• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom

    2014-03-09 11:57:08XioxuDUHunWANGChengzhiHAOXinlingLISchoolofMrineSciencendTechnologyNorthwesternPolytechniclUniversityXi710072ChinKunmingReserchInstituteofPrecisionMchineryKunming650118Chin
    Defence Technology 2014年1期

    Xio-xu DU*,Hun WANGCheng-zhi HAO,Xin-ling LISchool of Mrine Science nd Technology,Northwestern Polytechnicl University,Xi’n 710072,Chin Kunming Reserch Institute of Precision Mchinery,Kunming 650118,Chin

    1.Introduction

    Deep-sea exploration sometimes needs unmanned underwater vehicle(UUV)sailing close to sea bottom[1].It has been found that a submarine sailing close to the sea bottom can effectively reduce the probability of being detected[2].All sorts of coupling flows,which have signi fi cant in fluence on the hydrodynamics,appear in the surrounding area of UUV and the sea bottom due to the boundary effect of sea bottom[3].The coupling flows may affect the security and stability of working,therefore,a research about the hydrodynamic characteristics of UUV moving close to the sea bottom seems particularly necessary.

    At present,the research on underwater sailing near the sea bottom is comparatively rare.Bystron and Anderson(1998)made a model test,and concluded that the vertical force and trimming moment show linear features obviously with the dimensionless change of distance between the hull and the sea bottom[4].Kuang Xiao-feng studied the attraction characteristics of submarine sailing close to the sea bottom[3].Zhu Xin-yao studied the hydrodynamic characteristics of UUV parking on the seabed[5].Zhu Ai-jun carried out experimental study about the relationship between the drag of underwater vehicles and the distance to the sea bottom[6].In the above literature,no comprehensive analysis of UUV moving close to sea bottom was made,and the model test lacked theoretical veri fi cation.In this paper,the hydrodynamic characteristics of UUV close to the sea bottom were studied,which we believe has signi fi cance on manipulation of UUV near the sea bottom.

    Currently,there are mainly three methods to calculate hydrodynamic parameters,including empirical formula,model test and numerical simulation[7].Empirical formula method is simple and quick,but it can’t re fl ect the difference among various models,so its calculation accuracy is not high.Model test costs too much and has a long cycle,so it is usually limited by budget and schedule.The numerical simulation method is mature,in particular,development of some large commercial simulation software makes the computational fl uid dynamics(CFD)method more and more widely used[5].The numerical simulation method needs lesser time and lower cost for a new design compared to the experimental study.It is advantageous for the optimized design and has the advantages of easy-tocontrol and good repeatability.In many cases,the numerical simulationcanreachthesameaccuracyasthatofmodeltest[8].

    In order to study the hydrodynamic characteristics of UUV moving close to the sea bottom,in this paper,the structured grid of the computational model is generated by Ansys ICEM.Then numerical simulation was carried out by CFX,and the relationship among drag,lift,pitching moment features and the distance to sea bottom,attack angle was studied.

    2.Mathematical model

    Tosolveviscous flowproblemsistosolvetheNavier-Stokes equations.In this paper,the Reynolds-averaged Navier-Stokes(RANS)equations and the shear stress transport(SST)model,namely RANS equation method,are used.The SST turbulence modelisintroducedtoconstituteaclosedequationforobtaining the turbulence elements in means[9].

    2.1.Basic control equation

    For steady incompressible flow,the control equations include equation of continuity and equation of motion.

    Equation of Continuity[10]

    Equation of Motion(N-S Equation)[11]

    where U is the velocity vector,ρ is the mass density of water,p is the pressure,g is the acceleration of gravity,and μ is the fl uid dynamic viscosity coefficient.

    2.2 SST k-ω model

    Shear stress transport model(short for SST k-ω model)combined the advantages of the k-ω model and the k-ε model,which make it have a wider application.SST k-ω model has the following advantages:1)This model can adapt various physical phenomenon where pressure gradient changes;2)It is applicable to viscous layer,and it can precisely simulate the phenomenon of boundary layer through the application of the near-wall function without using the viscous damping function which may distort easily.During calculating,the solving procedure can call different turbulence models automatically according to the size of the Reynolds number.Namely,it uses k-ω model at low Reynolds number region and the k-ε model at high Reynolds number region[12].Therefore,SST k-ω model has good adaptability in dealing with boundary layer problem with different Reynolds numbers.So we choose SST k-ω model as the turbulence model.

