楊夢 張星星 寧允葉 綜述 李強(qiáng) 審校
(第二軍醫(yī)大學(xué)長海醫(yī)院呼吸與危重癥醫(yī)學(xué)科, 上海 200433)
?
Transgelin在肺部疾病的作用研究進(jìn)展*
楊夢張星星寧允葉 綜述李強(qiáng) 審校
(第二軍醫(yī)大學(xué)長海醫(yī)院呼吸與危重癥醫(yī)學(xué)科, 上海 200433)
【摘要】鈣調(diào)蛋白家族的轉(zhuǎn)凝蛋白(Transgelin,TAGLN)是一種重要的細(xì)胞骨架相關(guān)蛋白,近年來的研究發(fā)現(xiàn),它在肺部疾病的許多生理病理過程如細(xì)胞遷移、增殖、分化及凋亡中均發(fā)揮重要作用。本文對Transgelin的基因結(jié)構(gòu)調(diào)控、蛋白表達(dá)和功能以及其在多種肺部疾病中的作用進(jìn)行綜述,為深入探討Transgelin在肺部疾病中的重要作用及相關(guān)機(jī)制奠定基礎(chǔ)。
【關(guān)鍵詞】Transgelin; 肺癌; 肺動脈高壓; 哮喘; 肺纖維化
Research progress about the effect of transgelin in lung diseasesYANG Meng, ZHANG Xingxing,NING Yunyereviewing, LI Qiangchecking
(DepartmentofRespiratoryandCriticalCareMedicine,ChanghaiHospital,TheSecondMilitaryMedical
University,Shanghai200433,China)
【Abstract】Trasngelin is an important shape change sensitive actin-binding protein of the calponin family. Recent evidence suggests that transgelin is both involved in many pathophysiological processes such as migration, proliferation, differentiation or apoptosis in lung diseases. We summarize researches about its structure, expression regulation and function in lung diseases and wish to be helpful for extended studies about the mechanism of transgelin in the treatment of lung diseases.
【Key words】Transgelin; Lung cancer; Pulmonary hypertension; Asthma; Lung fibrosis
轉(zhuǎn)凝蛋白(Transgelin,TAGLN),又稱平滑肌蛋白22α(smooth muscle 22 alpha,SM22α)是鈣調(diào)蛋白家族的一員,可與肌動蛋白相互作用,是一種重要的細(xì)胞骨架相關(guān)蛋白[1],在細(xì)胞骨架重構(gòu)、表型轉(zhuǎn)化、細(xì)胞生長以及細(xì)胞外基質(zhì)降解中發(fā)揮重要作用。
近年來Transgelin在呼吸系統(tǒng)疾病發(fā)生、發(fā)展中的作用日益受到重視,本文綜述了其在肺部疾病中的研究進(jìn)展,以期為深入探討Transgelin在呼吸系統(tǒng)相關(guān)疾病的重要功能及相關(guān)干預(yù)提供理論指導(dǎo)。
1Transgelin的基因結(jié)構(gòu)及調(diào)控
1987年,Lees-Miller及其團(tuán)隊(duì)[2]首先在雞胃部平滑肌細(xì)胞發(fā)現(xiàn)這種大小約22kDa的蛋白表達(dá),并將其命名為SM22,此后又有研究報道發(fā)現(xiàn)了Transgelin[3]及WS3-10[4]蛋白。直到1997年,Lawson等[5]才證實(shí)SM22與Trasgelin實(shí)為同一物質(zhì),并證實(shí)其在多種細(xì)胞株內(nèi)均有其表達(dá)。小鼠、大鼠、雞及人類的基因組中均有檢測到Transgelin的存在[6],且其序列在物種間有高度同源性和保守性[7],提示其在生物進(jìn)化過程中具有重要意義。在胚胎發(fā)育時,Transgelin在平滑肌、心肌、骨骼肌均有表達(dá),但至成人后只表達(dá)與平滑肌細(xì)胞[8]。除此之外,在間充質(zhì)干細(xì)胞[3]、上皮細(xì)胞[1]也可見其表達(dá)。
