• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Graphene Content on Microstructure and Properties of Multilayer Graphene/Silver Composite

    2016-02-13 01:16:53WANGSongWANGSaibeiXIEMingLIUManmenLIAikunHUJieqiong
    貴金屬 2016年2期
    關鍵詞:掃描電鏡電弧導電

    WANG Song, WANG Saibei, XIE Ming, LIU Manmen, LI Aikun, HU Jieqiong

    ( State Key Laboratory of Advanced Technologies for Comprehensive Utilization, Kunming Institute of Precious Metals, Kunming 650106, China)

    Effect of Graphene Content on Microstructure and Properties of Multilayer Graphene/Silver Composite

    WANG Song, WANG Saibei, XIE Ming, LIU Manmen, LI Aikun, HU Jieqiong

    ( State Key Laboratory of Advanced Technologies for Comprehensive Utilization, Kunming Institute of Precious Metals, Kunming 650106, China)

    Multilayer graphene/silver electrical contact composites were prepared by powder metallurgy. Effects of multilayer graphene content on the microstructure, electrical conductivity, hardness and arc erosion of the multilayer graphene/silver composites were studied in details. Results show that the densities of the green and sintered composites decrease with increasing the multilayer graphene content. The highest electrical conductivity value of 84.5% IACS can be accomplished when the content of the multilayer grapheme is 0.5% in reinforced composite. When the amount of the multilayer graphene is higher than 2.0%, the declining rate in hardness significantly increases. The multilayer graphene/silver electrical contact composites with 1.5% the multilayer grapheme displays the best anti-arc erosion performance.

    electrical contact material; graphene/silver; microstructure; hardness; arc erosion

    Graphene, which has a two-dimensional layered structure of carbon atoms, has generated great interest as a reinforcement for metal matrix composites, because of its impressive mechanical, thermal and electrical properties. Its tensile strength reaches to 130 GPa, Young’s modulus is 1 TPa, and a low density is 2.2 g·cm-3. Multilayer graphene (MLG) consists of 10~30 sheets of graphene, are less expensive and easier to produce than single layer grapheme[1-3]. Therefore, MLG might be more suitable relative to single-layer grapheme or carbon nanotube as an effective and economical reinforcement material for the development of new-generation metal matrix composites[4].

    Recently, the research of multilayer graphene reinforced metal matrix composites has attained great interest[5-10]. For example, Kim and co-workers[11]applied high-energy ball milling and high-ratio differential speed rolling to effectively incorporate and disperse MLG into a Cu matrix and obtained MLG/Cu composite with uniform dispersion of MLG. The strength increase through the addition of MLG results from Orowan strengthening for the MLG/Cu composites and the current processing route potentially opens a new avenue for fabricating highperformance MLG-reinforced metal matrix composites in sheet form. Varol T and Canakci A[12]used flake powder metallurgy to prepare the MLG/Cu nanocomposites. The increase in agglomeration content inhibited particle-particle contact during the sintering process and therefore sintered density decreased with increasing the multilayer graphene content. Bartolucci S F and co-workers[13]fabricated a 0.1wt% MLG/Al composite using ball milling, hot isostatic pressing and extrusion. Compared to the pure aluminum and multi-walled carbon nanotube composites, the MLG/Al composite showed decreased strength and hardness. The literature has indicated that there is lots of research focused on the fabrication and characterization of MLG/Cu and MLG/Al composites. However, there has not been a comprehensive research on multilayer graphene reinforced silver matrix composite (MLG/Ag) produced by powder metallurgy.

    In the present work, powder metallurgy was used for fabricating the MLG/Ag electrical contact composites. The effect of the content of MLG on the microstructure, electrical conductivity, hardness and arc erosion of the MLG/Ag composites were studied. In addition, the anti-arc erosion mechanism of the MLG/Ag composites was analyzed.

    1 Experiment

    1.1 MLG/Ag composites preparation

    MLG/Ag electrical contact composites were prepared by powder metallurgy. The gas atomized Ag powder with 99.9% purity and 25 μm average particle size by self-preparation, and multilayer graphene sheets with 99% purity and an average thickness of 60~120 nm bought from Chengdu Organic Chemicals Co. Ltd, were used in the present study. Fig.1 shows the morphologies of the Ag powders and MLG. It can be observed from Fig.1 that the Ag powders is a spherical shape (Fig.1(a)) while the morphology of MLG is a flake shape (Fig.1(b)).