    2.3.Near-wall treatment

    As mentioned,the turbulence model which aimed at fully developed turbulence is established.It is effective under the condition of high Reynolds number while near the solid wall,the Reynolds number turns smaller because of the molecular viscosity,which engenders turbulent flow pulsation damping.As a result,the laminar flow is presented near the wall where turbulence development is not suf ficient.Typically we use a series of semi-empirical formula to combine the variables on the wall with the corresponding physical quantities of central area,instead of directly solving the problem in view of the apparently viscous area.That is the wall function method[13].

    The method for near-wall consists of the standard wall function method and the enhanced wall method.The latter one is aimed at small gap flow or low viscosity and high velocity flow,where the physical measurement changes rapidly.A high quality grid is required and the first node near the wall should be located in the viscous sub-layer,which means y+≈1[14].

    where y is the height of the first layer grid,Ueis the velocity vector,Cfis the resistance coefficient.

    In this paper,we use the standard wall function method which has high computational ef ficiency and strong practicability.By adjusting the height of boundary layer gird,y+can be controlled between 30 and 60 in order to improve the accuracy of numerical calculation[15].

    3.Calculation model,working condition and grid generation

    3.1.Calculation model

    For numerical study on flow field around the UUV,a calculation domain is typically formed by constructing virtual boundary,and the RANS equations within the domain are solved.Therefore,a boundary condition needs to be given for the spatial domain.In this paper,the hexahedral calculation domain is used for simulation,as shown in Fig.1.

    The UUV which we studied has a length of 1850 mm,and its biggest diameter is 200 mm.The size of the calculation domain is 7.4 m×4 m×4 m.The distance between the head of UUV and velocity inlet(Fig.1)is 1.85 m,and the distance between tail and pressure outlet(Fig.1)is 3.7 m.The distance between the axis of UUV and the sea bottom is adjusted to represent the change of the distance between UUVand the sea bottom.

    Fig.1.Calculation model of UUV moving close to sea bottom.

    3.2.Working condition

    The hydrodynamic characteristics of UUV moving close to sea bottom at 2 kn-5 kn is mainly studied here.The working conditions of UUV are listed in Table 1.The relationship among drag,lift,pitching moment,distance to sea bottom,and attack angle is studied.

    Table 1 UUV working conditions(v=2 kn,v=5 kn).

    3.3.Grid generation

    The quality of grid directly affects the convergence,accuracy and feasibility of numerical simulation.Structured grid is easy to adjust its density,and has less memory demand.It has advantage of solving the problem about boundary layer.It can improve the accuracy and credibility of results for the numerical simulation[12].So the hexahedral structured grid is used in this paper.

    In this paper,SST k-ω model is used as the turbulence model,and the demand of grid is same as standard wall function.After calculation,0.4 mm is taken as the height of the first layer grid,the growth rate is 1.2.Finally,the whole domain are divided into 2.3 million meshes.The grid quality reaches more than 0.5,and the minimum distortion angle is 22°,it is a higher quality.Fig.2 shows the grid of UUV surrounding area when the distance between UUV and sea bottom is 1 m and the attack angle is-5°.

    Fig.2.Grid of UUV surrounding area.

    4.Calculation results and analysis

    4.1.Grid independence test

    In general,mesh density level largely affects the calculated error.Weneedtogetapropernumberofthegridthroughthegrid independence test.With the increase of the number of grid,the result changes in a range of allowable error,that is when we get the proper number[16].

    The grid independence test is performed using the 1.8 millions,2.3 millions and 3.15 millions grid number for case when the distance is 1 m,the attack angle is 0°and the velocity is 5 kn.The drag,lift and pitching moment coefficients are treated as the validation parameters.The whole numerical calculation can be finished in a quad-core,4 g memory con fi guration,as illustrated in Table 2.

    The value under condition of 2.3 millions grid number is treated as reference value,the errors of the other two cases are presented in Table 2.In the case of 1.8 millions grid number,the error is slightly larger and it may have the consequences of instability for the calculation of other conditions.In the case of 3.15 millions grid number,it needs a larger computer memory and calculation time,so it is not appropriate for the calculation of large numbers of conditions because it costs too much.In the case of 2.3 millions grid number,an appropriate computer memory is needed,and it has a satisfactory accuracy.As a result,the grid number of 2.3 millions is selected as the number of grid.