人類的Transgelin基因定位于第11號染色體q23.2帶,全長約為5.4kb。包含了5個外顯子區(qū)域和4個內(nèi)含子區(qū)域,其轉(zhuǎn)錄本長約1556bp,編碼了一條包含201個氨基酸殘基的肽鏈[7]。Transgelin基因的轉(zhuǎn)錄起始點(diǎn)至5’端上游-445bp的側(cè)翼的啟動子區(qū)具有決定該基因組織特異性表達(dá)的多種順式作用元件,包括兩個CArG盒、三個YY1結(jié)合位點(diǎn)、一個Spl和AP2結(jié)合位點(diǎn)、一個TCE盒和一個TATA盒[9]。其中,兩個CArG盒分別位于轉(zhuǎn)錄起始位點(diǎn)上游-283區(qū)和-156區(qū)。
血清應(yīng)答因子(serum response factor, SRF)和轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)在Transgelin基因轉(zhuǎn)錄中起到重要作用。SRF可與-156區(qū)的CArG盒的共有序列CC(A/T)6GG結(jié)合,從而自發(fā)募集其他轉(zhuǎn)錄因子與SRF或CArG側(cè)翼序列結(jié)合,形成有活性的多聚蛋白復(fù)合物,參與平滑肌細(xì)胞的表達(dá)調(diào)控,在心肌、骨骼肌和平滑肌的分化過程中具有十分重要的作用[10]。然而,僅有SRF與CArG 的結(jié)合不足以使Transgelin啟動子活化。心肌素(Myocardin)是近年發(fā)現(xiàn)的一種SRF協(xié)同因子,是平滑肌細(xì)胞標(biāo)志基因的轉(zhuǎn)錄共激活因子。Du等研究發(fā)現(xiàn)[11]Myocardin是Transgelin轉(zhuǎn)錄激活所必需的調(diào)控因子,但是這種作用又依賴于SRF的存在。Yoshida等[12]證實(shí)Myocarain可以以依賴CArG盒方式調(diào)控Transgelin轉(zhuǎn)錄。Qiu等[10]還發(fā)現(xiàn)Myocardin可通過非依賴CArG盒的方式增強(qiáng)Smad3介導(dǎo)的Transgelin轉(zhuǎn)錄激活,第一次證明了Myocardin可以以非依賴CArG盒方式調(diào)控平滑肌信號表達(dá)。除此之外,Transgelin的激活也可在GTP酶RoA的介導(dǎo)下,通過非Smad依賴途徑,促進(jìn)胞漿的SRF及心肌素相關(guān)轉(zhuǎn)錄因子(Myocardin-related transcription factors, MRTFs)向核內(nèi)遷移進(jìn)行[13]。TGF-β可通過Smad依賴途徑直接與TCE盒相互作用調(diào)控Transgelin表達(dá)[14],也可以通過促進(jìn)SRF表達(dá),或誘導(dǎo)Smad與SRF或Smad與Myocaratin相互作用,進(jìn)而調(diào)控Transgelin基因表達(dá)[15]。除平滑肌細(xì)胞外,業(yè)已證實(shí)TGF-β在成人的前列腺間充質(zhì)細(xì)胞[16]、正常間充質(zhì)細(xì)胞[5]以及纖維母細(xì)胞[17]中都能增加transgelin的mRNA表達(dá)量,這意味著平滑肌細(xì)胞之外的Transgelin的表達(dá)可能主要是受TGF-β的驅(qū)動。此外,Wnt/β-catenin信號通路也參與Transgelin轉(zhuǎn)錄激活。Shafer等[18]證實(shí)活化Wnt3a可激活其啟動子區(qū)-213到-192間的CAGAG元件從而啟動Transgelin轉(zhuǎn)錄。
2Transgelin的蛋白結(jié)構(gòu)及功能
