焦聚陽(yáng) 石晶晟 夏軍 魏亦兵 陳飛雁 趙廣雷 楊元慶
?
糖尿病性骨關(guān)節(jié)炎發(fā)病機(jī)制研究進(jìn)展
焦聚陽(yáng) 石晶晟 夏軍 魏亦兵 陳飛雁 趙廣雷 楊元慶
目前骨關(guān)節(jié)炎(OA)發(fā)病機(jī)制尚不明確,大多認(rèn)為是外傷或其他因素刺激誘發(fā)軟骨細(xì)胞使其發(fā)生應(yīng)激反應(yīng),細(xì)胞外基質(zhì)(ECM)合成分解代謝失衡,繼發(fā)軟骨降解、滑膜炎癥等解剖關(guān)系和生理功能異常。隨著人口老齡化和糖尿病患者人數(shù)的劇增,越來(lái)越多的研究表明糖尿病可破壞關(guān)節(jié)軟骨并誘發(fā)OA。糖尿病可能通過(guò)葡萄糖、胰島素代謝異常影響軟骨代謝,線粒體和微小RNA(miRNA)可能是其影響軟骨代謝的媒介,它們可能成為糖尿病性O(shè)A新的治療靶點(diǎn)。該文從葡萄糖代謝、胰島素代謝、線粒體代謝和miRNA表達(dá)等方面對(duì)糖尿病性O(shè)A發(fā)病機(jī)制研究進(jìn)展作一綜述。
骨關(guān)節(jié)炎;糖尿病;發(fā)病機(jī)制;葡萄糖;胰島素
骨關(guān)節(jié)炎(OA)是一種最常見(jiàn)的關(guān)節(jié)疾病,好發(fā)于中老年人。國(guó)際骨關(guān)節(jié)炎研究協(xié)會(huì)(OARSI)將OA定義為一種累及可動(dòng)關(guān)節(jié)的疾病,因微小損傷或巨大創(chuàng)傷激活適應(yīng)性修復(fù)反應(yīng)(如固有免疫促炎機(jī)制等異常),誘發(fā)細(xì)胞應(yīng)激和細(xì)胞外基質(zhì)(ECM)降解,引起軟骨降解、骨重建、骨贅形成、滑膜炎癥等解剖結(jié)構(gòu)異常和生理功能紊亂,最終導(dǎo)致OA發(fā)生[1-3]。目前OA發(fā)病機(jī)制尚不明確,可能的危險(xiǎn)因素包括年齡、代謝、外傷、炎癥等,其中代謝與OA的關(guān)系是近年研究熱點(diǎn)。有研究[4-6]表明,OA屬于代謝綜合征,與腹型肥胖、高脂血癥和2型糖尿病(T2DM)密切相關(guān)。 Berenbaum[7]于2001年首次提出糖尿病誘發(fā)骨關(guān)節(jié)炎的概念,認(rèn)為糖尿病很可能是OA的獨(dú)立危險(xiǎn)因素。Schett等[8]對(duì)927例糖尿病患者進(jìn)行長(zhǎng)達(dá)20年的隨訪,結(jié)果顯示T2DM患者中出現(xiàn)晚期OA的比例是非T2DM患者的3.8倍,在排除年齡、體重指數(shù)(BMI)等因素后,該結(jié)果仍有意義。Eymard等[9]每年測(cè)量膝OA患者關(guān)節(jié)間隙狹窄程度,發(fā)現(xiàn)糖尿病性O(shè)A患者關(guān)節(jié)間隙狹窄程度較非糖尿病性O(shè)A患者更明顯,在調(diào)整年齡、BMI等因素后,該結(jié)果亦具有統(tǒng)計(jì)學(xué)意義。Laiguillon等[10]研究提出糖尿病性O(shè)A可能的病理生理學(xué)特點(diǎn)。隨后,越來(lái)越多的臨床研究和系統(tǒng)評(píng)價(jià)[11-13]支持糖尿病可能為OA的獨(dú)立危險(xiǎn)因素這一觀點(diǎn)。本文從葡萄糖代謝、胰島素代謝、線粒體代謝和微小RNA(miRNA)表達(dá)等方面對(duì)糖尿病性O(shè)A可能的發(fā)病機(jī)制作一綜述,旨在為糖尿病性O(shè)A尋找新的治療靶點(diǎn),為靶向治療和精準(zhǔn)醫(yī)療提供理論依據(jù)。
