郭鑫昕,蘇式兵,商嘉瑋,史苗娟,張 輝
(上海中醫(yī)藥大學(xué)中醫(yī)復(fù)雜系統(tǒng)研究中心 上海 201203)
MicroRNAs與肝纖維化及相關(guān)中醫(yī)藥研究的進展*
郭鑫昕,蘇式兵,商嘉瑋,史苗娟,張 輝**
(上海中醫(yī)藥大學(xué)中醫(yī)復(fù)雜系統(tǒng)研究中心 上海 201203)
肝纖維化是由多種原因引起的慢性肝損害所導(dǎo)致的病理改變。肝星狀細(xì)胞(HSC)激活、增殖和凋亡等是肝纖維化發(fā)生、發(fā)展的中心環(huán)節(jié)。MicroRNAs(miRNAs)是19-24核苷酸長度的內(nèi)源性單鏈非編碼小RNA分子,在轉(zhuǎn)錄后水平調(diào)控多基因的表達,是表觀遺傳基因調(diào)控網(wǎng)絡(luò)中的重要部分。肝纖維化過程中多種miRNAs異常表達,miRNAs通過調(diào)控其靶基因參與HSC相關(guān)信號通路,從而介導(dǎo)肝纖維化的發(fā)生發(fā)展;miRNAs在肝纖維化診斷及治療中具有重要作用;miRNAs可作為治療肝纖維化干預(yù)的靶點,用以闡釋中藥的抗肝纖維化機制研究;miRNAs與慢性肝病的中醫(yī)證候相關(guān),在肝纖維化的證候研究方面具有很大的前景。本文就miRNAs在肝纖維化及與中醫(yī)藥的相關(guān)研究進展作一綜述。
肝纖維化 miRNAs 中醫(yī)藥 研究 進展
肝纖維化是由多種原因,包括炎癥反應(yīng)、持續(xù)性病毒感染、酒精性、藥物毒性或遺傳因素等[1]引起的慢性肝損害所致的病理改變,是肝內(nèi)細(xì)胞外基質(zhì)(Extracellular Matrix,ECM)中成分過度異常沉積的結(jié)果,影響肝臟的正常功能,是發(fā)展到肝硬化的必經(jīng)階段。肝星狀細(xì)胞(Hepatic Stellate Cells,HSC)是ECM的主要來源。HSC是肝纖維化發(fā)生、發(fā)展的關(guān)鍵細(xì)胞,HSC由靜息型被激活轉(zhuǎn)變?yōu)榛罨?,是肝纖維化發(fā)生的中心環(huán)節(jié)。HSC生物學(xué)活性由多個信號通路調(diào)控,HSC活化機制是肝纖維化防治的研究熱點。
微小RNAs(microRNAs,miRNAs)是在真核生物中發(fā)現(xiàn)的一類內(nèi)源性的具有調(diào)控功能的非編碼RNA,其大小長約19-24個核苷酸。成熟的miRNAs由較長的初級轉(zhuǎn)錄物經(jīng)過一系列核酸酶剪切加工而產(chǎn)生,隨后組裝進RNA誘導(dǎo)的沉默復(fù)合體,通過堿基互補配對的方式識別靶mRNA,并根據(jù)互補程度的不同指導(dǎo)沉默復(fù)合體降解靶mRNA或者阻遏靶mRNA的翻譯[2]。近年研究表明,在肝纖維化過程中許多miRNAs的表達上調(diào)或下調(diào)[3-43],miRNAs通過負(fù)調(diào)控靶基因參與TGF-β/Smads、Hh、Wnt、PI3K/ Akt、NF-κB、Caspase等信號通路[3-34],介導(dǎo)HSC的活化、增殖和凋亡等,從而在肝纖維化的發(fā)生、發(fā)展過程中發(fā)揮重要作用。
隨著miRNAs研究的深入和研究領(lǐng)域的擴展及其重要的生物功能,miRNAs在闡明中藥抗肝纖維化作用機制及中醫(yī)證候研究等方面有著重要的應(yīng)用前景。因此,本文就miRNAs與肝纖維化及相關(guān)中醫(yī)藥研究的進展作一綜述,探討其學(xué)術(shù)意義。
MiRNAs表達的改變對肝纖維化的發(fā)生發(fā)展有著重要的影響。近年來諸多學(xué)者和研究人員利用動物肝組織模型、患病人體肝組織和相關(guān)細(xì)胞對miRNAs的表達及影響肝纖維化的病理機制進行相關(guān)探究。據(jù)現(xiàn)有文獻報道,約有40種miRNAs在肝纖維化過程中呈異常表達,具體見表1。