Transgelin蛋白含201個氨基酸殘基,其氨基末端有一單一的CH結(jié)構(gòu)域[19],研究表明[20],單一的CH結(jié)構(gòu)不能使Transgelin結(jié)合肌動蛋白纖維,但是卻能使其與含有肌動蛋白結(jié)合域(actin binding domain, ABD)結(jié)構(gòu)域的絲束蛋白(fimbrin)競爭肌動蛋白結(jié)合位點(diǎn),這說明該結(jié)構(gòu)域可能對信號分子正確定位于肌動蛋白細(xì)胞骨架起一定作用。Fu等[21]發(fā)現(xiàn)人Transgelin蛋白的氨基端還有一個PKC磷酸化位點(diǎn)和兩個CKII磷酸化位點(diǎn)存在,具體作用尚待研究。同時,該研究也證實(shí)Transgelin蛋白羧基末端則是由鈣調(diào)節(jié)蛋白樣模體(CLR)的串聯(lián)重復(fù)序列組成,這是鈣調(diào)蛋白家族的特異性結(jié)構(gòu)。Gimona等研究發(fā)現(xiàn)[22],CLR構(gòu)成了一個獨(dú)立的肌動蛋白結(jié)合位點(diǎn)(actin binding site,ABS),使其對肌動蛋白的結(jié)合可以不與含ABD結(jié)構(gòu)域的其他肌動蛋白結(jié)合蛋白競爭肌動蛋白結(jié)合位點(diǎn),這種非競爭性結(jié)合使其具有穩(wěn)定肌動蛋白細(xì)胞骨架的作用。此外,Transgelin蛋白還含有一個EF手形的鈣結(jié)合域,目前研究認(rèn)為其存在并不影響蛋白的功能,其作用尚待研究[21]。
細(xì)胞的增殖、分化、信號轉(zhuǎn)導(dǎo)、轉(zhuǎn)移、粘附等重要的生命活動均與細(xì)胞骨架密切相關(guān),Transgelin通過與肌動蛋白結(jié)合,在細(xì)胞骨架的構(gòu)建和收縮等過程中均起到重要作用。
平滑肌細(xì)胞中Transgelin是分化成熟的平滑肌細(xì)胞標(biāo)志,而當(dāng)細(xì)胞發(fā)生亞型轉(zhuǎn)化時其表達(dá)下降[23]。本課題組既往研究發(fā)現(xiàn),體外培養(yǎng)的氣道平滑肌細(xì)胞由分化成熟型向增殖遷移型轉(zhuǎn)化的過程中,Transgelin蛋白表達(dá)降低,當(dāng)抑制這種細(xì)胞表型轉(zhuǎn)化時,Transgelin 蛋白下調(diào)表達(dá)的趨勢被逆轉(zhuǎn)[24]。Han及其同事[25]研究表明,Transgelin有助于維持分化成熟的平滑肌細(xì)胞肌動蛋白微絲呈束狀,從而使細(xì)胞保持分化成熟狀態(tài)。盡管Transgelin敲除小鼠的血管平滑肌及其它富有平滑肌細(xì)胞的組織未見畸形或發(fā)育異常[26],然而血管平滑肌收縮力下降,其肌動蛋白表達(dá)量降低[27]。Je等人證實(shí)[28]Transgelin對平滑肌收縮力的影響主要是通過經(jīng)典的Ca2+依賴性肌動球蛋白收縮和肌動蛋白骨架變化進(jìn)行的。除此之外,Transgelin的存在與平滑肌偽足形成有關(guān),當(dāng)平滑肌形成偽足時,Transgelin會向偽足形成處聚集[29]。
Transgelin在非平滑肌細(xì)胞的表達(dá)研究相對較少,已證實(shí)在成纖維細(xì)胞和上皮細(xì)胞均有Transgelin表達(dá)。當(dāng)成纖維細(xì)胞向惡性方向轉(zhuǎn)化,呈非粘附狀態(tài)時,Transgelin表達(dá)下降[3],而衰老的成纖維細(xì)胞和其分化的肌成纖維細(xì)胞Transgelin表達(dá)升高[30]。在損傷后的腎上皮細(xì)胞[31]及纖維化的肺泡上皮細(xì)胞[32]均有關(guān)于Transgelin表達(dá)升高的報道。Shapland[3]認(rèn)為Transgelin主要與這些非平滑肌細(xì)胞的張力纖維有關(guān),從而影響其遷移及收縮。
3Transgelin與肺部疾病
Transgelin作為一種重要的細(xì)胞骨架相關(guān)蛋白,在呼吸系統(tǒng)多種疾病的發(fā)生、進(jìn)展中發(fā)揮作用,甚至有可能成為診斷及治療靶點(diǎn)。
3.1Transgelin與肺癌細(xì)胞骨架肌動蛋白的結(jié)構(gòu)改變是腫瘤細(xì)胞表型改變過程中的一個基本事件。與Transgelin啟動密切相關(guān)的TGF-β可誘導(dǎo)腫瘤細(xì)胞應(yīng)力纖維的形成,并可抑制腫瘤細(xì)胞的遷移及侵襲[14]。Ras/Raf/MEK/ERK信號通路可以抑制Transgelin啟動,下調(diào)其表達(dá)[33]。在確定腫瘤相關(guān)基因而進(jìn)行的大量基因表達(dá)分析中,Transgelin已被證實(shí)是一種重要的下調(diào)蛋白,提示其異常低表達(dá)在腫瘤早期可能起促進(jìn)腫瘤進(jìn)展的作用[34]。研究發(fā)現(xiàn)[35],Transgelin也可抑制基質(zhì)金屬蛋白酶-9(Matrix Metalloprotease-9,MMP-9)的表達(dá),而MMP-9是非常重要的細(xì)胞外基質(zhì)的蛋白水解酶,能降解除多糖外的所有細(xì)胞外基質(zhì)成分,Transgelin的表達(dá)下降將增強(qiáng)癌細(xì)胞的侵襲能力,促進(jìn)腫瘤細(xì)胞侵入臨近組織及向遠(yuǎn)處轉(zhuǎn)移,提示Transgelin的下調(diào)表達(dá)可能與腫瘤進(jìn)展及預(yù)后密切相關(guān)。