葡萄糖是關(guān)節(jié)軟骨生長(zhǎng)、發(fā)育、維持穩(wěn)態(tài)的重要能量來(lái)源,也是關(guān)節(jié)軟骨基質(zhì)合成的基本原料。關(guān)節(jié)軟骨的葡萄糖水平可隨年齡、體力活動(dòng)、內(nèi)分泌代謝等改變而變化。軟骨細(xì)胞可感知ECM中葡萄糖的濃度并進(jìn)行適應(yīng)性調(diào)節(jié)。
1.1 葡萄糖轉(zhuǎn)運(yùn)蛋白表達(dá)異常
葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT)可將細(xì)胞外葡萄糖轉(zhuǎn)運(yùn)至細(xì)胞內(nèi),再通過(guò)無(wú)氧糖酵解等代謝途徑獲取能量或儲(chǔ)存[14]。關(guān)節(jié)軟骨中高表達(dá)的GLUT主要是GLUT1,它可根據(jù)細(xì)胞外葡萄糖濃度、含氧量、胰島素樣生長(zhǎng)因子(IGF)和促炎因子如白細(xì)胞介素(IL)-1水平等進(jìn)行調(diào)節(jié)[14]。Rosa等[15]使用不同濃度葡萄糖溶液刺激OA患者和健康人關(guān)節(jié)軟骨后發(fā)現(xiàn),正常軟骨細(xì)胞可通過(guò)上調(diào)或下調(diào)GLUT1水平來(lái)適應(yīng)細(xì)胞外低糖或高糖水平,而OA患者軟骨細(xì)胞在高糖刺激下喪失了下調(diào)GLUT1的能力,致使細(xì)胞內(nèi)葡萄糖蓄積過(guò)多。研究發(fā)現(xiàn),GLUT1在IL-1作用下表達(dá)上調(diào),亦可增加細(xì)胞內(nèi)糖負(fù)荷[16];OA軟骨細(xì)胞在高糖刺激下更易增加基質(zhì)金屬蛋白酶(MMP)-13的表達(dá),這些都會(huì)促進(jìn)軟骨基質(zhì)分解代謝[17]。
1.2 多元醇通路激活
正常情況下,細(xì)胞內(nèi)葡萄糖蓄積過(guò)多可引起無(wú)氧糖酵解增加。研究[18]發(fā)現(xiàn),雖然OA患者軟骨細(xì)胞內(nèi)葡萄糖蓄積過(guò)多,但參與無(wú)氧糖酵解的3個(gè)關(guān)鍵酶表達(dá)均下調(diào),糖酵解能力下降。細(xì)胞內(nèi)高糖負(fù)荷會(huì)激活其他糖代謝替代途徑如多元醇通路、氨基己糖通路、蛋白激酶C通路以及產(chǎn)生晚期糖基化終末產(chǎn)物(AGE)等[19]。
多元醇通路指細(xì)胞內(nèi)多余的葡萄糖在醛醣還原酶(AR)作用下被還原成山梨醇,山梨醇在山梨醇脫氫酶的作用下生成果糖。其中,AR是多元醇通路的限速酶。AR的激活在糖尿病慢性并發(fā)癥如糖尿病腎病中起關(guān)鍵作用,AR抑制劑如依帕司他已成功應(yīng)用于臨床[20]。Cheng等[21]在研究糖尿病小鼠椎間盤(pán)退行性變時(shí)發(fā)現(xiàn),退變椎間盤(pán)軟骨中AR和山梨醇增加,并證明多元醇通路可激活p38絲裂原活化蛋白激酶(p38 MAPK)信號(hào)轉(zhuǎn)導(dǎo)通路而加速椎間盤(pán)軟骨外基質(zhì)的降解。與之類(lèi)似的結(jié)果在關(guān)節(jié)軟骨中也得到了驗(yàn)證。Laiguillon等[10]比較糖尿病性O(shè)A患者與非糖尿病性O(shè)A患者軟骨,發(fā)現(xiàn)IL-1β刺激后糖尿病性O(shè)A患者軟骨中IL-6表達(dá)較非糖尿病性O(shè)A患者高,證實(shí)在IL-1β刺激下,糖尿病性O(shè)A患者軟骨誘發(fā)炎癥的反應(yīng)更劇烈。IL-1β刺激后高糖負(fù)荷的軟骨細(xì)胞攝糖量增加,IL-6表達(dá)水平較在正常葡萄糖濃度下高,這一作用可被GLUT抑制劑和AR抑制劑依帕司他部分抵消(分別可抵消45%和62%)。因此,多元醇通路的激活可能參與糖尿病性O(shè)A的發(fā)生。