表1 肝纖維化相關(guān)miRNAs及其靶基因和參與的信號通路
HSC的激活及其激活后ECM異常表達和沉積是肝纖維化發(fā)生的關(guān)鍵。HSC的生物活性由多個信號通路參與,如TGF-β/ Smads、Hh、Wnt、PI3K/ Akt、NF-κB、Caspase等信號通路,這些通路中有多種不同的基因參與,而miRNAs通過其靶基因參與HSC相關(guān)信號通路的調(diào)控,影響HSC的活化、增殖或凋亡等,從而介導(dǎo)肝纖維化的發(fā)生發(fā)展。
2.1 MiRNAs參與TGF-β信號通路
TGF-β是肝臟發(fā)生纖維化病變極其重要的一種細(xì)胞因子,與Smad家族蛋白結(jié)合形成TGF-β/Smad信號通路,是調(diào)節(jié)HSC活化和ECM沉積的重要途徑之一[44]。研究發(fā)現(xiàn),miR-19b在HSC活化進程中下調(diào),恢復(fù)miR-19b可抑制靶基因TGFβRII表達而影響ECM的生成[3]。MiR-146a在CCl4誘導(dǎo)的大鼠肝纖維化模型中表達下調(diào),miR-146a調(diào)控靶基因Smad4而抑制TGF-β誘導(dǎo)的HSC增殖[5]。MiR-144在人肝纖維化組織中呈下調(diào),miR-144或許能調(diào)控TGF-β1誘導(dǎo)的HSC活化[6]。MiR-155通過調(diào)節(jié)Smad3和C/EBPβ的活性影響脂肪性肝炎過程中的肝纖維化[7]。MiR-16在HCV感染誘導(dǎo)的肝纖維化組織細(xì)胞中呈上調(diào),通過對HGF和Smad7的靶向負(fù)調(diào)控而影響肝纖維化進程[9]。
MiR-30c和miR-193在CCL4誘導(dǎo)的小鼠肝纖維化組織和人肝纖維化組織中呈下調(diào),通過調(diào)控SNAIL和TGF-β2參與肝纖維化的發(fā)生發(fā)展[12]。MiR-101在CCL4誘導(dǎo)的小鼠肝纖維化組織中下調(diào),miR-101通過調(diào)控靶基因ZEBI影響肝纖維化過程中的上皮間質(zhì)轉(zhuǎn)換[15];miR-101亦能通過對靶基因TGFβRI和KLF6的調(diào)控影響HSC活化[14]。MiR-17-5p通過抑制Smad7的表達而對TGF-β/Smad信號通路起調(diào)控作用,進而促進HSC的增殖和活化[16]。MiR-21在小鼠模型中的HSCs和Kupffer細(xì)胞中表達上調(diào),其調(diào)控機制與TGF-β1/Smad通路相關(guān)[45]。MiR-454在活化HSC中表達下調(diào),miR-454能調(diào)控Smad4而抑制HSC的活化[16]。MiR-483-5p/3p在CCl4誘導(dǎo)的大鼠模型HSCs中表達下調(diào),通過調(diào)控靶基因PDGF-β和TIMP2參與TGF-β信號通路調(diào)節(jié)肝纖維化進程[17]。
2.2 MiRNAs參與Hedgehog(Hh)信號通路
Hh信號通路在HSC激活過程中起著重要的作用[23]。miR-152在肝纖維化中表達下調(diào),其靶基因DNA甲基化轉(zhuǎn)移酶1(DNMT1)表達增加,致使Hh信號通路的負(fù)調(diào)控因子PTCH1甲基化程度升高,從而影響肝纖維化過程中的EMT發(fā)生[22]。MiR-125b在CCL4誘導(dǎo)的大鼠肝纖維化模型中呈下調(diào),miR-125b通過調(diào)控靶基因Smo促進肝細(xì)胞再生、抑制Hh信號通路的活性進而影響肝纖維化進程[23]。研究發(fā)現(xiàn),miR-29b在CBDL誘導(dǎo)的小鼠肝纖維化模型表達下調(diào),通過調(diào)控Col1&IV、C-MYC、PDGF-β、PI3K/AKT等抑制Hh信號通路的活性,減少ECM的沉積[21]。MiR-200a在大鼠HSCs活化后表達下調(diào),miR-200a能靶向調(diào)控GLi2抑制Hh信號通路的活性,減少其通路中有關(guān)基因的表達,阻止EMT的過程[24]。MiR-378a-3p、miR-378b、miR-378d均 在HSC活化過程中表達下調(diào),miR-378a-3p調(diào)控Hh信號通路中鋅指轉(zhuǎn)錄因子Gli3抑制HSC的活性[25]。