2014年,美國有約224,210位患者被診斷為支氣管肺癌,而肺癌死亡人數(shù)約為16萬,均居惡性腫瘤首位[36]。據(jù)我國腫瘤登記中心2014年發(fā)布的數(shù)據(jù),2010年我國新發(fā)肺癌病例60.59萬,居惡性腫瘤首位,占惡性腫瘤新發(fā)病例的19.59%。而肺癌死亡人數(shù)為48.66萬,占惡性腫瘤死因的24.87%[37]。肺癌的五年生存率很低,這是因?yàn)?5%的肺癌患者都是在晚期才得到診斷,而I期周圍型肺癌術(shù)后10年預(yù)期生存率則高達(dá)92%。因此,尋找肺癌相關(guān)的早期標(biāo)志分子具有重要意義。Li等人[38]最初通過凝膠電泳檢測了3例肺鱗狀細(xì)胞癌、3例肺腺癌、4例肺大細(xì)胞癌、4例肺基底細(xì)胞癌共14例標(biāo)本,發(fā)現(xiàn)Transgelin在腫瘤組織表達(dá)下降。但是Rho等[39]通過免疫組化比較了5組正常肺組織及肺腺癌組織,發(fā)現(xiàn)Transgelin在肺腫瘤組織及周圍基質(zhì)有明顯升高。這種實(shí)驗(yàn)結(jié)果差異可能是由于病例數(shù)過少及選用標(biāo)本種類不同造成的。Transgelin2是miR-133a作用的靶蛋白之一,Moriya[40]發(fā)現(xiàn)miR-133a在肺腺癌細(xì)胞中表達(dá)下降,而在體外培養(yǎng)的肺腺癌細(xì)胞中,恢復(fù)miR-133a表達(dá)會抑制腫瘤細(xì)胞增殖。而Wu[41]等最新研究結(jié)果也表明,與正常癌旁組織相比,Transgelin在肺腺癌組織表達(dá)升高,Transgelin表達(dá)的升高與TNM分期進(jìn)展、腫瘤淋巴結(jié)轉(zhuǎn)移及分化程度相關(guān),而在體外培養(yǎng)的肺腺癌細(xì)胞中,干擾Transgelin表達(dá)降低了細(xì)胞遷移能力,提示Transgelin與肺腺癌增殖、遷移密切相關(guān)。進(jìn)一步明確Transgelin在非小細(xì)胞肺癌甚至小細(xì)胞肺癌中的作用及機(jī)制將有利于尋找新的肺癌標(biāo)志分子或治療靶點(diǎn)。
3.2Transgelin與肺動脈高壓肺動脈高壓(pulmonary artery hypertension, PAH)是一類以肺動脈壓力增高,伴或不伴有小肺動脈病變?yōu)樘卣鞯膼盒苑窝芗膊?,往往引起右心功能衰竭甚至死亡,它病因廣泛,有原發(fā)性可能,也可能繼發(fā)于結(jié)締組織病、左心疾病、肺疾病等[42]全身性疾病。據(jù)統(tǒng)計(jì),PAH患病率約為15~50/百萬[43]。它是一種無法治愈的慢性致死性病,因此,明確機(jī)制、尋找針對改善癥狀、延長生存期的治療有重要意義。
低氧型肺動脈高壓的是肺動脈高壓最主要的亞型之一[44],肺血管重塑會造成肺小動脈肌化、以及肺血管壁增厚,從而阻礙血流通氣灌注,加重低氧損傷[45]。血管平滑肌細(xì)胞的肥大、增殖是肺血管重塑的重要機(jī)制之一[46],Zhang 等[47]通過研究證實(shí),人肺動脈平滑肌細(xì)胞(human pulmonary arterial smooth muscle cells, PAMSCs)在低氧環(huán)境下體外培養(yǎng),會上調(diào)表達(dá)Transgelin ,而在體外干擾低氧誘導(dǎo)的PAMSC細(xì)胞transgelin表達(dá),細(xì)胞遷移能力下降。并且這種低氧對Transgelin的影響與最常見的低氧誘導(dǎo)因子1α(hypoxia inducible factor1α, HIF-1α)無關(guān),而是通過低氧誘導(dǎo)因子2α(hypoxia inducible factor2α, HIF-2α)引起TGFβ募集,從而通過TGF-β/Smad3途徑與Transgelin啟動子結(jié)合,從而促進(jìn)其轉(zhuǎn)錄與表達(dá)。在低氧誘導(dǎo)的小鼠模型中,通過慢病毒干擾Transgelin表達(dá)可以改善血管平滑肌重塑,從而緩解低氧造成的右心室收縮壓升高,這提示Transgelin有可能成為治療PAH的新靶點(diǎn)。