    Table 2 The grid independence test results.

    4.2.Drag characteristics

    In order to increase the universality of the conclusion,the distance(h)between UUV and the sea bottom is transformed into nondimensional parameter e,e=h/D,where D is the biggest diameter of UUV.

    4.2.1.In fluence of the distance

    Fig.3 shows the relation between the drag coefficient Cxand e at two kinds of velocity.

    Fig.3.Relation between Cxand e.

    Generally,the drag of UUV can be divided into two parts,pressure force and viscous force[17].

    It is shown in Fig.3 that the sea bottom has a larger effect on drag coefficient for e≤2.5.Normally the drag coefficient increases obviously with the decrease in e.The reason is that the pressure force increases obviously while the viscous force changes little with the decrease in e.For example,when U=5 kn,e=2.5,Fv=12.5 N,Fp=15.5 N(where Fvis the viscous force,Fpisthe pressure force),while U=5 kn,e=1.5,Fv=12.0N,Fp=18.2N.When e>2.5,thechange of e affects less on drag coefficient.

    4.2.2.In fluence of attack angle

    Fig.4 shows the relation between the drag coefficient Cxand the attack angle α when UUV moves at 5 kn.

    It can be seen from Fig.4 that the drag coefficient is related to the attack angle,When the attack angle is 0°,the minimum drag coefficient is gotten.The reason is that the area,which faces to the flow,increases when the UUV sails with an attack angle.As a result,the viscous force and the pressure force increase.We can also found that the drag coefficients under the condition of positive and negative attack angles are also different,because of the existence of fin and rudder.

    Fig.4.Relation between Cxand α.

    4.3.Lift characteristics

    4.3.1.In fluence of distance

    In this paper,the vertical upward direction is de fined as the positive direction.Fig.5 shows the relation between the lift coefficient Cyand e at two kinds of velocity.

    Fig.5.Relation between Cyand e.

    It can be seen from Fig.5 that there exists attraction force from the sea bottom for e<5,and the attraction force increases rapidly with the decrease in e.The reason can be found in the velocity contour(Fig.6).The velocity distribution on the surface of UUV is not symmetrical any more due to the in fluence of the sea bottom,the velocity is higher on the lower surface.Then it can be concluded by Bernoulli equation that the pressure on lower surface decreases,and even is smaller than that at its corresponding location on the upward surface.This creates a result that UUV is subjected to a resultant force in the vertical direction,and the closer the distance from the sea bottom is,the bigger the attraction force is.

    Fig.6.The velocity contours of axial plane,U=5 kn,α =0°.

    4.3.2.In fluence of attack angle

    Fig.7 shows the relation between the lift coefficient Cyand the attack angle α when UUV moves at 5 kn.

    It can be seen from Fig.7 that the lift coefficient increases with the increase in attack angle.When α =0°,UUV is under the in fluence of attraction from sea bottom,so UUV is recommended to sail at a small positive attack angle in order to overcome the attraction.Then it can get away from the danger of touching with the bottom.On the other hand,if UUV sails at a negative attack angle,the attraction increases.It is not advantaged to the safe navigation.

    Fig.7.Relation between Cyand α.

    4.4.Pitching moment characteristics

    4.4.1.In fluence of distance

    Fig.8 shows the relation between the pitching moment coefficient Cmzand e at two kinds of velocity.

    It can be seen from Fig.8 that the variation law of pitching moment coefficient is similar to lift coefficient.The velocity contour(Fig.6)can still provide a good explanation for the variation law of pitching moment coefficient.Because the attraction force doesn’t concentrate on the centroid,the pitching moment of UUV will be produced,and the absolute value of pitching moment coefficient increases with the decrease in e.

    Fig.8.Relation between Cmzand e.

    4.4.2.In fluence of attack angle

    Fig.9 shows the relation between the pitching moment coefficient Cmzand attack angle α when the UUV moves at 5 kn.

    It can be seen from Fig.9 that the pitching moment coefficient increases gradually with the increase in attack angle.The reason is that the existence of attack angle makes a certain angle be between the surface of UUV and the flow.Flow impact on its vertical surface increases,leading to the increase of the pitching moment.