2.3 MiRNAs參與Wnt信號通路
Wnt蛋白是一類富含半胱氨酸的高度保守的分泌型糖蛋白,它可以通過HSC自分泌的方式釋放到細(xì)胞外,與HSCs細(xì)胞膜上的Frizzled/低密度脂蛋白(LPS)受體相關(guān)蛋白(Fz/LRP)結(jié)合,進而調(diào)節(jié)HSC的活化[46]。MiR-146a-5p在HSC活化進程中表達下調(diào),通過負(fù)調(diào)控Wnt1和Wnt5a抑制HSC活化和增殖[26]。MiR-17a-5p在肝纖維化進程中呈高表達,通過負(fù)調(diào)控WIF1而激活Wnt/β-catenin。
2.4 MiRNAs參與PI3K/Akt信號通路
PI3K/Akt信號通路參與肝纖維化調(diào)控。PTEN是PI3K/AKT 信號通路中的一種負(fù)調(diào)控因子,可以通過阻止PI3K/AKT通路的磷酸化降低肝星狀細(xì)胞的活化[47]。MiR-200b在HSC中呈上調(diào),通過調(diào)控靶基因FOG2增強Akt的磷酸化過程促進HSC的增殖及遷移[28]。MiR-181b抑制p27促進HSCs的增殖[29],miR-181b也可通過調(diào)控PTEN參與PTEN/AKT 信號通路從而使HSCs活化[30]。MiR-222在肝纖維化表達上調(diào),抑制miR-222的表達抑制人HSC(LX-2)的增殖,并可以影響Akt信號通路下游的傳導(dǎo)[31]。
2.5 MiRNAs參與NF-κB信號通路
NF-κB是肝纖維化發(fā)生過程中的重要調(diào)節(jié)途徑之一[48]。Feng X等[32]研究發(fā)現(xiàn),miR-126在HSC中表達上調(diào),miR-126通過抑制靶基因IκBα的表達活性,使NF-κB信號通路的活性增強并且相關(guān)蛋白的表達量增加,從而在肝纖維化進程中起到重要的作用。
2.6 MiRNAs參與ERK1/2信號通路
細(xì)胞外調(diào)節(jié)蛋白激酶(Extracellular Regulated Protein Kinases,ERK)分為ERK1和ERK2,統(tǒng)稱為ERK1/2,對HSC的活化、增殖、凋亡等均有影響[4]。MiR-21在肝纖維化進程中呈上調(diào),miR-21通過靶向調(diào)控SPRY2和HNF4α參與ERK1信號通路,分別使TGF-β1表達量增加和促進EMT[34]。MiR-19b在大鼠肝纖維化模型中呈下調(diào),miR-19b通過調(diào)控GRB2抑制HSC的增殖[4]。
2.7 MiRNAs通過Caspase信號通路
Caspase家族是一組存在于胞質(zhì)溶膠中含半胱氨酸的天冬氨酸蛋白水解酶,在細(xì)胞凋亡機制網(wǎng)絡(luò)中處于中心地位[49],與HSC凋亡相關(guān)。MiR-15b和miR-16在大鼠HSC中低表達,增加miR-15b和miR-16的表達能減少Bcl-2的表達,增加caspases 3/8/9的表達,從而誘導(dǎo)激活的HSC凋亡[50]。
2.8 MiRNAs參與HSC脂肪滴代謝