3.3Transgelin與哮喘據(jù)2014GINA統(tǒng)計(jì),全球哮喘患者高達(dá)3億人,每年病死人數(shù)高達(dá)35萬,而其發(fā)病率仍在增加。到2025年,全球哮喘患者有可能增加1億[48]。哮喘的主要特征是慢性氣道炎癥、氣道高反應(yīng)性及間斷性通氣阻塞,晚期可能出現(xiàn)氣道重塑。而氣道平滑肌細(xì)胞對哮喘中氣道高反應(yīng)性及氣道重塑的形成具有重要意義[49]。
通常認(rèn)為,氣道平滑肌的縮短速率增加(Vmax)是氣道高反應(yīng)性的誘因之一[50]。Léguillette R[51]發(fā)現(xiàn)哮喘患者快速肌球蛋白重鏈亞型(SM-B)、Transgelin及肌球蛋白輕鏈激酶(MLCK)無論在RNA水平還是蛋白水平表達(dá)均升高,但Transgelin并不影響肌動蛋白的伸長。
而氣道重塑的機(jī)制與氣道高反應(yīng)性不同,它主要是與氣道平滑肌的增殖、遷移相關(guān)。本課題組研究發(fā)現(xiàn)在小鼠哮喘模型中檢測到平滑肌細(xì)胞Transgelin表達(dá)升高,提示其可能參與了哮喘氣道平滑肌重塑過程[52]。而Schuliga 等[53]通過體外實(shí)驗(yàn)檢測了在哮喘中聚集的堿性成纖維細(xì)胞增長因子(Basic fibroblast growth factor,bFGF)對氣道平滑肌細(xì)胞中的TGFβ的作用,證實(shí)bFGF能通過ERK1/2依賴性途徑抑制TGFβ引起的Transgelin表達(dá)增加。但這些研究都不足以提供證據(jù)證明是否可以針對Transgelin進(jìn)行哮喘的相關(guān)治療或是改善其預(yù)后。Transgelin的異常表達(dá)在哮喘發(fā)病中的地位和作用仍需深入研究。
3.4Transgelin與肺纖維化特發(fā)性肺間質(zhì)纖維化(IPF)是一種以成纖維細(xì)胞活化、細(xì)胞外基質(zhì)沉積為特點(diǎn)的肺部疾病,其病理過程主要通過TGF-β信號通路介導(dǎo)[54]。由于其發(fā)生機(jī)制不明,尚無有效治療方案。其病理改變主要有:反復(fù)的上皮細(xì)胞損傷和修復(fù)、遷移,上皮間質(zhì)轉(zhuǎn)化(EMT),炎性因子介導(dǎo)的Ⅱ型肺泡上皮及成纖維細(xì)胞基因表達(dá)改變[55]。近來研究表明,肺部成纖維細(xì)胞聚集活化來源主要有三種:上皮細(xì)胞通過EMT轉(zhuǎn)化形成纖維細(xì)胞,肺部固有纖維細(xì)胞活化增殖以及骨髓來源的纖維細(xì)胞遷移入肺。無論哪種來源的成纖維細(xì)胞,TGF-β都是主要的誘導(dǎo)因子[56]。
Yu及其團(tuán)隊(duì)[55]通過Smad3免疫沉淀分析證實(shí),在TGF-β刺激下,Smad3與人氣道上皮細(xì)胞株A549中的Transgelin啟動子區(qū)域相結(jié)合,從而促進(jìn)Transgelin表達(dá),增加上皮細(xì)胞的遷移能力,而通過siRNA敲干擾Transgelin后,TGFβ誘導(dǎo)的上皮細(xì)胞A549細(xì)胞遷移能力下降。同時,在博來霉素誘導(dǎo)的肺纖維化小鼠模型和特發(fā)性肺纖化患者的肺組織中,他們都檢測到Transgelin表達(dá)顯著上升。除上皮細(xì)胞以外,Popova[57]從呼吸窘迫的早產(chǎn)兒氣道吸出物分離出間充質(zhì)干細(xì)胞(Mesenchymal Stem Cells,MSCs)進(jìn)行體外培養(yǎng)。在培養(yǎng)過程中,加入TGF-β1,會誘導(dǎo)Transgelin 的RNA及蛋白表達(dá)增加,促使其向肌成纖維細(xì)胞方向轉(zhuǎn)化。而骨髓來源的MSC在TGF-β1刺激下并不能發(fā)生上述反應(yīng),提示肺部MSC影響肺組織纖維化與Transgelin有關(guān)。這都說明Transgelin有望成為肺間質(zhì)纖維化防治的潛在靶點(diǎn)。
4小結(jié)與展望