    Fig.9.Relation between Cmzand α

    5.Conclusions

    In this paper,the mathematical model of UUV moving close to sea bottom was established based on the incompressible viscous flow.The structured grid of the computational models at different distances from the sea bottom and different attack angles was generated by Ansys ICEM.Then the numerical simulation of flow field near sea bottom was carried out by CFX,and the following conclusions were drawn through the numerical simulation.

    1)For e≤2.5,the pressure force increases with the decrease in the distance from sea bottom,which causes the increase in drag coefficient.For e>2.5,the effect of the sea bottom can be ignored,and the maneuverability of UUV cannot be in fluenced.In addition,the drag coefficient increases with the increase in attack angle.

    2)For e≤5,the existence of the sea bottom makes the pressure distribution of UUVunsymmetrical any more,the attraction force from the sea bottom is formed,and the attraction force increases with the decrease in e.Therefore,an additional manipulation and control scheme is required when UUV moves close to the sea bottom.Because the lift coefficient increases with the increase in attack angle,we suggest that UUV keeps a certain positive attack angle when it moves close to the sea bottom.

    3)Because the attraction force doesn’t concentrate on the centroid,the pitching moment of UUV will be produced.According to the simulation result,the absolute value of pitching moment coefficient increases with the decrease in e,and increases with the increase in attack angle.

    Acknowledgment

    This research was sponsored by National Natural Science Foundation of China(11302176)and Research Fund for the DoctoralProgram ofHigherEducation ofChina(20126102120021)

    [1]Yoerger Dana R,Jakuba Michael,Bradley Albert M.Techniques for deep sea near bottom survey using an autonomous underwater vehicle.Robotics ResearchIn Springer Tracts in Advanced Robotics,vol.28;2007.pp.416-29.

    [2]Lin CY,Zhu J.Numerical computation of added mass of submarine maneuveringwithsmallclearancetosea-bottom.ShipEng2003;25(1):26-9[in Chinese].

    [3]Kuang XF,Miao QM,Cheng MD.Hydrodynamic numerical study of submarine near the sea bottom.In:The ship hydrodynamic Conference Proceedings;2004.pp.140-5[in Chinese].

    [4]Bystron L,Anderson R.The submarine underwater maneuvering.submarine technology research and development.In:The 5th International Conference on Submarines Selection.China Ship Scienti fi c Research Center;2000.pp.132-43.

    [5]Zhu XY,Song BW,Wang P.Hydrodynamic characteristics analysis of UUV parking on seabed.Introd J China Ordnance 2012;33(8):934-43[in Chinese].

    [6]Zhu AJ,Ying LM,Zheng H.Resistance test method on underwater vessel operatingclosetothebottomorthesurface.JShipMech2012;16(4):368-74[in Chinese].

    [7]Zhang HX,Pan YC.Application CFD to compare submarine hull forms.J Ship Mech 2006;10(4):1-8[in Chinese].

    [8]Wu JG,Chen CY,Wang SX.Hydrodynamic characteristics of wings of hybrid-driven underwater glider in glide mode.J Tianjin Univ 2010;43(1):84-9[in Chinese].

    [9]Hu ZQ,Ling Y,Gu HT.On numerical computation of viscous hydrodynamics of unmanned underwater vehicle.Robot 2007;29(2):145-50[in Chinese].

    [10]Jing SR,Zhang MY.Fluid mechanics.Xi’an:Xi’an Jiaotong University Press;2001[in Chinese].

    [11]Anderson Jr John D.Computational fl uid dynamics.USA:McGraw-Hill Companies;1995.

    [12]PanG,ShiY,DuXX.Numericalsimulationofsink-stabilityforunmanner underwater lurk vehicle.J Shanghai Jiaot Univ 2012;46(9):1493-7[in Chinese].

    [13]Ji BB,Chen JP.ANSYS ICEM CFD detailed examples of meshing technology.Beijing:China:Water and Power Press;2012[in Chinese].

    [14]Chen L.Hydrodynamic interactions between two bodies.Harbin:Harbin Engineering University;2006[in Chinese].

    [15]ANSYS Inc.Document for ANSYS ICEM CFD 14.5.USA:ANSYS Inc;2012.

    [16]Zhao PF.CFD prediction of open water and cavitation characteristic of marine propelle.Dalian:Dalian University of Technology;2011[in Chinese].