MiR-27a/b在原代培養(yǎng)大鼠HSC激活后表達上調(diào),減少miR-27a(b)表達可抑制HSC增殖,HSC胞漿中消失的脂滴重新出現(xiàn),其機制為miR-27a可靶向調(diào)控RXRα抑制脂肪細(xì)胞分化[51]。MiR-155在酒精誘發(fā)脂肪性肝炎和纖維化的過程中呈上調(diào),抑制miR-155的表達使其靶基因PPRE和PPARα表達上調(diào),可使小鼠免受酒精引起的脂肪性堆積和炎癥反應(yīng)的傷害[8]。
研究發(fā)現(xiàn),乙肝后肝纖維化患者血清中miRNAs可作為疾病的標(biāo)志物,并與疾病的進程相關(guān)[52]。MiR-138和miR-143在慢乙肝后肝硬化循環(huán)中表達上調(diào),miR-138可作為早期肝纖維化的標(biāo)志物,miR-138結(jié)合miR-143可作為晚期肝纖維化的標(biāo)志物[53]。MiR-33a在慢乙肝后肝纖維化患者血清中的表達下調(diào),與肝纖維化進程相關(guān)[54]。Trebicka J等[55]研究發(fā)現(xiàn),肝纖維化嚴(yán)重時,肝內(nèi)miR-122水平明顯下降,循環(huán)中miR-122水平與纖維化程度呈負(fù)相關(guān),但纖維化進程中這種負(fù)相關(guān)由血清和肝臟內(nèi)miR-122共同調(diào)節(jié)。Yu F等[56]研究發(fā)現(xiàn),miR-181b在慢乙肝患者和肝纖維化患者的血清中表達上調(diào),與乙肝病毒DNA和疾病進程密切相關(guān)。
4.1 MiRNAs與中藥作用機制研究
中醫(yī)藥治療肝纖維化的機制研究多側(cè)重中藥及其有效成分調(diào)控編碼蛋白基因的表達,而隨著miRNAs研究深入,發(fā)現(xiàn)miRNAs的調(diào)控機制與中醫(yī)藥治療干預(yù)密切相關(guān)。
4.1.1 MiRNAs與中藥復(fù)方
Wang Q等[57]體外研究發(fā)現(xiàn),扶正化瘀方藥物血清通過激活p38和抑制SAPK/JNK誘導(dǎo)大鼠HSC-T6的凋亡,其機制與調(diào)控miRNAs表達相關(guān);體內(nèi)研究表明[58],扶正化瘀方能調(diào)控miR-322、miR-342-3p和miR-296-5p介導(dǎo)的通路,如MAPK信號通路、Wnt信號通路、Ras信號通路等,這可能是扶正化瘀方抗肝纖維化的作用機制之一。加味四逆散或許通過促進miR-146a的表達實現(xiàn)對肝纖維化的逆轉(zhuǎn)[59]。丹芍化纖干預(yù)大鼠肝纖維化模型,對miR-200s表達的調(diào)控可能是其抗纖維化機制之一[60]。葉下珠復(fù)方Ⅱ號通過調(diào)控miR-16/Bcl-2通路[61]和miR-122/KLF6通路[62]影響HSC-T6細(xì)胞增殖及誘導(dǎo)其凋亡。
4.1.2 MiRNAs與中藥單體
除了中藥復(fù)方對miRNAs調(diào)控的報道外,還有一些中藥單體的相關(guān)報道。丹參酚酸B(SalB)能通過調(diào)控大鼠肝纖維化模型中和體外肝星狀細(xì)胞miR-17a-5p介導(dǎo)Wnt/β-catenin的信號通路減緩肝纖維化進程[17];SalB也能通過誘導(dǎo)miR-152而減少DNMT1的表達抑制肝纖維化進程[22]。姜黃素通過調(diào)控miR-29b/DNMT3b參與HSC的活化調(diào)控[46],也可以影響miR-199和miR-200介導(dǎo)的通路減緩肝纖維化進程[63]。青蒿琥酯抑制HSC中miR-154的表達,從而影響Wnt/β-catenin信號通路抑制肝纖維化進程[64]。
4.2 MiRNAs與肝纖維化中醫(yī)證候研究