細(xì)胞骨架相關(guān)蛋白Transgelin在細(xì)胞增殖、遷移、轉(zhuǎn)化等過程中均發(fā)揮著重要作用。TGF-β/Smad通路在其活化過程中發(fā)揮重要作用。本文從基因表達(dá)與蛋白功能兩個方面詳細(xì)介紹了Transgelin的調(diào)控及功能,又回顧了關(guān)于Transgelin與肺癌、肺動脈高壓、哮喘、肺纖維化等常見肺部疾病的研究進(jìn)展,為進(jìn)一步研究Transgelin在肺部疾病中的作用提供一些理論指導(dǎo)。Transgelin敲除不影響小鼠模型的生長發(fā)育,但可以改善疾病進(jìn)程,這為其成為新的治療靶點(diǎn)提供了可能。深入探討Transgelin在呼吸系統(tǒng)疾病中的作用及相關(guān)機(jī)制,有可能為臨床肺部疾病的診斷和治療帶來新的啟發(fā)。
【參考文獻(xiàn)】
[1]Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development[J]. Expert Rev Proteomics, 2014,11(2):149-165.
[2]Lees-Miller JP, Heeley DH, Smillie LB,etal. Isolation and characterization of an abundant and novel 22-kDa protein (SM22) from chicken gizzard smooth muscle[J]. J Biol Chem, 1987, 262(7):2988-2993.
[3]Shapland C, Lowings P, Lawson D. Identification of new actin-associated polypeptides that are modified by viral transformation and changes in cell shape[J]. J Cell Biol, 1988, 107(1);153-161.
[4]Murano S, Thweatt R, Shmookler Reis RJ,etal. Diverse gene sequences are overexpressed in werner syndrome fibroblasts undergoing premature replicative senescence[J]. Mol Cell Biol, 1991, 11(8):3905-3914.
[5]Lawson D, Harrison M, Shapland C. Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines[J]. Cell Motil Cytoskeleton, 1997, 38(3):250-257.
[6]Morgan KG, Gangopadhyay SS. Invited review: cross-bridge regulation by thin filament-associated proteins[J]. J Appl Physiol, 2001, 91(2):953-962.
[7]Camoretti-Mercado B, Forsythe SM, LeBeau MM,etal. Expression and cytogenetic localization of the human SM 22 gene(TAGLN) [J]. Genomics, 1998, 49(3):452-457.
[8]Li L, Miano JM, Cserjesi P, Olson EN. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis[J]. Circ Res, 1996,78(2):188-195.
[9]Solway J, Forsythe SM, Halayko AJ,etal. Transcriptional regulation of smooth muscle contractile apparatus expression[J]. Am J Respir Crit Care Med, 1998,158(5):100-108.
[10] Qiu P, Ritchie RP, Fu ZY,etal. Myocardin Enhances Smad3-Mediated Transforming Growth Factor 1 Signaling in a CArG Box Independent Manner[J]. Circ Res, 2005, 97(10):983-991.
[11] Du KL, Ip HS, Li J,etal. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation[J]. Mol Cell Biol, 2003, 23(7):2425-2437.