1.3 AGE生成
AGE是細(xì)胞內(nèi)多余的葡萄糖、蛋白質(zhì)、脂質(zhì)、核苷酸等大分子發(fā)生非酶性糖基化反應(yīng)的終末產(chǎn)物,戊糖素、丙酮醛等都是AGE形成的中間產(chǎn)物。AGE與糖尿病、OA等均有關(guān)聯(lián)[22-23]。AGE一旦形成很難分離,只能隨蛋白降解而消除;而關(guān)節(jié)軟骨中的Ⅱ型膠原蛋白半衰期超過(guò)100年,因此AGE易積聚在關(guān)節(jié)軟骨內(nèi)。AGE可能通過(guò)生物力學(xué)、炎癥和代謝改變參與OA發(fā)生發(fā)展,糖尿病患者更易形成并聚積AGE。體外試驗(yàn)[24]證實(shí),AGE可與膠原發(fā)生交聯(lián)反應(yīng),導(dǎo)致關(guān)節(jié)組織僵硬度和脆性增加。但體內(nèi)實(shí)驗(yàn)[25]發(fā)現(xiàn),軟骨內(nèi)單純的膠原交聯(lián)并不能導(dǎo)致OA發(fā)生,表明AGE引起的生物力學(xué)改變并不是OA發(fā)生的主要機(jī)制,AGE可能通過(guò)炎癥反應(yīng)和氧化應(yīng)激引起基質(zhì)代謝失衡,從而促進(jìn)OA形成。研究[26]發(fā)現(xiàn),AGE通過(guò)作用于AGE受體(RAGE)來(lái)激活多種信號(hào)轉(zhuǎn)導(dǎo)通路如核因子-κB(NF-κB)信號(hào)轉(zhuǎn)導(dǎo)通路,促進(jìn)MMP-13、IL-1β等生成。此外,AGE還可下調(diào)軟骨細(xì)胞中過(guò)氧化物酶體增殖物激活受體(PPAR)-γ表達(dá),增加MMP-13表達(dá),抑制Ⅱ型膠原合成,這一過(guò)程可被PPAR-γ激動(dòng)劑吡格列酮所拮抗[27]。動(dòng)物實(shí)驗(yàn)證實(shí)單純向關(guān)節(jié)腔內(nèi)注射AGE并不能誘導(dǎo)OA發(fā)生。但Li等[28]對(duì)兔OA模型進(jìn)行研究,發(fā)現(xiàn)在過(guò)度體力活動(dòng)下,關(guān)節(jié)腔內(nèi)注射AGE可加速兔關(guān)節(jié)軟骨破壞,而吡格列酮可減輕AGE誘導(dǎo)軟骨破壞的嚴(yán)重程度。Chen等[29]對(duì)糖尿病小鼠進(jìn)行研究,發(fā)現(xiàn)高糖可增加軟骨細(xì)胞中IL-6、MMP-13、AGE等的表達(dá),同時(shí)減少Ⅱ型膠原和PPAR-γ的表達(dá);吡格列酮可明顯逆轉(zhuǎn)AGE形成和軟骨損害。由此可見(jiàn),長(zhǎng)期高血糖可能通過(guò)促進(jìn)AGE生成來(lái)下調(diào)PPAR-γ,導(dǎo)致軟骨內(nèi)炎癥反應(yīng)加劇和分解代謝增加,最終導(dǎo)致OA發(fā)生發(fā)展。
胰島素分泌異常是糖尿病的重要特征之一,T2DM主要表現(xiàn)為高胰島素血癥和胰島素抵抗。胰島素與IGF類(lèi)似,作用于胰島素受體(IR),繼而激活胰島素受體底物1和蛋白激酶B(AKT)信號(hào)轉(zhuǎn)導(dǎo)通路[30-31]。目前主流觀點(diǎn)認(rèn)為,胰島素或IGF可通過(guò)AKT信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)軟骨細(xì)胞Ⅱ型膠原和蛋白聚糖(PG)合成[32-33]。