    [17]Pan G,Du XX,Song BW.Torpedo mechanics.Xi’an:Shaanxi Normal University Publishing House Limited;2013[in Chinese].

    国产探花极品一区二区| 亚洲精品久久午夜乱码| 亚洲精品成人av观看孕妇| 久久久a久久爽久久v久久| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 两个人看的免费小视频| 欧美精品亚洲一区二区| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 亚洲成人手机| 老女人水多毛片| 国产成人精品在线电影| 亚洲综合色惰| 久久精品国产综合久久久 | 色吧在线观看| 大香蕉97超碰在线| 秋霞伦理黄片| 久久久亚洲精品成人影院| xxx大片免费视频| 精品久久久精品久久久| av线在线观看网站| 伦理电影大哥的女人| 男人操女人黄网站| 国产成人av激情在线播放| 在线 av 中文字幕| 成人午夜精彩视频在线观看| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 99热6这里只有精品| 亚洲精品久久成人aⅴ小说| 制服丝袜香蕉在线| 国产亚洲午夜精品一区二区久久| 人妻系列 视频| 欧美变态另类bdsm刘玥| 大香蕉久久成人网| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产| 秋霞伦理黄片| 中文欧美无线码| 久久热在线av| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 精品久久蜜臀av无| 亚洲av免费高清在线观看| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| 日韩大片免费观看网站| av女优亚洲男人天堂| 久久狼人影院| 最新的欧美精品一区二区| 欧美另类一区| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| av免费观看日本| 校园人妻丝袜中文字幕| 国产爽快片一区二区三区| 黄色配什么色好看| 七月丁香在线播放| 亚洲av免费高清在线观看| 国产成人精品一,二区| 狠狠婷婷综合久久久久久88av| 日日撸夜夜添| 美女国产高潮福利片在线看| 欧美老熟妇乱子伦牲交| 黄片无遮挡物在线观看| av卡一久久| 亚洲图色成人| 精品国产露脸久久av麻豆| 女人精品久久久久毛片| 亚洲欧美一区二区三区国产| 捣出白浆h1v1| 七月丁香在线播放| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 免费女性裸体啪啪无遮挡网站| 国产一区亚洲一区在线观看| 好男人视频免费观看在线| 女人被躁到高潮嗷嗷叫费观| 最近中文字幕2019免费版| 桃花免费在线播放| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 欧美日韩视频精品一区| 好男人视频免费观看在线| 国产亚洲精品第一综合不卡 | 黄色视频在线播放观看不卡| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 观看美女的网站| 亚洲精品456在线播放app| 十八禁网站网址无遮挡| av片东京热男人的天堂| 男人爽女人下面视频在线观看| 国产淫语在线视频| 大香蕉久久成人网| 丰满少妇做爰视频| 亚洲三级黄色毛片| 汤姆久久久久久久影院中文字幕| 免费观看无遮挡的男女| 又黄又爽又刺激的免费视频.| 满18在线观看网站| 两个人看的免费小视频| 国产乱人偷精品视频| 美女脱内裤让男人舔精品视频| 十分钟在线观看高清视频www| 国产精品熟女久久久久浪| 美女中出高潮动态图| 亚洲激情五月婷婷啪啪| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠躁躁| 制服丝袜香蕉在线| 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| 免费看不卡的av| av播播在线观看一区| 啦啦啦中文免费视频观看日本| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 精品午夜福利在线看| 人妻少妇偷人精品九色| 捣出白浆h1v1| 精品久久蜜臀av无| 婷婷色av中文字幕| 国产熟女欧美一区二区| 制服人妻中文乱码| 亚洲图色成人| 日韩av在线免费看完整版不卡| 久久久久人妻精品一区果冻| 欧美成人精品欧美一级黄| 成人亚洲精品一区在线观看| 黑人高潮一二区| 国产 精品1| 欧美老熟妇乱子伦牲交| 国产成人免费观看mmmm| 少妇 在线观看| 亚洲成av片中文字幕在线观看 | 少妇的丰满在线观看| av女优亚洲男人天堂| 