[12] Yoshida T, Sinha S, Dandr6 F,etal. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes[J]. Circ Res, 2003, 92(8):856-864.
[13] Liu HW, Halayko AJ, Fernandes DJetal. The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor[J]. Am J Respir Cell Mol Biol, 2003,29(1):39-47.
[14] Chen S, Kulik M, Lechleider RJ. Smad Proteins Regulate Transcriptional Induction of the SM22alpha Gene by TGF-be1a[J]. Nucleic Acids Res, 2003, 31(4):1302-1310.
[15] Qiu P, Feng XH, Li L. Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation[J]. J Mol Cell Cardiol, 2003, 35(12):1407-1420.
[16] Untergasser G, Gander R, Lilg C,etal. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation[J]. Mech Ageing Dev, 2005, 126(1):59-69.
[17] Shislds JM, Rogers-Graham K, Der CJ. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways[J]. J Biol Chem, 2002, 277(12):9790-9799.
[18] Shafer SL, Towler DA. Transcriptional regulation of SM22alpha by Wnt3a: convergence with TGFbeta(1)/Smad signaling at a novel regulatory element[J]. J Mol Cell Cardiol. 2009,6(5):621-635.
[19] Goodman A, Goode BL, Matsudaira P,etal. The Saccharomyces cerevisiae calponin/transgelin homolog Scp1 functions with fimbrin to regulate stability and organization of the actin cytoskeleton[J]. Mol Biol Cell, 2003,14(7):2617-2629.
[20] Winder SJ, Jess T, Ayscough KR. SCP1 encodes an actin-bundling protein in yeast[J]. Biochem J, 2003,375(2):287-295.
[21] Fu Y, Liu H, Forsythe S,etal. Mutagenesis analysis of human SM22: characterization of actin binding[J]. J Appl Physiol, 2000, 89(5):1985-1990.
[22] Gimona M, Kaverina I, Resch GP,etal. Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells[J]. Mol Biol Cel1, 2003,14(6):2482-2491.
[23] Yamamura H, Masuda H, Ikeda W,etal. Structure and expression of the human SM22alpha gene, assignment of the gene to chromosome 11, and repression of the promoter activity by cytosine DNA methylation[J]. J Biochem, 1997,122(1):157-167.
[24] Yunye Ning, Haidong Huang, Yuchao Dong,etal. 5-Aza-2’-deoxycytidine inhibited PDGF-induced rat airway smooth muscle cell phenotypic switching[J]. Archives of Toxicolog, 2013, 87(5):871-881.
[25] Han M, Dong LH, Zheng B,etal. Smooth muscle22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling[J]. Life Sci, 2009, 84(13-14):394-401.
[26] Zhang JC, Kim S, Helmke BPetal. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function[J]. Mol Cell Bio, 2001, 21(4):1336-1344.
[27] Zeidan A, Sw?rd K, Nordstr?m I,etal. Ablation of SM22alpha decreases contractility and actin contents of mouse vascular smooth muscle[J]. FEBS Lett, 2004, 562(1-3):141-146.
[28] Je HD, Sohn UD. SM22alpha is required for agonist-induced regulation of contractility: evidence from SM22alpha knockout mice[J]. Mol Cells, 2007, 23(2):175-181.
[29] Kaverina I, Stradal TEB, Gimona M. Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains[J]. J Cell Sci, 2003, 116(24):4915-4924.
[30] Untergasser G, Gander R, Lilg C,etal. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation[J]. Mech Ageing Dev, 2005, 126(1):59-69.
[31] Marshall CB, Krofft RD, Blonski MJetal. Role of smooth muscle protein SM22a in glomerular epithelial cell injury[J]. Am J Physiol Renal Physiol, 2011, 300(4):1026-1042.
[32] Yu H, Konigshoff M, Jayachandran A,etal. Transgelin is a direct target of TGF-beta/ Smad3-dependent epithelial cell migration in lung fibrosis[J]. FASEB J, 2008:22(6):1778-1789.
[33] Kaplan-Albuquerque N, Garat C, Van Putten V, Nemenoff RA. Regulation of SM22 alpha expression by arginine vasopressin and PDGF-BB in vascular smooth muscle cells[J]. Am J Physiol Heart Circ Physiol, 2003, 285(4):1444-1452.
[34] 蘇稼航,馬衛(wèi)霞,張群成,等.SM22α基因與腫瘤的關(guān)系研究進(jìn)展[J].國際呼吸雜志, 2011, 31(4):287-290.