IR在軟骨細(xì)胞和滑膜細(xì)胞中均有表達(dá)。Rosa等[34]研究發(fā)現(xiàn),OA軟骨細(xì)胞中IR較正常軟骨細(xì)胞表達(dá)下降,這限制了胰島素對(duì)軟骨細(xì)胞的營(yíng)養(yǎng)作用。Hamada等[35]研究發(fā)現(xiàn),胰島素可通過(guò)抑制滑膜炎癥反應(yīng)來(lái)抑制OA發(fā)生;糖尿病小鼠關(guān)節(jié)內(nèi)出現(xiàn)較明顯的軟骨破壞、滑膜增生和骨贅形成,其中滑膜組織中的腫瘤壞死因子(TNF)-α表達(dá)明顯增加,而胰島素可抑制滑膜中TNF-α的表達(dá)。Griffin等[36]用胰島素刺激糖尿病性O(shè)A患者滑膜,發(fā)現(xiàn)其IR和AKT磷酸化作用均慢于非糖尿病性O(shè)A患者,即糖尿病性O(shè)A患者滑膜組織出現(xiàn)胰島素抵抗。El-Karib等[37]對(duì)糖尿病性O(shè)A小鼠模型進(jìn)行研究,發(fā)現(xiàn)應(yīng)用胰島素和胰島素類(lèi)似物釩可保護(hù)關(guān)節(jié)軟骨,兩者聯(lián)合應(yīng)用效果更佳,這一作用可能是通過(guò)減少炎性介質(zhì)如TNF-α、IL-6等生成及增加超氧化物歧化酶的產(chǎn)生而實(shí)現(xiàn)的。Al-Jarallah等[38]研究發(fā)現(xiàn),經(jīng)胰島素治療的糖尿病性O(shè)A患者骨贅較未使用胰島素治療的糖尿病性O(shè)A患者小。與之相矛盾的是,Ribeiro等[39]研究認(rèn)為高胰島素血癥是破壞軟骨的危險(xiǎn)因素,其主要通過(guò)抑制自噬作用實(shí)現(xiàn),此結(jié)論可能與實(shí)驗(yàn)設(shè)計(jì)及胰島素濃度有關(guān)。關(guān)于胰島素對(duì)關(guān)節(jié)組織的影響,有待進(jìn)一步研究。
線粒體代謝異常主要包括線粒體氧化磷酸化水平下降及氧化應(yīng)激。線粒體的主要功能是通過(guò)氧化磷酸化產(chǎn)生三磷酸腺苷(ATP),雖然關(guān)節(jié)軟骨主要通過(guò)無(wú)氧糖酵解進(jìn)行能量代謝,但線粒體在軟骨代謝中也扮演著重要角色[40]。研究[41]發(fā)現(xiàn),線粒體代謝異??芍萝浌呛铣赡芰ο陆怠④浌羌?xì)胞凋亡增加及炎癥、分解代謝增加,與OA發(fā)生有關(guān)。OA軟骨細(xì)胞的線粒體生物合成能力和氧化磷酸化能力受損,導(dǎo)致軟骨分解代謝加劇[42]。氧化應(yīng)激損傷在代謝綜合征,尤其是糖尿病和胰島素抵抗中扮演著重要作用[4]。OA關(guān)節(jié)中的軟骨細(xì)胞、滑膜成纖維細(xì)胞等在外界刺激下也可產(chǎn)生大量活性氧簇(ROS)和活性氮簇(RNS),造成細(xì)胞損傷和凋亡。ROS可通過(guò)激活NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)IL-1β、TNF-α等炎性介質(zhì)生成,增加MMP-3、MMP-13表達(dá)[43]。有學(xué)者[44]提出氧化應(yīng)激亦可通過(guò)調(diào)控磷脂酰肌醇-3-羥激酶(PI3K)/AKT信號(hào)轉(zhuǎn)導(dǎo)通路來(lái)抑制IGF誘導(dǎo)的軟骨PG合成。Rosa等[15]研究認(rèn)為,OA軟骨細(xì)胞中的高糖負(fù)荷引起ROS生成增多、存在時(shí)間延長(zhǎng),進(jìn)而誘發(fā)軟骨細(xì)胞凋亡。Laiguillon等[10]研究發(fā)現(xiàn),高糖條件下軟骨細(xì)胞對(duì)炎性刺激的高反應(yīng)性可被線粒體氧化應(yīng)激抑制劑部分抵消(38%),證實(shí)氧化應(yīng)激可能參與糖尿病性O(shè)A的發(fā)生,甚至成為葡萄糖異?;蛞葝u素異常與軟骨炎癥反應(yīng)之間的媒介。