国产伦理片在线播放av一区| 亚洲综合色惰| 少妇人妻精品综合一区二区| videosex国产| 夫妻午夜视频| 欧美成人午夜免费资源| 亚洲一区二区三区欧美精品| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 亚洲精品视频女| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 国产黄色免费在线视频| 午夜老司机福利剧场| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 国产成人精品婷婷| 黄网站色视频无遮挡免费观看| 亚洲国产日韩一区二区| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 久久久国产精品麻豆| 久久久久视频综合| 成人二区视频| 亚洲av日韩在线播放| 久久ye,这里只有精品| 飞空精品影院首页| 国产精品 国内视频| av在线播放精品| tube8黄色片| 国产极品天堂在线| 日韩免费高清中文字幕av| 人妻 亚洲 视频| 国产熟女午夜一区二区三区| 一级毛片我不卡| 秋霞伦理黄片| 亚洲av男天堂| 妹子高潮喷水视频| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 侵犯人妻中文字幕一二三四区| www.av在线官网国产| 一本色道久久久久久精品综合| 久久精品夜色国产| 九草在线视频观看| 免费av中文字幕在线| 香蕉精品网在线| av.在线天堂| 久久综合国产亚洲精品| 精品亚洲成a人片在线观看| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 成人综合一区亚洲| 日韩不卡一区二区三区视频在线| 国产 精品1| 成年人免费黄色播放视频| 国产欧美另类精品又又久久亚洲欧美| 韩国高清视频一区二区三区| 全区人妻精品视频| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 亚洲精品色激情综合| 青春草国产在线视频| 久久国产精品大桥未久av| 男女国产视频网站| 久久国产精品男人的天堂亚洲 | 老女人水多毛片| 只有这里有精品99| 亚洲精品日本国产第一区| 国产在线视频一区二区| 777米奇影视久久| 欧美3d第一页| 寂寞人妻少妇视频99o| 搡老乐熟女国产| av在线app专区| 日产精品乱码卡一卡2卡三| 亚洲婷婷狠狠爱综合网| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 韩国av在线不卡| 老司机影院毛片| 91久久精品国产一区二区三区| 女的被弄到高潮叫床怎么办| 欧美精品一区二区大全| 午夜福利影视在线免费观看| 久久久久国产网址| 亚洲综合色网址| 亚洲国产成人一精品久久久| 2022亚洲国产成人精品| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 制服诱惑二区| 久久久久网色| 人体艺术视频欧美日本| 免费大片18禁| 两个人免费观看高清视频| 久久这里只有精品19| 国产精品国产三级国产专区5o| 欧美日韩综合久久久久久| 制服人妻中文乱码| 久久久精品免费免费高清| 日本wwww免费看| 建设人人有责人人尽责人人享有的| 美女脱内裤让男人舔精品视频| 亚洲情色 制服丝袜| 一级爰片在线观看| 一区在线观看完整版| 国产 精品1| 色网站视频免费| 色视频在线一区二区三区| 久久狼人影院| 黑人高潮一二区| 午夜精品国产一区二区电影| 91aial.com中文字幕在线观看| 男人爽女人下面视频在线观看| 亚洲成色77777| 中国国产av一级| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 激情视频va一区二区三区| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 国产伦理片在线播放av一区| 中文精品一卡2卡3卡4更新| 天天躁夜夜躁狠狠躁躁| 婷婷色综合大香蕉| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 日韩免费高清中文字幕av| 亚洲国产日韩一区二区| 久久热在线av| 日韩在线高清观看一区二区三区| 欧美国产精品一级二级三级| 成年女人在线观看亚洲视频| 少妇的丰满在线观看| 久久久久久人妻| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久 | 国产xxxxx性猛交| 久久精品aⅴ一区二区三区四区 | 国精品久久久久久国模美| 亚洲熟女精品中文字幕| 街头女战士在线观看网站| 十分钟在线观看高清视频www| 国产男女内射视频| 免费观看性生交大片5| 午夜福利影视在线免费观看| 欧美少妇被猛烈插入视频| 免费av中文字幕在线| xxxhd国产人妻xxx| 