    Fig.1 The morphologies of the Ag powders (a) and multilayer grapheme sheets (b)圖1 Ag粉末(a)和多層石墨烯片(b)的形貌

    The MLG/Ag composite powders were fabricated through 10 h of ball milling using gas atomized Ag powders and multilayer graphene sheets. Different weight percentages (0.5, 1, 1.5, 2 and 2.5%) of MLG were added to the Ag matrix powders before starting the ball milling process. The ball milling speed is 280 r/min, the ball diameter is 10 mm and the ball-topowder ratio is 5:1 (weight). The MLG/Ag composite powder was first compacted by cold isostatic pressing (100 MPa/3 min) at room temperature. Then, the powder compact was warm-pressed at 300 MPa for 1 h at 500℃. After compacting, the green ingots were sintered in a tube furnace at 800℃ for 2 h under argon atmosphere. And it was made to a wire of 8 mm in diameter by hot extrusion press (800℃/100 MPa), which was further cold drawn to a wire of 1.36 mm indiameter. The contact sample was made into the shape of a rivet shape.

    1.2 Characterization method

    The density of the MLG/Ag composite was measured by Archimedes’ method. The theoretical density of compacts was calculated from the simple rule of mixtures taking the fully dense values for silver (10.53 g·cm-3) and multilayer graphene sheets (2.2 g·cm-3). Microstructure observations were carried out on Hitachi S-3400N scanning electron microscope. The micro-hardness was determined using HMV-FA2 micro Vickers hardness tester with a load of 1.961 N, a holding time of 10 s and each sample was measured five times to obtain the average value. The electrical conductivity was determined by measuring the alloy samples using FD101 metal conductivity tester, and every sample was tested for two times. The electrical contact experiment was held by JF04C contact tester. The arc erosion experimental parameters are showed in Tab.1.

    2 Results and discussion

    2.1 MLG/Ag composites morphology

    Fig.2 showed a comparative morphological analysis for MLG/Ag composites powders with different MLG contents at the end of 10 h of ball milling. The morphology evolution of MLG/Ag composites powders during the ball milling as a function of MLG content (0.5, 1, 1.5 and 2.5%) is presented in the Fig.2. The spherical morphology of the initial Ag powders changed into the flake morphology because of the high-energy impacts resulting from the ball-powder-ball collisions. The MLG sheets were embedded and dispersed into the Ag matrix powders during the ball milling. Although the general morphology is the flake morphology in the MLG/Ag composite powders containing higher MLG sheets content, some semi-flake powders were observed, as seen in Fig.2(d). The agglomeration tendency increased due to the increase in the number of MLG sheets when increasing MLG content from 0.5% to 2.5%.

    Tab.1 Parameters of arc erosion experiment表1 電弧侵蝕實驗參數(shù)

    Fig.2 SEM images of MLG/Ag composite powders圖2 MLG/Ag復合粉末掃描電鏡照片

    The apparent density of the MLG/Ag composites powders was showed in Fig.3. The apparent density of the MLG/Ag composites powders increased as MLG content increaseing up to 1.5% and then decreased with MLG content increasing further. The MLG sheets were embedded in the flake Ag powders during ball milling. The apparent density of MLG/Ag composite powders increased up to 1.5% of MLG content due to the effective embedding of MLG in the flake Ag powders. However, a sufficient MLG embedding surface area in the flake Ag matrix powders was not achieved when the MLG content is above 1.5 %, and particles rearrangement not come true by the MLG sheets, which cannot be embedded within the flake Ag powders. Therefore, the apparent density of MLG/Ag composite powders decreased after 1.5% of MLG content.

    Fig.3 Apparent density of the MLG/Ag composites powders圖3 MLG/Ag復合粉末的松裝密度

    Fig.4 Cross-section SEM images and EDS pattern of MLG/Ag composite圖4 MLG/Ag復合材料橫截面掃描電鏡照片與EDS圖譜

    Fig.5 Density of MLG/Ag composites with different MLG content圖5 不同MLG含量MLG/Ag復合材料的密度

    Fig.4 shows the cross-section SEM images and EDS pattern of the 1% MLG/Ag and 2% MLG/Ag electrical contact composites, where MLG sheets were uniformly distributed on silver matrix. Moreover, it can be seen from Fig.4, there are no clear visible pores in the MLG/Ag composite sample. This proves that the powder metallurgy method is a very promising technique for uniformity and high densification of MLG/Ag electrical contact composites.

