jié)構(gòu)的方法較多,電導(dǎo)率法、熒光光譜分析法、原子力顯微鏡(atomic force microscopy,AFM)、冷凍蝕刻、掃描電鏡(scanning electron microscopy,SEM)是幾種較為常見的分析方法.李美蓉等[11]用電導(dǎo)率法測定了HAP溶液的CAC,并用動(dòng)態(tài)光散射(DLS)和SEM驗(yàn)證了結(jié)果的可靠性.文獻(xiàn)[12-14]應(yīng)用穩(wěn)態(tài)熒光光譜法,研究了HAP在溶液中的締合狀態(tài)及網(wǎng)絡(luò)結(jié)構(gòu)的形成過程.文獻(xiàn)[15-17]采用低溫蝕刻透射電鏡實(shí)驗(yàn)對HAP溶液的空間網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行了觀察,證實(shí)了HAP溶液中網(wǎng)絡(luò)結(jié)構(gòu)的存在,分析了HAP的增黏機(jī)理.
筆者在先前的報(bào)道[18]中對勝利油田提供的HAPAM樣品性質(zhì)進(jìn)行了研究,包括相對分子質(zhì)量、結(jié)構(gòu)、溶解速率等.筆者采用電導(dǎo)率法、熒光光譜分析法等手段對該樣品溶液性能進(jìn)行了測定,并用AFM、SEM等手段考察了微觀聚集形態(tài),試圖找到HAPAM結(jié)構(gòu)與性能間的聯(lián)系,為分子設(shè)計(jì)提供可靠的依據(jù).
實(shí)驗(yàn)中所研究的疏水締合聚丙烯酰胺的結(jié)構(gòu)式如圖1所示,各單體聚合度的比值約為m∶n∶p∶q≈58∶1∶40∶1.
1.1試劑與儀器
試劑:HAPAM(勝利油田提供,相對分子質(zhì)量355×104);均聚聚丙烯酰胺(HPAM,相對分子質(zhì)量1,800×104);甲醇(分析純);芘;二次蒸餾水(自制);氮?dú)猓ǜ呒兊?,純?9.99%).
儀器:容量瓶(50,mL、100,mL);微量進(jìn)樣器;超聲波振蕩儀;Cary Eclipse的熒光光譜儀,美國Varian公司;Nano Naviscopes型原子力顯微鏡;BAF060型冷凍蝕刻儀;X-650型SEM;DDS-1型電導(dǎo)儀;260型光亮電導(dǎo)電極;移液管(25,mL、5,mL);恒溫槽;電磁攪拌;烏氏黏度計(jì).
圖1 HAPAM的分子結(jié)構(gòu)Fig.1 Molecular structure of HAPAM
1.2實(shí)驗(yàn)方法
1.2.1熒光實(shí)驗(yàn)
準(zhǔn)確稱取芘10.1,mg,溶于甲醇后,轉(zhuǎn)移到50,mL干凈的容量瓶中,并用甲醇稀釋至刻度,配制濃度為1×10-3,mol/L的芘的甲醇溶液.用微量進(jìn)樣器移取50,μL該溶液于若干50,mL干凈、干燥的容量瓶中,通氮?dú)庋仄康妆诖蹈杉状?再加入配制好的不同濃度的HAPAM水溶液,經(jīng)超聲振蕩30,min,使芘溶解、均勻分散于溶液中.溶液常溫下放制48,h后備用.芘的最終濃度為1×10-6,mol/L.測試溫度為25, ℃.熒光激發(fā)波長為339,nm,激發(fā)和發(fā)射狹縫均為2.5,nm.掃描范圍為350~550,nm.樣品池厚1,cm.
1.2.2電導(dǎo)率實(shí)驗(yàn)
電導(dǎo)率隨質(zhì)量濃度的變化:分別配制5,mg/L、10,mg/L、15,mg/L、25,mg/L、30,mg/L、35,mg/L、40,mg/L、45,mg/L、50,mg/L、100,mg/L的樣品HAPAM水溶液,調(diào)節(jié)恒溫槽溫度為(20±0.2)℃,從低濃度到高濃度依次測定溶液的電導(dǎo)值,每個(gè)溶液電導(dǎo)測量3次取平均值.
1.2.3黏度的測定
參照國家標(biāo)準(zhǔn)GB17514—1998[19],對HAPAM 和HPAM樣品的黏度進(jìn)行測定.