在现免费观看毛片| 成人二区视频| 午夜影院在线不卡| 日韩在线高清观看一区二区三区| 亚洲精品美女久久av网站| 国产福利在线免费观看视频| 日本色播在线视频| 777米奇影视久久| 啦啦啦视频在线资源免费观看| 亚洲欧美中文字幕日韩二区| 97在线人人人人妻| 亚洲精品一二三| 欧美精品一区二区大全| 免费不卡的大黄色大毛片视频在线观看| 久久热在线av| 一二三四中文在线观看免费高清| 亚洲国产精品成人久久小说| 熟妇人妻不卡中文字幕| 宅男免费午夜| 亚洲国产精品一区二区三区在线| 国产极品粉嫩免费观看在线| 久久97久久精品| 极品少妇高潮喷水抽搐| 国产白丝娇喘喷水9色精品| 日韩一本色道免费dvd| 精品久久蜜臀av无| 啦啦啦中文免费视频观看日本| 狂野欧美激情性bbbbbb| 久久久a久久爽久久v久久| 久久久久精品人妻al黑| 中文天堂在线官网| 九色成人免费人妻av| 亚洲高清免费不卡视频| 99热全是精品| 精品国产一区二区三区四区第35| 九草在线视频观看| 黄片无遮挡物在线观看| 一级a做视频免费观看| 亚洲综合精品二区| 青春草国产在线视频| 男人添女人高潮全过程视频| 久久鲁丝午夜福利片| 大香蕉久久成人网| 精品一区在线观看国产| 大香蕉97超碰在线| 欧美精品高潮呻吟av久久| 最近中文字幕2019免费版| 中文字幕人妻熟女乱码| 亚洲情色 制服丝袜| 亚洲五月色婷婷综合| 久久狼人影院| 欧美最新免费一区二区三区| 69精品国产乱码久久久| 午夜免费鲁丝| 在线观看www视频免费| 欧美人与善性xxx| 2022亚洲国产成人精品| 欧美另类一区| 女性被躁到高潮视频| 亚洲伊人色综图| 久久精品夜色国产| 国产欧美日韩一区二区三区在线| 国产成人欧美| 国产精品国产av在线观看| 久久毛片免费看一区二区三区| 久久久久久久久久人人人人人人| 制服诱惑二区| 中国国产av一级| 欧美精品亚洲一区二区| 国产国拍精品亚洲av在线观看| 精品熟女少妇av免费看| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 国产精品99久久99久久久不卡 | freevideosex欧美| 大片电影免费在线观看免费| 一级毛片我不卡| 亚洲精品一区蜜桃| 成人免费观看视频高清| 又大又黄又爽视频免费| 国产成人av激情在线播放| 最近的中文字幕免费完整| 国产成人精品一,二区| 国产精品一区二区在线观看99| 国产极品粉嫩免费观看在线| 亚洲,一卡二卡三卡| 亚洲国产成人一精品久久久| 亚洲国产日韩一区二区| 国产熟女午夜一区二区三区| 色视频在线一区二区三区| 热re99久久精品国产66热6| 热99久久久久精品小说推荐| 久久久亚洲精品成人影院| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 97在线视频观看| 亚洲五月色婷婷综合| 99re6热这里在线精品视频| 美女主播在线视频| 丰满少妇做爰视频| videos熟女内射| 国产男女超爽视频在线观看| 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 免费人成在线观看视频色| 久久免费观看电影| 精品一区在线观看国产| 国产一级毛片在线| 女性生殖器流出的白浆| 日日撸夜夜添| 国产片特级美女逼逼视频| 午夜福利乱码中文字幕| 1024视频免费在线观看| 在线观看国产h片| 欧美亚洲日本最大视频资源| 久久久久久久久久人人人人人人| 亚洲成国产人片在线观看| 成年人午夜在线观看视频| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 久久精品国产综合久久久 | 欧美日韩精品成人综合77777| 一二三四中文在线观看免费高清| 涩涩av久久男人的天堂| 国产免费一级a男人的天堂| 国产激情久久老熟女| 超碰97精品在线观看| 大香蕉久久网| 精品一区二区免费观看| 久久久久网色| 国产探花极品一区二区| 日韩大片免费观看网站| 一二三四在线观看免费中文在 | a级毛片在线看网站| 欧美性感艳星| 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 国产男女内射视频| 久久精品国产鲁丝片午夜精品| 亚洲av欧美aⅴ国产| 亚洲综合精品二区| 深夜精品福利| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 赤兔流量卡办理| 18在线观看网站| 亚洲婷婷狠狠爱综合网| 午夜免费观看性视频| 国产一区二区三区av在线| 99九九在线精品视频| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 亚洲成人手机| 亚洲人成网站在线观看播放| 少妇人妻 视频| 美女国产高潮福利片在线看| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 精品久久久久久电影网| 九色亚洲精品在线播放| 国产免费现黄频在线看| 国产国拍精品亚洲av在线观看| 蜜桃国产av成人99| 日本免费在线观看一区| 人妻一区二区av| 亚洲中文av在线| 日日撸夜夜添| 黄网站色视频无遮挡免费观看| 久久久久久久久久人人人人人人| 人人澡人人妻人| 高清在线视频一区二区三区| 精品人妻偷拍中文字幕| 国产免费视频播放在线视频| 久久毛片免费看一区二区三区| 亚洲伊人久久精品综合| 少妇人妻精品综合一区二区| 国产成人精品在线电影| 欧美日韩视频高清一区二区三区二| 又黄又爽又刺激的免费视频.