    2.2 Density of MLG/Ag composites

    The effect of MLG content on the density of MLG/Ag composites is shown in Fig.5. As can be seen in Fig.5, the density of sintered and green MLG/ Ag composites decreased with increasing the weight percentage of the MLG sheets. The highest density values were 9.91 g·cm-3and 9.49 g·cm-3for sintered and green 0.5% MLG/Ag composite respectively while the lowest density values were 9.51 g·cm-3and 9.01 g·cm-3for sintered and green 2.5% MLG/Ag composite respectively. Sintered density mostly depends on the distance between matrix powders inthe particle reinforced composites. When MLG sheets were added to the MLG/Ag composites, the distance between Ag powders increased, and the sintering ability was reduced. The agglomeration of the MLG sheets reduced the sintered density of the MLG/Ag composites because the agglomeration regions acted as a resistant barrier to particle boundary diffusion during the sintering process.

    2.3 Electrical conductivity and hardness of

    MLG/Ag composites

    Fig.6 shows the effect of the MLG content on the electrical conductivity of the green and sintered MLG/Ag composites.

    Fig.6 Electrical conductivity of MLG/Ag composites with different MLG content圖6 不同MLG含量MLG/Ag復合材料的導電率

    It can be seen from Fig.6, the electrical conductivity of green MLG/Ag composites decreased with the addition of MLG sheets to the Ag matrix. The electrical conductivity of the green 0.5% MLG/Ag composite was 80.9%IACS while that of the green 2.5% MLG/Ag composite was 20.8%IACS. The decreasing trend of electrical conductivity with MLG content in the green MLG/Ag composites can be attributed to an increase in the amount of porosity. After sintering, the electrical conductivity of all MLG/Ag samples increased significantly with the sintering process. The electrical conductivity of the sintered 0.5% MLG/Ag composites was 84.5%IACS, which may be attributed to microstructural change and consistency. The reduction rate of the electrical conductivity of the sintered MLG/Ag composites with increasing the MLG content is smaller than that of the green MLG/Ag composites. This can be attributed to the significantly increased porosity and agglomeration amount in the green MLG/Ag composites. The agglomeration amount increased with increasing the MLG content, and the agglomeration regions caused electron scattering within the particle boundaries.

    Fig.7 shows the micro-hardness values of the sintered MLG/Ag composites with different MLG contents.

    Fig.7 Micro-hardness of sintered MLG/Ag composites with different MLG content圖7 不同MLG含量MLG/Ag復合材料的顯微硬度

    As we can seen from Fig.7, the micro- hardness values of the composites decreased with the addition of MLG sheets. When the amount of the multilayer graphene is higher than 2.0%, the decreasing rate in hardness significantly increases. This was due to the soft nature of the MLG sheets. The reduction rate in the hardness of the MLG/Ag composites can also be attributed to a decrease in density and the non- homogeneous distribution of MLG sheets in the Ag matrix.

    2.4 Arc erosion of MLG/Ag composites

    Tab.2 shows the mass changes of MLG/Ag composites with different MLG contents over 60000 times break off operations under DC 25V/15A. There is a net transfer of material from the anode to the cathode and part of the weight loss to the environment. The transfered weight and the lost weight to environment of 1.5%MLG/Ag composite contacts are only 17 mg and 15 mg, respectively, which is lower than that of other MLG/Ag composite contacts. The result indicates thatthe 1.5%MLG/Ag composite has the best ability of anti-arc erosion for all MLG/Ag composites. It is indicated that the appropriate content of MLG in the Ag matrix can reduce the splatter erosion of liquid silver and prevent the material transfer.

    Tab.2 Mass change of the contacts over 60000 times breaks表2 經(jīng)60000次分斷后電接點質量變化

    3 Conclusions

    1) A new MLG/Ag electrical contact composites have been successfully produced by powder metallurgy method and the MLG sheets were uniformly distributed on silver matrix.

    2) The densities of the MLG/Ag composites decrease with increasing the multilayer graphene content. The 0.5%MLG/Ag composite has the highest electrical conductivity value of 84.5% IACS in studied composites. The micro-hardness values of the composites decreased with the addition of MLG sheets.