1.2.4SEM實(shí)驗(yàn)
分別配制質(zhì)量濃度為600,mg/L和1,000,mg/L的HAPAM樣品的水溶液.將云母片用超聲處理,然后取配制好的待測溶液,在處理后的云母片上做成膜處理,注意不要破壞原有HAPAM分子在水溶液中的結(jié)構(gòu)和形貌,然后放置一段時(shí)間讓其自然風(fēng)干,再進(jìn)行噴金處理,最后將制好后的樣品拿到掃描電鏡下進(jìn)行觀察(儀器型號:X-650;實(shí)驗(yàn)條件:溫度,25,℃:電壓,5.0 kV;放大倍數(shù),20,000倍).
1.2.5AFM實(shí)驗(yàn)
分別配制質(zhì)量濃度為600,mg/L和1,000,mg/L的HAPAM樣品的水溶液.移取一小滴所需濃度HAPAM溶液至新鮮處理的云母片上并盡量鋪展,使溶液在云母片上形成一層薄薄的液膜,然后將制備好的樣品采用原子力顯微鏡,以恒力模式在室溫、大氣環(huán)境下對其微觀形貌進(jìn)行觀察(實(shí)驗(yàn)條件:微懸臂長度,100,μm;探針,Si3N4探針;力常數(shù),0.58 N/m).
1.2.6冷凍干燥實(shí)驗(yàn)
配制質(zhì)量濃度為1,000,mg/L的HAPAM樣品的水溶液.把樣品置于液氮內(nèi)快速超低溫(-200,℃)冷凍成固體,在真空狀態(tài)下對冷凍的樣品固體進(jìn)行干燥,使樣品中的水分直接從固態(tài)的冰升華為水蒸氣.干燥的樣品鍍膜,放在放大倍數(shù)為1,000倍的光學(xué)顯微鏡下觀察HAPAM的微觀形貌.
2.1HAPAM的熒光實(shí)驗(yàn)
在芘探針的熒光發(fā)射譜中,發(fā)射峰I1和I3的峰值分別約為373 nm和385 nm,并且芘探針?biāo)幦芤何h(huán)境的極性通??梢杂肐1/I3的值來進(jìn)行表征[20-22]. I1/I3越大,芘探針?biāo)幍沫h(huán)境極性越大,溶液中的疏水微區(qū)和疏水締合作用越弱.根據(jù)低濃度下的I1/I3隨濃度的變化關(guān)系,利用最小二乘方法擬合得相交的兩條直線,其交點(diǎn)對應(yīng)的濃度即為臨界膠束濃度(critical mielle concentration,CMC),見圖2.可以看出,在較低的H A PA M溶液質(zhì)量濃度(小于21.082,mg/L)時(shí),I1/I3的值較大,且隨質(zhì)量濃度變化的幅度很小,即芘探針?biāo)幁h(huán)境的極性大,溶液中存在的疏水微區(qū)較少.這主要是因?yàn)楫?dāng)HAPAM溶液質(zhì)量濃度較低時(shí),聚合物分子間距較大,相互較為獨(dú)立,疏水效應(yīng)不明顯,形成的分子聚集體量較少,對溶液微觀極性的影響較弱.
圖2 低濃度下I1/I3值隨質(zhì)量濃度的變化Fig.2 Variation of I1/I3with mass concentration at low concentration
當(dāng)HAPAM質(zhì)量濃度大于CMC以后,I1/I3值隨質(zhì)量濃度的增加而降低,這表明芘探針?biāo)幁h(huán)境的極性隨聚合物溶液質(zhì)量濃度的增大不斷降低.對這一現(xiàn)象的解釋是:當(dāng)聚合物的質(zhì)量濃度達(dá)到一定值(21.082 mg/L)后,隨著質(zhì)量濃度的繼續(xù)增加,本來分散的分子鏈?zhǔn)谑杷喓闲?yīng)的作用下開始相互靠攏,而疏水基團(tuán)則盡可能地避免與溶液中的水分子接觸,本身以聚集體的形態(tài)存在于溶液中.由于分子聚集體內(nèi)部疏水微區(qū)的存在,芘分子就會(huì)增溶其中,于是芘探針周圍環(huán)境的極性就會(huì)不斷降低.