[35] Nair RR, Solway J, Boyd DD. Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression[J]. J Biol Chem, 2006, 281(36):26424-26436.
[36] Siegel R,Ma J,Zou Z,etal. Cancer statistics 2014[J]. CA Cancer J Clin, 2014, 64(1):9-29.
[37] 支修益,石遠(yuǎn)凱,于金明.中國原發(fā)性肺癌診療規(guī)范(2015年版)[J]. 中華腫瘤雜志,2015,37(1).
[38] Li LS, Kim H, Rhee Hetal. Proteomic analysis distinguishes basaloid carcinoma as a distinct subtype of nonsmall cell lung carcinoma[J]. Proteomics, 2004, 4(11):3394-3400.
[39] Rho J-H, Roehrl MHA, Wang JY. Tissue proteomics reveals differential and compartment-specific expression of the homologs transgelin and transgelin-2 in lung adenocarcinoma and its stroma[J]. J Proteome Res, 2009, 8(12):5610-5618.
[40] Moriya Y, Nohata N, Kinoshita T,etal. Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma[J]. J Hum Genet, 2012,57(1):38-45.
[41] Wu X, Dong L, Zhang R,etal. Transgelin overexpression in lung adenocarcinoma is associated with tumor progression[J]. Int J Mol Med, 2014,34(2):585-591.
[42] Rubin LJ. Primary pulmonary hypertension[J]. N Engl J Med, 1997, 336(2):111-117.
[43] Humbert M, Sitbon O, Chaouat A,etal. Pulmonary arterial hypertension in France: results from a national registry[J]. Am J Respir Crit Care Med, 2006, 173(9):1023-1030.
[44] Poor HD, Girgis R, and Studer SM. World Health Organization Group III pulmonary hypertension[J]. Prog Cardiovasc Dis, 2012,55(2): 119-127.
[45] Yu AY, Shimoda LA, Iyer NV,etal. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha[J]. J Clin Invest, 1999,103(5): 691-696.
[46] Qi JG, Ding YG, Tang CS, and Du JB. Chronic administration of adrenomedullin attenuateshypoxic pulmonary vascular structural remodeling and inhibits proadrenomedullin N-terminal 20-peptide production in rats[J]. Peptides, 2007,28(4):910-919.
[47] Zhang R, Shi L, Zhou L,etal. Transgelin as a therapeutic target to prevent hypoxic pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2014,306(6):574-583.
[48] Masoli M, Fabian D, Holt S,etal. The Global Burden of Asthma Report. In: Global Initiative for Asthma(GINA),2014, at http://www.ginasthma.com
[49] Martin JG, Duguet A, Eidelman DH. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease[J]. Eur Respir J, 2000,16:349-354.
[50] Mitchell RW, Ruhlmann E, Magnussen H,etal. Passive sensitization of human bronchi augments smooth muscle shortening velocity and capacity[J]. Am J Physiol, 1994, 267(2):218-222.
[51] Léguillette R, Laviolette M, Bergeron C,etal. Myosin, transgelin, and myosin light chain kinase: expression and function in asthma[J]. Am J Respir Crit Care Med, 2009,179(3):194-204.
[52] Xu W, Hong W, Shao Y,etal. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression[J]. Respir Res, 2011, 12:14.
[53] Schuliga M, Javeed A, Harris T,etal. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2[J]. Am J Respir Cell Mol Biol, 2013, 48(3):346-353.
[54] Thannickal VJ, Toews GB, White ES,etal. Mechanisms of pulmonary fibrosis[J]. Annu Rev Med, 2004, 55:395-417.
[55] Yu H, K?nigshoff M, Jayachandran A,etal. Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis[J]. FASEB J, 2008, 22(6):1778-1789.
[56] Blobe GC, Schiemann WP, aLodish HF. Role of transforming growth factor beta in human disease[J]. N Engl J Med, 2000, 342(18):1350-1358.
[57] Popova AP, Bozyk PD, Goldsmith AM,etal. Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 298(6):735-743.
(收稿日期:2015-11-02; 編輯: 陳舟貴)
通訊作者:李強(qiáng),E-mial:liqressh@hotmail.com
基金項(xiàng)目:國家自然科學(xué)基金(81100012)
【中圖分類號】R 56
【文獻(xiàn)標(biāo)志碼】A
doi:10.3969/j.issn.1672-3511.2016.01.038