肝纖維化是各種慢性肝病發(fā)展過程中的共同病理組織學(xué)變化。肝炎、脂肪肝、酒精肝等在內(nèi)的大部分肝病都可能導(dǎo)致肝纖維化。目前,也有miRNAs與慢性肝病中醫(yī)證候研究的相關(guān)報道。MiR-583和miR-663在乙肝肝膽濕熱證和肝腎陰虛證患者血清中存在顯著差異表達,這些證候差異的miRNAs可能是慢乙肝肝膽濕熱證和肝腎陰虛證的標(biāo)志性分子,miR-583和miR-663可能分別通過調(diào)控其相應(yīng)的靶基因而參與了證候的發(fā)生發(fā)展[65]。原發(fā)性肝癌氣虛血瘀證、肝郁血瘀證和肝膽濕熱證及肝瘀痰結(jié)證患者肝組織miRNAs水平存在顯著性差異,如miR-122-3p各證型組均明顯高于正常組(P<0.05),氣虛血瘀組明顯高于其他各證型組(P<0.05)[66]。曹海明等[67]用生物學(xué)方法分析了肝癌不同證型組miRNAs表達的差異,包括氣虛血瘀組、肝郁血瘀組、肝膽濕熱組和肝郁痰結(jié)組,發(fā)現(xiàn)不同證型組肝癌組織中miRNAs的表達譜有各自獨特的特征,為各證型組的區(qū)分提供了一定的客觀依據(jù)?,F(xiàn)有研究表明,miRNAs與慢性肝病的中醫(yī)證候相關(guān),提示在肝纖維化的證候研究方面具有很大的前景。
目前的研究表明,miRNAs參與調(diào)節(jié)肝纖維化發(fā)生進展,miRNAs通過調(diào)控HSC相關(guān)信號通路在HSC的活化、增殖和凋亡中發(fā)揮著重要作用[3-43],miRNAs的調(diào)控機制豐富了對肝纖維化發(fā)生、發(fā)展的機制的進一步認(rèn)識,為肝纖維化治療提供新的靶點。循環(huán)miRNAs可能成為疾病的良好診斷指標(biāo)。肝纖維化患者血清/血漿中均存在疾病特異性miRNAs表達譜,可以用來進行疾病的診斷、分類及臨床病理情況分析等[52-56],這為肝纖維化診斷及藥物療效提供新的生物標(biāo)志物,從而做到及時有效預(yù)防和治療。MiRNAs靶向HSC活化、增殖以及凋亡過程中的相關(guān)信號分子及其網(wǎng)絡(luò)靶標(biāo),為中醫(yī)藥治療肝纖維化的機理和中醫(yī)證候研究研究提供了新的視角。
然而,肝纖維化機制是復(fù)雜的調(diào)節(jié)系統(tǒng),涉及HSC 在內(nèi)的多種細(xì)胞和細(xì)胞因子的動態(tài)變化過程,是與肝竇內(nèi)皮細(xì)胞、枯否細(xì)胞、干細(xì)胞以及HSC 旁分泌細(xì)胞和自分泌多種細(xì)胞因子協(xié)同作用的結(jié)果。而且,miRNAs是表觀遺傳基因調(diào)控網(wǎng)絡(luò)中的重要部分,參與生物體的各種生理病理過程。MiRNAs在HSC和除HSC之外的細(xì)胞及其分子調(diào)控機制尚未全部明確,很多miRNAs的作用靶點和通路等尚未可知,尋找與肝纖維化密切相關(guān)并且能夠預(yù)測肝纖維化進程的miRNAs,明確其調(diào)控機制,有待我們進一步深入研究。
綜上所述,miRNAs研究已成為當(dāng)前生命科學(xué)領(lǐng)域的前沿?zé)狳c,讓人們對遺傳信息表達調(diào)控有了新的認(rèn)識。MiRNAs具有重要的生物學(xué)功能,并與肝纖維化的發(fā)生發(fā)展、診斷、治療密切相關(guān),miRNAs的研究拓展人們對于肝纖維化病變過程的理解,而且開啟了生物學(xué)研究的新方向。隨著miRNAs研究的深入和研究領(lǐng)域的擴展,為現(xiàn)代中醫(yī)藥研究提供了新的途徑和技術(shù)方法,在中醫(yī)證候研究、闡明中藥的作用機制研究等方面有著重要的應(yīng)用前景。
1 Miao C G, Yang Y Y, He X, et al. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie, 2013, 95(12): 2326-2335.
2 張清清,陸倫根. MiRNA診斷慢性肝病及肝纖維化價值的研究進展.診斷學(xué)理論與實踐, 2015, 14(4): 367-370.