    3) The MLG/Ag composite with 1.5% the multilayer grapheme presents the best anti-arc erosion performance. The transfered weight and lost weight of 1.5%MLG/Ag composite contacts after 60000 times breaks is only 17 mg and 15 mg, respectively.

    [1] HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Advanced materials, 2013, 25: 6724-6729.

    [2] XU P T, YANG J X, WANG K S, et al. Porous graphene: properties, preparation, and potential applications[J]. Chinese science bulletin, 2012, 57(23): 2948-2955.

    [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.

    [4] RASHAD M, PAN F S, YU Z W, et al. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets[J]. Progress in natural science: materials international, 2015, 25(5): 460-470.

    [5] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.

    [6] WEJRZANOWSKI T, GRYBCZUK M, CHMIELEWSKI M, et al. Thermal conductivity of metal-graphene composites[J]. Materials & design, 2016, 99: 163-173.

    [7] YOLSHINA L A, MURADYMOV R V, KORSUN I V, et al. Novel aluminum-graphene and aluminum-graphite metallic composite materials: synthesis and properties[J]. Journal of alloys and compounds, 2016, 663: 449-459.

    [8] HUANG G, WANG H, CHENG P, et al. Preparation and characterization of the graphene-Cu composite film by electrode position process[J]. Microelectronic engineering, 2016, 157: 7-12.

    [9] SELVAM M, SAMINATHAN K, SIVA P, et al. Corrosion behavior of Mg/graphene composite in aqueous electrolyte[J]. Materials chemistry and physics, 2016, 172: 129-136.

    [10] LIU J H, KHAN U, COLEMAN J, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics[J]. Materials & design, 2016, 94: 87-94.

    [11] KIM W J, LEE T J, HAN S H. Multi-layer graphene/ copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon, 2014, 69: 55-65.

    [12] VAROL T, CANAKCI A. Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy[J]. Metals and materials international, 2015, 21(4): 704-712.

    [13] BARTOLUCCI S F, PARAS J, RAFIEE M A, et al. Graphene-aluminum nanocomposites[J]. Material science and engineering A, 2011, 528(27): 7933-7937.

    采用粉末冶金法制備了多層石墨烯/銀電接觸復合材料,并系統(tǒng)研究了多層石墨烯含量對多層石墨烯/銀復合材料微觀組織、導電率、硬度及電弧侵蝕的影響。結果表明,復合材料密度隨多層石墨烯含量的增加而減小。多層石墨烯含量為 0.5%的石墨烯/銀復合材料具有最佳的導電率,為84.5% IACS。當多層石墨烯含量高于 2.0%以后,復合材料硬度降低幅度明顯增大。多層石墨烯含量為1.5%的多層石墨烯/銀電接觸復合材料表現(xiàn)出最優(yōu)異的抗電弧侵蝕性能。

    電接觸材料;石墨烯/銀;微觀結構;硬度;電侵蝕

    TG146.3+2

    : A

    : 1004-0676(2016)02-0051-06

    石墨烯含量對多層石墨烯/銀復合材料組織和性能的影響

    王 松,王塞北,謝 明,劉滿門,李愛坤,胡潔瓊

    (昆明貴金屬研究所 稀貴金屬綜合利用新技術國家重點實驗室,昆明 650106)

    Received date: 2016-04-13

    Foundation item: National Natural Science Foundation of China (U1302272; 51267007; 51507075).

    WANG Song, male, engineer. Research direction: electrical contact material. E-mail: fenmoyejin@qq.com