2.2HAPAM的電導(dǎo)率實(shí)驗(yàn)
根據(jù)低濃度下的電導(dǎo)率隨質(zhì)量濃度的變化,利用最小二乘方法擬合得相交的兩條直線,其交點(diǎn)對應(yīng)的濃度即為CMC.由此可以得出樣品的CMC約為21.162,mg/L,這與用熒光光譜法測得的CMC基本相同.由圖3可以看出,對于HAPAM溶液,在低濃度時(shí)只存在分子內(nèi)締合,離子的電遷移速率正常、不受阻,隨著質(zhì)量濃度的增加,溶液電導(dǎo)率增加;當(dāng)溶液濃度增大到出現(xiàn)分子間締合時(shí),電導(dǎo)率隨質(zhì)量濃度增加而增加的速率降低,這是因?yàn)閹ж?fù)離子的親水基朝外與水接觸,負(fù)離子的電遷移速率嚴(yán)重受阻,負(fù)離子對溶液電導(dǎo)的貢獻(xiàn)變小.
圖3 低濃度下電導(dǎo)率隨質(zhì)量濃度的變化Fig.3 Variation of conductivity with mass concentration at low concentration
2.3聚丙烯酰胺溶液的黏度
圖4為HAPAM和HPAM的黏度隨質(zhì)量濃度的變化曲線.從圖4可以看出,HAPAM和HPAM樣品溶液黏度變化的趨勢基本相近.當(dāng)溶液質(zhì)量濃度較低時(shí),兩種聚合物溶液的黏度隨質(zhì)量濃度增加得都比較緩慢;當(dāng)聚合物溶液質(zhì)量濃度大于665.40,mg/L以后,黏度急劇上升.圖5為HAPAM黏度隨質(zhì)量濃度變化的擬合曲線.擬合的兩相交直線交點(diǎn)對應(yīng)的質(zhì)量濃度(665.40,mg/L)即為轉(zhuǎn)折質(zhì)量濃度,即CAC.在CAC之前,溶液的黏度隨質(zhì)量濃度增加緩慢;在CAC之后,溶液的黏度急劇增大.這是由于在HAPAM溶液質(zhì)量濃度為665.40,mg/L左右時(shí),由于HAPAM分子的疏水締合效應(yīng),本來分散的分子鏈?zhǔn)_始相互靠攏,形成一定的空間網(wǎng)絡(luò)結(jié)構(gòu).隨著質(zhì)量濃度的進(jìn)一步增加,分子間締合作用增強(qiáng),空間網(wǎng)絡(luò)結(jié)構(gòu)的網(wǎng)孔就會(huì)更加密集,因此就會(huì)出現(xiàn)上述溶液表觀黏度急劇增大的現(xiàn)象.
圖4 HAPAM和HPAM的黏度隨質(zhì)量濃度的變化Fig.4 Variations of viscosities of HAPAM and HPAM with mass concentration
圖5 HAPAM黏度隨質(zhì)量濃度變化的擬合曲線Fig.5 Fitted variation curve of viscosity of HAPAM with mass concentration
2.4締合狀態(tài)下的微觀結(jié)構(gòu)表征
上述熒光光譜、電導(dǎo)率及黏度的測定實(shí)驗(yàn)只能從結(jié)果上推測HAPAM分子隨著溶液質(zhì)量濃度的不斷增加逐漸形成疏水締合結(jié)構(gòu),即超分子聚集體空間網(wǎng)絡(luò)結(jié)構(gòu).為了更準(zhǔn)確地研究當(dāng)HAPAM溶液質(zhì)量濃度大于CAC后能否發(fā)生疏水締合進(jìn)而形成網(wǎng)絡(luò)結(jié)構(gòu),這里用SEM、AFM和冷凍蝕刻技術(shù)對HAPAM進(jìn)行了觀察.