3 Lakner A M, Steuerwald N M, Walling T L, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology, 2012, 56 (1): 300-310.
4 Ge S, Xie J, Liu F, et al. MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol. J Cell Biochem, 2015, 116: 2455-2464.
5 He Y, Huang C, Sun X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signa, 2012, 24 (10): 1923-1930.
6 Liu Z, Yi J, Ye R, et al. MiR-144 regulates transforming growth factor-β1 induced hepatic stellate cell activation in human fibrotic liver. Int J Clin Exp Pathol, 2015, 8(4): 3994-4000.
7 Timea Csak, Shashi Bala, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS One, 2015, 10(6): e0129251.
8 Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol, 2016, 64(6): 1378-1387.
9 Zhu B, Wei X X, Wang T B, et al. Increased miR-16 expression induced by hepatitis C virus infection promotes liver fibrosis through downregulation of hepatocyte growth factor and Smad7. Arch Virol, 2015, 160(8): 2043-2050.
10 Okada H, Honda M, Campbell J S, et al. Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Sci, 2015, 106(9): 1143-1152.
11 Ji D, Li B, Shao Q, et al. MiR-22 suppresses BMP7 in the development of cirrhosis. Cell Physiol Biochem, 2015, 36(3): 1026-1036.
12 Roy S, Benz F, Vargas Cardenas D, et al. MiR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis. Journal of Digestive Diseases, 2015, 16(9): 513–524.
13 Hu J, Chen C, Liu Q, et al. The role of the miR-31/FIH1 pathway in TGF-β-induced liver fibrosis. Clin Sci (Lond), 2015, 129(4): 305-317. 14 Tu X, Zhang H, Zhang J, et al. MicroRNA-101 suppresses liver firosis by targeting the TGFβ signalling pathway. J Pathol, 2014, 234(1): 46-59.
15 Zhao S, Zhang Y, Zheng X, et al. Loss of MicroRNA-101 promotes epithelial to mesenchymal transition in hepatocytes. J Cell Physiol, 2015, 230(11): 2706-2717.
16 Yu F, Guo Y, Chen B, et al. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Invest, 2015, 95(7): 781-789.
17 Yu F, Lu Z, Huang K, et al. MicroRNA-17-5p activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget, 2015, 7(1): 81-93.
18 Zhu D, He X, Duan Y, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum. Parasit Vectors, 2014, 7: 148.
19 Li F, Ma N, Zhao R, et al. Overexpression of miR-483–5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-beta stimulated HSCs in transgenic mice. J. Cell. Mol. Med. 2014, 18(6): 966-974.
20 Iizuka M, Ogawa T, Enomoto M, et al. Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair, 2012, 5(1): 12.
21 Kumar V, Mondal G, Dutta R, et al. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials,2016, 76: 144-156.
22 Yu F, Lu Z, Chen B, et al. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation. J Cell Mol Med, 2015, 19(11): 2617-2632.
23 Hyun J, Wang S, Kim J, et al. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep, 2015, 5:14135.
24 Yu F, Zheng Y, Hong W, et al. MicroRNA-200a suppresses ephethelial- to- mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Mol Med Rep, 2015, 12(6): 8121-8128.
25 Hyun J, Wang S, Kim J, et al. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun, 2016, 7: 10993.
26 Du J, Niu X, Wang Y, et al. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep, 2015, 5: 16163.
27 Li Z J, Ou-Yang P H, Han X P. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal, 2014, 26(1): 141-148.
28 Xiao Y, Wang J, Chen Y, et al. Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stellate cells by activating PI3K/Akt signaling. Cell Signal, 2014, 26(5): 925-932.
29 Yu F, Zhou G, Li G, et al. Serum miR-181b is correlated with hepatitis B virus replication and disease progression in chronic hepatitis B patients. Dig Dis Sci, 2015, 60(8): 2346-2352.
30 Zheng J, Wu C, Xu Z, et al. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem,2015, 398(1-2): 1-9.
31 Dong R, Zheng Y, Chen G, et al. MiR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr Gastroenterol Nutr, 2015, 60(1): 84-90.