miRNA通過(guò)完全或不完全互補(bǔ)方式與靶mRNA配對(duì),進(jìn)而在轉(zhuǎn)錄后對(duì)靶基因表達(dá)進(jìn)行負(fù)調(diào)控,它可調(diào)節(jié)多種細(xì)胞功能包括細(xì)胞發(fā)育、增殖、分化、凋亡、糖代謝等[45]。miRNA因其獨(dú)特的組織特異性和時(shí)序性,在疾病的早期診斷及早期治療中具有無(wú)可比擬的應(yīng)用前景。糖尿病可引起多種miRNA表達(dá)異常,繼而參與一系列并發(fā)癥的發(fā)生,其中包括骨和關(guān)節(jié)損傷[46-47]。有研究[48]發(fā)現(xiàn),胰島素抵抗患者脂肪細(xì)胞中miRNA-223明顯過(guò)度表達(dá),且miRNA-223可直接作用于GLUT4,引起GLUT4水平降低及糖攝取能力下降。Kim等[49]比較糖尿病性O(shè)A患者與非糖尿病性O(shè)A患者過(guò)氧化物酶體生物合成因子(PEX)-16基因表達(dá),發(fā)現(xiàn)糖尿病性O(shè)A患者PEX-16基因表達(dá)明顯低于非糖尿病性O(shè)A患者;體外實(shí)驗(yàn)證實(shí),抑制PEX-16可致miRNA-223過(guò)度表達(dá),并引起軟骨細(xì)胞凋亡。有學(xué)者[50]研究發(fā)現(xiàn),miRNA-223在成骨細(xì)胞中可直接負(fù)調(diào)控IGF-1受體,介導(dǎo)AGE引起的成骨細(xì)胞凋亡。目前關(guān)于miRNA在糖尿病性O(shè)A中的研究較少。因此,代謝/miRNA/炎癥/凋亡反應(yīng)網(wǎng)絡(luò)可能是參與糖尿病性O(shè)A發(fā)生發(fā)展的重要機(jī)制。
隨著人口老齡化和糖尿病患者的日益劇增,研究糖尿病性O(shè)A發(fā)生機(jī)制意義重大。越來(lái)越多的證據(jù)支持糖尿病可能通過(guò)糖代謝和胰島素代謝改變軟骨、滑膜等關(guān)節(jié)組織細(xì)胞代謝、炎癥反應(yīng),甚至基因表達(dá),從而導(dǎo)致關(guān)節(jié)內(nèi)環(huán)境紊亂,參與OA發(fā)生發(fā)展。此外,糖尿病可能會(huì)加重OA患者臨床癥狀如疼痛等,使患者更早地需要進(jìn)行關(guān)節(jié)置換。同時(shí),糖尿病可能會(huì)增加關(guān)節(jié)置換術(shù)后并發(fā)癥發(fā)生率,降低患者生活質(zhì)量。目前OA尚無(wú)特效治療藥物,通過(guò)研究糖尿病性O(shè)A可能的分子機(jī)制,探索特殊分子靶點(diǎn)如RAGE、PPAR-γ、miRNA等以及新的分子標(biāo)記物、靶向治療藥物,可為糖尿病性O(shè)A患者的早期篩查和治療提供更好的切入點(diǎn)。此外,現(xiàn)有的糖尿病治療藥物如二甲雙胍、吡格列酮等對(duì)糖尿病性O(shè)A的早期干預(yù)也是較好的研究方向。進(jìn)一步建立相關(guān)動(dòng)物實(shí)驗(yàn)?zāi)P停晟拼x/miRNA/炎癥/凋亡反應(yīng)網(wǎng)絡(luò),明確相互之間的聯(lián)系,仍需進(jìn)一步研究。
[ 1 ] Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6):1697-1707.