| 91国产中文字幕| 亚洲精品国产av成人精品| 国产成人一区二区在线| 亚洲美女视频黄频| 水蜜桃什么品种好| 伦理电影大哥的女人| 国产精品一区二区在线不卡| 在线观看人妻少妇| 午夜av观看不卡| 精品国产国语对白av| 欧美激情 高清一区二区三区| 久久人人爽人人爽人人片va| 99久久人妻综合| av播播在线观看一区| 欧美人与性动交α欧美软件 | 亚洲av男天堂| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥| 亚洲国产av影院在线观看| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 亚洲欧洲国产日韩| 三级国产精品片| 午夜福利在线观看免费完整高清在| 综合色丁香网| 国产成人午夜福利电影在线观看| 成人国语在线视频| 国产欧美日韩一区二区三区在线| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 欧美+日韩+精品| 中国三级夫妇交换| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 女人久久www免费人成看片| √禁漫天堂资源中文www| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 欧美国产精品va在线观看不卡| 岛国毛片在线播放| 欧美性感艳星| 午夜免费观看性视频| 日韩三级伦理在线观看| 18禁动态无遮挡网站| 亚洲美女黄色视频免费看| 免费黄色在线免费观看| 满18在线观看网站| 王馨瑶露胸无遮挡在线观看| 欧美激情极品国产一区二区三区 | 国产av一区二区精品久久| 精品午夜福利在线看| 中文字幕制服av| 视频在线观看一区二区三区| 国产片特级美女逼逼视频| 亚洲人成77777在线视频| 久久国产亚洲av麻豆专区| 亚洲在久久综合| 97在线视频观看| 成年动漫av网址| 777米奇影视久久| 老女人水多毛片| 99热网站在线观看| 精品99又大又爽又粗少妇毛片| 18在线观看网站| 黄色视频在线播放观看不卡| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 免费在线观看完整版高清| 色哟哟·www| 国产日韩欧美亚洲二区| 国产一区二区在线观看av| 国产一级毛片在线| 午夜av观看不卡| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩卡通动漫| 久久久久国产网址| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀 | 亚洲欧洲日产国产| 日韩欧美一区视频在线观看| 午夜久久久在线观看| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 成人综合一区亚洲| 成人国语在线视频| 国产精品久久久av美女十八| 国产一区亚洲一区在线观看| 国产成人精品一,二区| 久久久久视频综合| 国产又爽黄色视频| 国产男女内射视频| 伦精品一区二区三区| 亚洲高清免费不卡视频| 大话2 男鬼变身卡| 少妇熟女欧美另类| 美女主播在线视频| 在线观看一区二区三区激情| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频 | 国产精品蜜桃在线观看| 亚洲欧洲国产日韩| 夜夜爽夜夜爽视频| 欧美日韩视频高清一区二区三区二| 黑丝袜美女国产一区| 亚洲国产精品成人久久小说| 欧美日韩成人在线一区二区| 飞空精品影院首页| 日韩熟女老妇一区二区性免费视频| av福利片在线| 国产一级毛片在线| av免费观看日本| 精品99又大又爽又粗少妇毛片| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 69精品国产乱码久久久| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 五月玫瑰六月丁香| 亚洲国产看品久久| 欧美国产精品一级二级三级| 亚洲,欧美,日韩| 久久青草综合色| 久久精品人人爽人人爽视色| 日韩欧美精品免费久久| 日本免费在线观看一区| 曰老女人黄片| 汤姆久久久久久久影院中文字幕|