32 Feng X, Tan W, Cheng S, et al. Upregulation of microRNA-126 in Hepotic Stellate Cells May Affect Pathogenesis of Liver Fibrosis Through the NF-κB Pathway. DNA Cell Biol, 2015, 34(7): 470-480.
33 Qi F, Hu J F, Liu B H, et al. MiR-9a-5p regulates proliferation and migration of hepatic stellate cells under pressure through inhibition of sirt1. World J Gastroenterol, 2015, 21(34): 9900-9915.
34 Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One, 2014, 9(10): 1-10.
35 Lu L, Wang J, Lu H, et al. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study. Biochem Biophys Res Commun, 2015, 465(3): 387-393.
36 Knabel M K, Ramachandran K, Karhadkar S, et al. Systemic delivery of scAAV8-encoded miR-29a ameliorates hepatic fibrosis in carbon tetrachloride-treated mice. PLoS One, 2015, 10(4): e0124411.
37 Kim H J, Joe Y, Yu J K, et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta, 2015, 1852(7): 1550-1559.
38 Li S G, Zhou J, Zhong J H, et al. Effects of miR-9 and tetramethylpyrazine on activation of hepatic stellate cells. Biol Pharm Bull, 2015, 38(3): 396-401.
39 王建雄,謝渭芬. MiRNA在肝纖維化中的作用及其機制研究.上海:第二軍醫(yī)大學(xué)碩士學(xué)位論文,2014 .
40 Halasz T, Horvath G, Pár G, et al. MiR-122 negatively correlates with liver fibrosis as detectited by histology and Fibro Scan. World J Gastroenterol, 2015, 21(25): 7814-7823.
41 Sekiya Y, Oqawa T, Iizuka M, et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol, 2011, 226(10): 2535-2542.
42 Lu, C H, Hou, Q R, Deng L F, et al. MicroRNA-370 attenuates hepatic fibrogenesis by targeting smoothened. Dig Dis Sci, 2015, 60(7): 2038-2048.
43 Zheng J, Wu C, Lin Z, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation–a novel mechanism suppressing liver fibrosis. FEBS J, 2014, 281(1): 88-103.
44 Li J, Chen K, Li S, et al. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy. Drug Des Devel Ther, 2016, 10: 619-630.
45 Sombetzki M, Loebermann M, Reisinger E C. Vector-mediated microRNA-21 silencing ameliorates granulomatous liver fibrosis in schistosoma japonicum infection. Hepatology, 2015, 61(6): 1787-89.
46 朱志杰,阮君山,李堯,等. Wnt信號通路誘導(dǎo)腫瘤細(xì)胞上皮間質(zhì)轉(zhuǎn)化的研究進展.中國藥理學(xué)通報,2012,28(7):904-907.
47 潘澎,劉紹能. PI3K/AKT信號通路與肝纖維化.臨床肝膽病雜志,2013,29 (5):389-396.
48 史艷暉,盧圣棟.轉(zhuǎn)錄因子NF-κB的研究現(xiàn)狀及其應(yīng)用前景.中國生物工程雜志,2007,27(4):104-110.
49 Nicholson D W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999, 6(11): 1028-1042.
50 Guo C J, Pan Q, Li D G, et al. MiR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol, 2009, 50(4): 766-778.
51 Ji J, Zhang J, Huang G, et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009, 583(4): 759-766.
52 Zhang Q, Xu M, Qu Y, et al. Analysis of the different expression of circulating microRNAs during the progression of hepatic fibrosis in patients with chronic hepatitis B virus infection. Mol Med Rep, 2015, 12(4): 5647-5654.
53 El-Ahwany E, Nagy F, Zoheiry M, et al. Circulating miRNAs as predictor markers for activation of hepatic stellate cells and progression of HCV-induced liver fibrosis. Electron Physician, 2016, 8(1): 1804-1810.
54 Huang C F, Sun C C, Zhao F, et al. MiR-33a levels in hepatic and serum after chronic HBV-induced fibrosis. J Gastroenterol, 2015, 50(4): 480-490.
55 Trebicka J, Anadol E, Elfimova N, et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis. J Hepatol, 2013, 58(2): 234-239.
56 Yu F, Zhou G, Li G, et al. Serum miR-181b is correlated with hepatitis B virus republication and disease progression in chronic hepatitis B patients. Dig Dis Sci, 2015, 60(8): 2346-2352.