[ 2 ] Sharma L. Osteoarthritis year in review 2015: clinical[J]. Osteoarthritis Cartilage, 2016, 24(1):36-48.
[ 3 ] Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis[J]. Nat Rev Rheumatol, 2016, 12(2):92-101.
[ 4 ] Le Clanche S, Bonnefont-Rousselot D, Sari-Ali E, et al. Inter-relations between osteoarthritis and metabolic syndrome: a common link?[J]. Biochimie, 2016, 121:238-252.
[ 5 ] Zhuo Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(12):729-737.
[ 6 ] King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms[J]. Osteoarthritis Cartilage, 2015, 23(6):841-850.
[ 7 ] Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype[J]. Ann Rheum Dis, 2011, 70(8):1354-1356.
[ 8 ] Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study[J]. Diabetes Care, 2013, 36(2):403-409.
[ 9 ] Eymard F, Parsons C, Edwards MH, et al. Diabetes is a risk factor for knee osteoarthritis progression[J]. Osteoarthritis Cartilage, 2015, 23(6):851-859.
[10] Laiguillon MC, Courties A, Houard X, et al. Characterization of diabetic osteoarthritic cartilage and role of high glucose environment on chondrocyte activation: toward pathophysiological delineation of diabetes mellitus-related osteoarthritis[J]. Osteoarthritis Cartilage, 2015, 23(9):1513-1522.
[11] Yoshimura N, Muraki S, Oka H. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study[J]. Osteoarthritis Cartilage, 2012, 20(11):1217-1226.
[12] Louati K, Vidal C, Berenbaum F, et al. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis[J]. RMD Open, 2015, 1(1):e000077.
[13] Williams MF, London DA, Husni EM, et al. Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis[J]. J Diabetes Complications, 2016, 30(5):944-950.
[14] Mobasheri A. Glucose: an energy currency and structural precursor in articular cartilage and bone with emerging roles as an extracellular signaling molecule and metabolic regulator[J]. Front Endocrinol (Lausanne), 2012, 3:153.
[15] Rosa SC, Goncalves J, Judas F, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage[J]. Arthritis Res Ther, 2009, 11(3):R80.
[16] Shikhman AR, Brinson DC, Valbracht J, et al. Cytokine regulation of facilitated glucose transport in human articular chondrocytes[J]. J Immunol, 2001, 167(12):7001-7008.
[17] Rosa SC, Rufino AT, Judas FM, et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes[J]. J Cell Biochem, 2011, 112(10):2813-2824.
[18] Ruiz-Romero C, Carreira V, Rego I, et al. Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis[J]. Proteomics, 2008, 8(3):495-507.
[19] Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865):813-820.
[20] Hotta N, Kawamori R, Fukuda M, et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy[J]. Diabet Med, 2012, 29(12):1529-1533.
[21] Cheng X, Ni B, Zhang Z, et al. Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats[J]. Connect Tissue Res, 2013, 54(2):118-122.
[22] Xie J, Mendez JD, Mendez-Valenzuela V, et al. Cellular signalling of the receptor for advanced glycation end products (RAGE)[J]. Cell Signal, 2013, 25(11):2185-2197.
[23] Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biol, 2014, 2:411-429.
[24] Vashishth D, Gibson GJ, Khoury JI, et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone[J]. Bone, 2001, 28(2):195-201.
[25] Willett T, Kandel R, De Croos J, et al. Enhanced levels of non-enzymatic glycation and pentosidine crosslinking in spontaneous osteoarthritis progression[J]. Osteoarthritis Cartilage, 2012, 20(7):736-744.
[26] Nah SS, Choi IY, Yoo B, et al. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-alpha in human osteoarthritic chondrocytes[J]. FEBS Lett, 2007, 581(9):1928-1932.
[27] Ma C1, Zhang Y, Li YQ, et al. The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes[J]. PLoS One, 2015, 10(5):e0125776.
[28] Li Y, Zhang Y, Chen C, et al. Establishment of a rabbit model to study the influence of advanced glycation end products accumulation on osteoarthritis and the protective effect of pioglitazone[J]. Osteoarthritis Cartilage, 2016, 24(2):307-314.