2.4.1SEM圖及分析
圖6(a)和6(b)分別是HAPAM溶液質(zhì)量濃度為600,mg/L和1,000,mg/L的SEM圖.從圖中可以看出,當(dāng)濃度為600,mg/L時(shí),HAPAM分子鏈?zhǔn)呀?jīng)形成了部分網(wǎng)絡(luò)結(jié)構(gòu),但網(wǎng)絡(luò)骨架結(jié)構(gòu)不規(guī)整,粗細(xì)不均,并且部分連接處可見節(jié)點(diǎn),說明當(dāng)溶液質(zhì)量濃度為600,mg/L時(shí),分子間的疏水基團(tuán)開始有締合效應(yīng),形成分子聚集體;但由于溶液質(zhì)量濃度相對較低,親水基團(tuán)與水的溶劑化效應(yīng)還相對較強(qiáng),在大分子表面形成一層水化膜,此時(shí)溶液黏度增加顯著;相比600,mg/L HAPAM溶液,隨著質(zhì)量濃度的不斷增加,分子間締合作用增強(qiáng),HAPAM分子鏈?zhǔn)ハ嗯鲎?、纏繞的幾率增大,體系中空間網(wǎng)絡(luò)結(jié)構(gòu)的網(wǎng)孔更加密集,且連接網(wǎng)孔的鏈?zhǔn)兇?,特別是鏈?zhǔn)嘟坏牟课?,在宏觀上表現(xiàn)為表觀黏度很大.
圖6 600 mg/L和1,000,mg/L下的HAPAM溶液SEM圖Fig.6 SEM image of HAPAM solution at 600 mg/L and 1,000 mg/L
2.4.2AFM圖及分析
圖7(a)和7(b)分別為質(zhì)量濃度為600,mg/L和1,000,mg/L的AFM圖.從圖中可以看出,當(dāng)質(zhì)量濃度為600,mg/L時(shí),HAPAM分子鏈?zhǔn)鴶?shù)量少,并且較好地分散在溶液體系中.隨著質(zhì)量濃度的不斷增加,分散的HAPAM分子鏈?zhǔn)ハ嗫繑n、纏繞,體系中空間網(wǎng)絡(luò)結(jié)構(gòu)的網(wǎng)孔更加密集,且連接網(wǎng)孔的鏈?zhǔn)兇?這與前面用SEM得到的結(jié)果是一致的.
2.4.3冷凍干燥圖及分析
圖8為HAPAM溶液質(zhì)量濃度為1,000,mg/L的光學(xué)顯微鏡下的照片,其中圖8(b)為局部放大的照片.從圖中可以看出,當(dāng)HAPAM的質(zhì)量濃度達(dá)到1,000,mg/L時(shí),聚合物在溶液中呈空間網(wǎng)絡(luò)結(jié)構(gòu),分子骨架清晰可見.這與上述用AFM得到的結(jié)果也是一致的.
圖7 質(zhì)量濃度分別為600,mg/L和1,000,mg/L的HAPAM溶液AFM圖Fig.7 AFM images of HAPAM solution at 600,mg/L and 1,000 mg/L
圖8 1,000,mg/L HAPAM溶液的冷凍干燥圖及局部放大圖Fig.8 Freezing-etching photo and the local amplificationof HAPAM solution at 1,000,mg/L
本文以勝利油田提供的HAPAM為研究對象,采用電導(dǎo)率法和熒光光譜分析法測定了CMC在21,mg/L左右,兩種方法得到的值基本一致.采用黏度法測定了CAC,在665.40,mg/L左右.通過對HAPAM結(jié)構(gòu)和水溶液宏觀行為的分析,推斷出當(dāng)溶液達(dá)到CMC后,分子間疏水締合作用開始增強(qiáng),聚合物分子不斷聚集靠攏,形成分子聚集體;隨著質(zhì)量濃度繼續(xù)增加,聚合物主鏈相互交錯(cuò)盤繞,網(wǎng)狀結(jié)構(gòu)逐漸形成,最終形成巨大的三維網(wǎng)狀結(jié)構(gòu).并通過SEM、AFM和冷凍蝕刻3種方法分析了HAPAM溶液的微觀結(jié)構(gòu),證實(shí)了HAPAM溶液中網(wǎng)絡(luò)結(jié)構(gòu)的存在,并考察了HAPAM在溶液中網(wǎng)絡(luò)結(jié)構(gòu)的形成過程,分析了HAPAM的增黏機(jī)理.
參考文獻(xiàn):
[1]Yamamoto H,Tomatsu I,Hashidzume A,et al. Associative properties in water of copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides substituted with alkyl groups of varying lengths [J]. Mɑcromolecules,2000,33(21):7852-7861.