    猜你喜歡
    掃描電鏡電弧導電
    故障電弧探測器與故障電弧保護裝置在工程中的應用分析
    2219鋁合金激光電弧復合焊接及其溫度場的模擬
    掃描電鏡能譜法分析紙張的不均勻性
    智富時代(2018年7期)2018-09-03 03:47:26
    掃描電鏡在雙金屬層狀復合材料生產(chǎn)和研究中的應用
    電線電纜(2017年4期)2017-07-25 07:49:48
    航空電氣系統(tǒng)中故障電弧的分析
    電子制作(2017年22期)2017-02-02 07:10:15
    TiO2/PPy復合導電微球的制備
    CPS導電回路電動斥力的仿真計算
    基于PSO-GRG的背散射模式掃描電鏡的數(shù)字處理及應用
    人體導電與低壓觸電演示儀
    弓網(wǎng)離線電弧電磁干擾機理及防護
    2021少妇久久久久久久久久久| 国产欧美亚洲国产| 日本黄色片子视频| 黄色视频在线播放观看不卡| 热99国产精品久久久久久7| 一边亲一边摸免费视频| 26uuu在线亚洲综合色| 日本与韩国留学比较| 中文字幕av成人在线电影| 午夜福利高清视频| 午夜福利网站1000一区二区三区| 亚洲av中文字字幕乱码综合| 尤物成人国产欧美一区二区三区| 国产一级毛片在线| 国产 精品1| 大香蕉97超碰在线| 亚洲欧美清纯卡通| 一区二区三区免费毛片| 国产高清国产精品国产三级 | 亚洲av中文av极速乱| 国产成人免费观看mmmm| 日韩欧美精品免费久久| 特大巨黑吊av在线直播| 日韩,欧美,国产一区二区三区| 中文字幕av成人在线电影| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 免费观看a级毛片全部| 夫妻午夜视频| 最近的中文字幕免费完整| 男女无遮挡免费网站观看| 美女脱内裤让男人舔精品视频| 日韩欧美精品v在线| 国产精品爽爽va在线观看网站| 亚洲四区av| 丝瓜视频免费看黄片| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 午夜视频国产福利| 制服丝袜香蕉在线| 大片电影免费在线观看免费| 男人和女人高潮做爰伦理| 伊人久久国产一区二区| 又粗又硬又长又爽又黄的视频| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片| 午夜免费男女啪啪视频观看| 国内精品美女久久久久久| 亚洲欧美精品专区久久| 国产成人精品福利久久| 亚洲人成网站在线播| a级毛片免费高清观看在线播放| 男女边吃奶边做爰视频| 久久久国产一区二区| 国产精品av视频在线免费观看| 国产黄色免费在线视频| 91午夜精品亚洲一区二区三区| 亚洲成色77777| 又黄又爽又刺激的免费视频.| 熟妇人妻不卡中文字幕| 日本黄色片子视频| 成人鲁丝片一二三区免费| 狂野欧美白嫩少妇大欣赏| videos熟女内射| 人妻一区二区av| 亚洲国产高清在线一区二区三| 人人妻人人澡人人爽人人夜夜| 久久久久国产精品人妻一区二区| 乱系列少妇在线播放| 天堂俺去俺来也www色官网| 日韩 亚洲 欧美在线| av又黄又爽大尺度在线免费看| 久久精品综合一区二区三区| 午夜免费鲁丝| 91在线精品国自产拍蜜月| 在线观看国产h片| 亚洲最大成人av| 欧美国产精品一级二级三级 | 一区二区三区免费毛片| 六月丁香七月| av卡一久久| 欧美xxxx黑人xx丫x性爽| 国产精品精品国产色婷婷| a级毛片免费高清观看在线播放| av在线天堂中文字幕| 青青草视频在线视频观看| 99久国产av精品国产电影| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 黄色视频在线播放观看不卡| 成年免费大片在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品一二区理论片| 成年女人看的毛片在线观看| 国产有黄有色有爽视频| 网址你懂的国产日韩在线| 另类亚洲欧美激情| 日韩电影二区| 午夜免费观看性视频| 久久亚洲国产成人精品v| 亚洲性久久影院| 久久精品熟女亚洲av麻豆精品| 国产一级毛片在线| 国内精品宾馆在线| 晚上一个人看的免费电影| videos熟女内射| 波野结衣二区三区在线| 黑人高潮一二区| 国产精品熟女久久久久浪| 久久久久久久亚洲中文字幕| 久久热精品热| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲网站| 国产欧美亚洲国产| 最近最新中文字幕免费大全7| 国产在视频线精品| 成人午夜精彩视频在线观看| 街头女战士在线观看网站| 亚洲av一区综合| 人妻少妇偷人精品九色| 99热6这里只有精品| 九色成人免费人妻av| av又黄又爽大尺度在线免费看| 国产综合精华液| 亚洲欧美一区二区三区国产| 