[29] Chen YJ, Chan DC, Lan KC, et al. PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages[J]. J Orthop Res, 2015, 33(3):373-381.
[30] Arkun Y. Dynamic modeling and analysis of the cross-talk between insulin/AKT and MAPK/ERK signaling pathways[J]. PLoS One, 2016, 11(3):e0149684.
[31] Kang S, Tsai LT, Rosen ED. Nuclear mechanisms of insulin resistance[J]. Trends Cell Biol, 2016, 26(5):341-351.
[32] Heilig J, Paulsson M, Zaucke F. Insulin-like growth factor 1 receptor (IGF1R) signaling regulates osterix expression and cartilage matrix mineralization during endochondral ossification[J]. Bone, 2016, 83:48-57.
[33] Cai L, Okumu FW, Cleland JL, et al. A slow release formulation of insulin as a treatment for osteoarthritis[J]. Osteoarthritis Cartilage, 2002, 10(9):692-706.
[34] Rosa SC, Rufino AT, Judas F, et al. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin[J]. Osteoarthritis Cartilage, 2011, 19(6):719-727.
[35] Hamada D, Maynard R, Schott E, et al. Suppressive effects of insulin on tumor necrosis factor-dependent early osteoarthritic changes associated with obesity and type 2 diabetes mellitus[J]. Arthritis Rheumatol, 2016, 68(6):1392-1402.
[36] Griffin TM, Huffman KM. Editorial: insulin resistance. Releasing the brakes on synovial inflammation and osteoarthritis?[J]. Arthritis Rheumatol, 2016, 68(6):1330-1333.
[37] El-Karib AO, Al-Ani B, Al-Hashem F, et al. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats[J]. Arch Physiol Biochem, 2016, 122(3):148-154.
[38] Al-Jarallah K, Shehab D, Abdella N, et al. Knee osteoarthritis in type 2 diabetes mellitus: does insulin therapy retard osteophyte formation?[J]. Med Princ Pract, 2016, 25(1):12-17.
[39] Ribeiro M, Lopez de Figueroa P, Blanco FJ, et al. Insulin decreases autophagy and leads to cartilage degradation[J]. Osteoarthritis Cartilage, 2016, 24(4):731-739.
[40] Martin JA, Martini A, Molinari A, et al. Mitochondrial electron transport and glycolysis are coupled in articular cartilage[J]. Osteoarthritis Cartilage, 2012, 20(4):323-329.
[41] Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(3):161-169.
[42] Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J]. Arthritis Rheumatol, 2015, 67(8):2141-2153.
[43] Vaamonde-Garcia C, Riveiro-Naveira RR, Valcarcel-Ares MN, et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes[J]. Arthritis Rheum, 2012, 64(9):2927-2936.
[44] Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-Ⅰ induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways[J]. J Biol Chem, 2009, 284(46):31972-31981.
[45] Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(9):543-552.
[46] McClelland AD, Kantharidis P. microRNA in the development of diabetic complications[J]. Clin Sci (Lond), 2014, 126(2):95-110.
[47] Jingsheng S, Yibing W, Jun X, et al. MicroRNAs are potential prognostic and therapeutic targets in diabetic osteoarthritis[J]. J Bone Miner Metab, 2015, 33(1):1-8.
[48] Chuang TY, Wu HL, Chen CC, et al. MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue[J]. J Diabetes Res, 2015, 2015:943659.
[49] Kim D, Song J, Ahn C, et al. Peroxisomal dysfunction is associated with up-regulation of apoptotic cell death via miR-223 induction in knee osteoarthritis patients with type 2 diabetes mellitus[J]. Bone, 2014, 64:124-131.
[50] Qin Y, Ye J, Wang P, et al. miR-223 contributes to the AGE-promoted apoptosis via down-regulating insulin-like growth factor 1 receptor in osteoblasts[J]. Biosci Rep, 2016, [Epub ahead of print].
(收稿:2016-08-15;修回:2016-10-09)
(本文編輯:李圓圓)
國(guó)家自然科學(xué)基金(8140090243)
復(fù)旦大學(xué)附屬華山醫(yī)院骨科
夏軍 E-mail: dr.xiajun@139.com
10.3969/j.issn.1673-7083.2016.06.007