57 Wang Q, Du H, Li M, et al. MAPK signal transduction pathway regulation: A novel mechanism of rat HSC-T6 cell apoptosis induced by FUZHENGHUAYU tablet. Evid Based Complement Alternat Med, 2013.
58 王清蘭,陶艷艷,呂靖,等.扶正化瘀方調(diào)節(jié)差異微小RNA表達抗肝纖維化的作用機制.臨床肝膽病雜志,2016,32(3):503-508.
59 晁旭,董昌虎.加味四逆散對肝纖維化大鼠肝組織miRNA-146a表達的影響.陜西中醫(yī),2015,36(3):371-373.
60 韓冰,謝汝佳,洪琴,等. MiR-200s在中藥丹芍化纖干預(yù)大鼠肝纖維化過程中的表達變化.中國病理生理雜志,2012,28(11):1950-1954.
61 夏曦,趙敏.葉下珠復(fù)方Ⅱ號對肝星狀細(xì)胞凋亡和miR-16/Bcl-2表達的影響.廣州中醫(yī)藥大學(xué)學(xué)報,2013,5:86-92,171.
62 羅來育,李常青.葉下珠復(fù)方Ⅱ號對肝星狀細(xì)胞增殖和miR-122/ KLF6表達的影響.熱帶醫(yī)學(xué)雜志,2015,1:14-18.
63 Hassan Z K, Al-Olayan E M. Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac J Cancer Prev, 2012, 13(11): 5405-5408.
64 張英,張洪,彭銳,等.青蒿琥酯抑制肝星狀細(xì)胞microRNA-154/ β-catenin治療肝纖維化的機制研究.中國醫(yī)藥導(dǎo)報,2016,16(1):1-4.
65 Zhang H, Guan Y, Lu YY, et al. Circulating miR-583 and miR-663 refer to ZHENG differentiation in chronic hepatitis B. Evid Based Complement Alternat Med, 2013, 2013: 751341.
66 李夢萍,曹海明,武哲麗,等.原發(fā)性肝癌不同血瘀證患者肝組織微小RNA表達差異的初步研究.山東醫(yī)藥,2014,54(38):1-4.
67 曹海明,武哲麗,葉小衛(wèi),等.基于生物信息學(xué)方法分析不同證型組肝癌組織中差異表達miRNA.時珍國醫(yī)國藥,2015,26(10):2549-2552.
A Research Progress on MicroRNAs in Liver Fibrosis and Traditional Chinese Medicine
Guo Xinxin, Su Shibing, Shang Jiawei, Shi Miaojuan, Zhang Hui
(Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)
Liver fibrosis is a class of pathologic changes caused by chronic liver injury with many different factors. Hepatic stellate cells (HSCs) activation, proliferation and apoptosis are central parts of the development of liver fibrosis. MiRNAs are endogenous single-stranded untranslated coded small RNAs, and 19-24 bp long generally. MiRNAs play a significant role in the gene-regulation network in the field of epigenetics, regulating post-transcriptional gene expressions and participating in a series of cellular process, the abnormal expressions of miRNAs always trigger the genesis and development of diseases. Many studies demonstrated a number of miRNAs that were differentially expressed in liver fibrosis. MiRNAs mediated the development and the progression of liver fibrosis by regulating their own target genes and related signal pathways. MiRNAs brought a significant performance in the diagnosis and the treatment of liver fibrosis, which probably clarified the mechanisms of anti-liver fibrosis through traditional Chinese medicine (TCM). Moreover, miRNAs were also associated with TCM syndromes. In this review, we summarized the research progress of miRNAs and TCM in liver fibrosis, and prospected researches in the future.
Liver fibrosis, miRNAs, traditional Chinese medicine, research, progression
10.11842/wst.2016.09.014
R2-031
A
(責(zé)任編輯:朱黎婷,責(zé)任譯審:朱黎婷)
2016-07-12
修回日期:2016-08-29
* 國家自然科學(xué)基金委面上項目(81373518):慢乙肝患者中醫(yī)證候差異表達的miR-583和miR-663作用研究,負(fù)責(zé)人:張輝。
** 通訊作者:張輝,副研究員,碩士生導(dǎo)師,主要研究方向:中醫(yī)證候和中藥藥理研究。