[2]尉云平,孫文彬,孫德軍. 疏水締合聚合物穩(wěn)定乳狀液的研究[J]. 化學(xué)進(jìn)展,2009,21(6):1134-1140. Wei Yunping,Sun Wenbin,Sun Dejun. Study of emulsions stabilized by hydrophobically associating polymers [J]. Progress in Chemistry,2009,21(6):1134-1140(in Chinese).
[3]Sun W,Long J,Xu Z,et al. Study of Al(OH)3-polyacrylamide-induced pelleting flocculation by single molecule force spectroscopy[J]. Lɑngmuir,2008,24(24):14015-14021.
[4]宋春雷,楊青波,張文德,等. 疏水基改性聚丙烯酰胺的合成及溶液性質(zhì)[J]. 應(yīng)用化學(xué),2009,26(4):479-482. Song Chunlei,Yang Qingbo,Zhang Wende,et al. Synthesis and solution characteristics of polyacrylamide modified by grafting hydrophobic groups[J]. Chinese Journɑl of Applied Chemistry,2009,26(4):479-482(in Chinese).
[5]張 瑞,葉仲斌,羅平亞. 原子力顯微鏡在聚合物溶液結(jié)構(gòu)研究中的應(yīng)用[J]. 電子顯微學(xué)報(bào),2010,29(5):475-481. Zhang Rui,Ye Zhongbin,Luo Pingya. The atomic force microscopy study on the microstructure of the polymer solution[J]. Journɑl of Chinese Electron Microscopy Society,2010,29(5):475-481(in Chinese).
[6]Tsitsilianis C,Iliopoulos I,Ducouret G. An associative polyelectrolyte end-capped with short polystyrene chains. Synthesis and rheological behavior[J]. Mɑcromolecules,2000,33(8):2936-2943.
[7]Winnik F M,Regismond S T A,Goddard E D. Interactions of an anionic surfactant with a fluorescent-dye-labeled hydrophobically-modified cationic cellulose ether [J]. Lɑngmuir,1997,13(1):111-114.
[8]韓利娟,羅平亞,葉仲斌,等. 疏水締合聚丙烯酰胺的微觀結(jié)構(gòu)研究[J]. 天然氣工業(yè),2004,24(12):119-121. Han Lijuan,Luo Pingya,Ye Zhongbin,et al. Microstructure study of hydrophobically associating polyacrylamide [J]. Nɑturɑl Gɑs Industry,2004,24(12):119-121(in Chinese).
[9]Peiffer D G. Hydrophobically associating polymers and their interactions with rod-like micelles[J]. Polymer,1990,31(12):2353-2360.
[10]Aguiar J,Carpena P,Molina-Bolívar J A,et al. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method[J]. Journɑl of Colloid ɑnd Interfɑce Science,2003,258(1):116-122.
[11]李美蓉,曲彩霞,劉 坤,等. 疏水締合聚丙烯酰胺的結(jié)構(gòu)表征及其締合作用[J]. 石油學(xué)報(bào)(石油加工),2013,29(3):513-518. Li Meirong,Qu Caixia,Liu Kun,et al. Association and structure characterization of hydrophobically associating polyacrylamide[J]. Actɑ Petrolei Sinicɑ (Petroleum Processing Section),2013,29(3):513-518(in Chinese).
[12]劉 瓊,吳文輝,陳 穎,等. 熒光探針法研究疏水改性聚丙烯酰胺溶液的疏水締合行為[J]. 功能高分子學(xué)報(bào),2005,18(1):22-27. Liu Qiong,Wu Wenhui,Chen Ying,et al. Fluorescence probe study on associative behaviors of hydrophobically modified polyacrylamide in aqueous solution[J]. Journɑl of Functionɑl Polymers,2005,18(1):22-27(in Chinese).
[13]Winnik F M,Ringsdorf H,Venzmer J. Interactions of surfactants with hydrophobically-modified poly(N-isopropylacrylamides)1: Fluorescence probe studies [J]. Lɑngmuir,1991,7(5):905-911.
[14]Branham K D,Davis D L,Middleton J C,et al. Water-soluble polymers:59. Investigation of the effects of polymer microstructure on the associative behaviour of amphiphilic terpolymers of acrylamide,acrylic acid and n-[(4-decyl)phenyl] acrylamide[J]. Polymer,1994,35(20):4429-4436.