精品视频人人做人人爽| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人久久久久久| 亚洲精品国产色婷婷电影| 亚洲av电影在线观看一区二区三区 | 老司机影院毛片| 亚洲激情五月婷婷啪啪| 午夜日本视频在线| 亚洲精品,欧美精品| 日本色播在线视频| 18禁裸乳无遮挡动漫免费视频 | 久热这里只有精品99| 日韩成人伦理影院| 黄色日韩在线| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| 亚洲伊人久久精品综合| 成人特级av手机在线观看| 欧美激情国产日韩精品一区| 亚洲在线观看片| 欧美xxⅹ黑人| 少妇的逼好多水| 男人和女人高潮做爰伦理| 成人欧美大片| 久久久久久久久久人人人人人人| 日本免费在线观看一区| 老司机影院成人| 国产 精品1| 国产精品99久久99久久久不卡 | 夫妻午夜视频| 校园人妻丝袜中文字幕| 国产亚洲精品久久久com| 热re99久久精品国产66热6| 丝袜喷水一区| 一级毛片aaaaaa免费看小| 日韩在线高清观看一区二区三区| 夜夜看夜夜爽夜夜摸| 精品人妻视频免费看| 国产精品三级大全| 一本久久精品| av线在线观看网站| 国产毛片a区久久久久| 2022亚洲国产成人精品| 国产亚洲最大av| 久久国内精品自在自线图片| 又爽又黄a免费视频| 夫妻性生交免费视频一级片| 亚洲真实伦在线观看| 亚洲精品国产色婷婷电影| 国产黄色视频一区二区在线观看| tube8黄色片| 国产成人精品福利久久| freevideosex欧美| 又粗又硬又长又爽又黄的视频| 国模一区二区三区四区视频| 国产精品伦人一区二区| 熟女av电影| 久久久亚洲精品成人影院| 亚洲欧美成人综合另类久久久| 精品一区在线观看国产| 精品久久久精品久久久| 婷婷色av中文字幕| 伦精品一区二区三区| 大话2 男鬼变身卡| 少妇丰满av| 亚洲av电影在线观看一区二区三区 | 国产精品久久久久久精品古装| 精品一区二区三卡| 精品酒店卫生间| 欧美亚洲 丝袜 人妻 在线| 欧美zozozo另类| 最近最新中文字幕大全电影3| 在线观看av片永久免费下载| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 如何舔出高潮| 日本-黄色视频高清免费观看| 亚洲最大成人av| 高清毛片免费看| 欧美xxⅹ黑人| 一区二区三区四区激情视频| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 婷婷色综合www| 久久久欧美国产精品| 久久精品国产自在天天线| 天天躁日日操中文字幕| 久久亚洲国产成人精品v| 国产精品偷伦视频观看了| 丰满乱子伦码专区| 麻豆成人午夜福利视频| 午夜精品国产一区二区电影 | 三级国产精品欧美在线观看| 777米奇影视久久| 一本久久精品| 韩国高清视频一区二区三区| 美女被艹到高潮喷水动态| 永久免费av网站大全| 国产精品秋霞免费鲁丝片| 一级毛片久久久久久久久女| 国产成人aa在线观看| 人妻 亚洲 视频| 午夜福利网站1000一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 丰满少妇做爰视频| 亚洲国产精品国产精品| 看免费成人av毛片| 精品久久久久久久久亚洲| 亚洲色图综合在线观看| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| 久久热精品热| 搡老乐熟女国产| 久久久久久久国产电影| 国产精品国产三级专区第一集| 性插视频无遮挡在线免费观看| 中文字幕久久专区| 99久久精品热视频| 少妇 在线观看| 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| 涩涩av久久男人的天堂| 男女下面进入的视频免费午夜| 精品人妻熟女av久视频| 插逼视频在线观看| 日韩成人av中文字幕在线观看| 又黄又爽又刺激的免费视频.| 国产精品成人在线| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 色哟哟·www| 欧美高清性xxxxhd video| 亚洲欧美一区二区三区黑人 | 精品午夜福利在线看| 嘟嘟电影网在线观看| 精品国产一区二区三区久久久樱花 | 在线观看一区二区三区| 国产视频内射| 中文精品一卡2卡3卡4更新| 亚洲人与动物交配视频| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 大又大粗又爽又黄少妇毛片口| 26uuu在线亚洲综合色| 国产美女午夜福利| 99re6热这里在线精品视频| 欧美日韩视频精品一区| 中国国产av一级| 禁无遮挡网站| 亚洲人成网站高清观看| av福利片在线观看| av免费在线看不卡| 最近2019中文字幕mv第一页| 全区人妻精品视频| 国产黄片视频在线免费观看| 欧美一级a爱片免费观看看| 日韩中字成人| 麻豆精品久久久久久蜜桃| 