[15]陳 洪,李二曉,葉仲斌,等. 疏水締合聚丙烯酰胺與雙子表面活性劑的相互作用[J]. 物理化學(xué)學(xué)報(bào),2011,27(3):671-676. Chen Hong,Li Erxiao,Ye Zhongbin,et al. Interaction of hydrophobically associating polyacrylamide with gemini surfactant[J]. Actɑ Physico-Chimicɑ Sinicɑ,2011,27(3):671-676(in Chinese).
[16]Kj?niksen A L,Nilsson S,Thuresson K,et al. Effect of surfactant on dynamic and viscoelastic properties of aqueous solutions of hydrophobically modified ethyl (hydroxyethyl)cellulose,with and without spacer[J]. Mɑcromolecules,2000,33(3):877-886.
[17]Beaudoin E,Hiorns R C,Borisov O,et al. Association of hydrophobically end-capped poly(ethylene oxide)1: Preparation of polymers and characterization of critical association concentrations[J]. Lɑngmuir,2003,19(6):2058-2066.
[18]朱榮嬌,郝紀(jì)雙,劉淑參,等. 疏水締合聚丙烯酰胺的性能評價(jià)[J]. 天津大學(xué)學(xué)報(bào),2012,45(6):540-545. Zhu Rongjiao,Hao Jishuang,Liu Shucan,et al. Performance evaluation of hydrophobic associating polyacrylamide[J]. Journɑl of Tiɑnjin University,2012,45(6):540-545(in Chinese).
[19]中華人民共和國國家質(zhì)量技術(shù)監(jiān)督局. GB17514—1998水處理劑聚丙烯酰胺[S]. 北京:中國標(biāo)準(zhǔn)出版社,1999. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. GB17514—1998 Water Treatment Chemicals-Polyacrylamide[S]. Beijing:The Standards Press of China,1999(in Chinese).
[20]Castelletto V,Hamley I W,Xue W,et al. Rheological and structural characterization of hydrophobically modified polyacrylamide solutions in the semidilute regime [J]. Mɑcromolecules,2004,37(4):1492-1501.
[21]Kalyanasundaram K,Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems[J]. Journɑl of the Americɑn Chemicɑl Society,1977,99(7):2039-2044.
[22]Bromberg L E,Barr D P. Aggregation phenomena in aqueous solutions of hydrophobically modified polyelectrolytes:A probe solubilization study[J]. Mɑcromolecules,1999,32(11):3649-3657.
(責(zé)任編輯:田 軍)
Determination of Critical Micelle Concentration and Microstructure of Hydrophobically Associating Polyacrylamide
Tian Yiling1, 2,Qiu Lijuan1, 2,Cao Liqian1, 2,Zhu Rongjiao1, 2
(1. School of Sciences,Tianjin University,Tianjin 300072,China;2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China)
Abstract:Hydrophobically associating polyacrylamide(HAPAM)provided by Shengli Petroleum Administration was studied. The critical micelle concentration(CMC)of the HAPAM was determined by using the conductivity and fluorescence spectrum methods. The critical association concentration(CAC)of the HAPAM was determined by using the viscosity method. At the same time,the associating behavior and solution properties in aqueous solutions were also studied. The microstructures of the HAPAM solution at different mass concentrations were observed and investigated by using scanning electron microscopy(SEM),atomic force microscopy(AFM)and freeze-etching techniques. The results showed that as the mass concentration of HAPAM rising,the hydrophobic association gradually increased and the supramolecule aggregate was formed. With further increasing in the mass concentration of HAPAM,the network solution structure with dense meshes was eventually built under the interaction of colliding and twining of the polymer chain.
Keywords:hydrophobically associating polyacrylamide(HAPAM);critical micelle concentration(CMC);critical association concentration(CAC);microstructure;conductivity;fluorescence spectrum analysis;scanning electron microscopy(SEM);atomic force microscopy(AFM)
通訊作者:朱榮嬌,zhurongjiao@tju.edu.cn.
作者簡介:田宜靈(1946— ),男,教授,博士生導(dǎo)師.
基金項(xiàng)目:天津大學(xué)自主創(chuàng)新基金資助項(xiàng)目(60302013).
收稿日期:2014-05-29;修回日期:2014-08-30.
中圖分類號:TQ317.5
文獻(xiàn)標(biāo)志碼:A
文章編號:0493-2137(2016)01-0009-06
DOI:10.11784/tdxbz201405077