免费观看av网站的网址| 性插视频无遮挡在线免费观看| 国产精品不卡视频一区二区| 少妇的逼好多水| 老女人水多毛片| 国产 一区精品| 在线 av 中文字幕| 成人亚洲精品一区在线观看 | 亚洲,一卡二卡三卡| 国产伦精品一区二区三区四那| 色吧在线观看| 伊人久久国产一区二区| 日韩制服骚丝袜av| 久久久久久久久久久丰满| 美女主播在线视频| a级毛色黄片| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲av二区三区四区| 久久综合国产亚洲精品| 亚洲性久久影院| 久久久精品94久久精品| 成人综合一区亚洲| 国产成人91sexporn| 国产精品蜜桃在线观看| 一区二区三区精品91| 熟女人妻精品中文字幕| 亚洲av欧美aⅴ国产| 插阴视频在线观看视频| 全区人妻精品视频| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 最近中文字幕2019免费版| 在线观看一区二区三区| 观看美女的网站| 建设人人有责人人尽责人人享有的 | 一级毛片 在线播放| 好男人在线观看高清免费视频| 色5月婷婷丁香| 又大又黄又爽视频免费| 在线 av 中文字幕| 不卡视频在线观看欧美| av免费在线看不卡| 黄片无遮挡物在线观看| 久久久精品94久久精品| 国产乱来视频区| 黄色配什么色好看| 日韩伦理黄色片| 亚洲最大成人手机在线| 久久久精品免费免费高清| 蜜臀久久99精品久久宅男| 深爱激情五月婷婷| 欧美成人精品欧美一级黄| 人体艺术视频欧美日本| 九色成人免费人妻av| 乱系列少妇在线播放| 小蜜桃在线观看免费完整版高清| 亚洲av中文av极速乱| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 校园人妻丝袜中文字幕| 中文字幕人妻熟人妻熟丝袜美| 亚洲成色77777| 国产亚洲91精品色在线| 一级黄片播放器| 免费少妇av软件| 寂寞人妻少妇视频99o| 亚洲最大成人av| 99热这里只有精品一区| 国产免费一级a男人的天堂| 国产高清国产精品国产三级 | 亚洲国产色片| 精品少妇黑人巨大在线播放| av免费在线看不卡| 三级国产精品片| 99精国产麻豆久久婷婷| 久久久久久久午夜电影| 中文字幕免费在线视频6| 中文天堂在线官网| 六月丁香七月| 国产成人午夜福利电影在线观看| 视频区图区小说| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频 | 国产亚洲最大av| 日韩欧美一区视频在线观看 | 精品国产三级普通话版| 日日啪夜夜爽| xxx大片免费视频| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 欧美潮喷喷水| av一本久久久久| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 久久亚洲国产成人精品v| 一级二级三级毛片免费看| 亚洲精品一二三| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 国精品久久久久久国模美| 国产成人精品福利久久| 美女内射精品一级片tv| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 国内精品美女久久久久久| 久久久久网色| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 三级国产精品欧美在线观看| 亚洲国产色片| av在线观看视频网站免费| a级毛色黄片| 神马国产精品三级电影在线观看| 亚洲精品成人av观看孕妇| 国产极品天堂在线| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 久久久久久久大尺度免费视频| 黄片wwwwww| 亚洲美女搞黄在线观看| 亚洲av免费在线观看| 国产免费又黄又爽又色| 色哟哟·www| 欧美变态另类bdsm刘玥| 久久人人爽av亚洲精品天堂 | 精品久久久久久久久亚洲| 欧美高清性xxxxhd video| 草草在线视频免费看| 日日啪夜夜爽| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 97在线人人人人妻| 我的女老师完整版在线观看| 国产免费又黄又爽又色| a级毛片免费高清观看在线播放| 中文资源天堂在线| av国产精品久久久久影院| h日本视频在线播放| 久久久久九九精品影院| 久久热精品热| 一级av片app| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 在线观看三级黄色| 国产精品不卡视频一区二区| 69av精品久久久久久| 久久久久久久久久人人人人人人| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| 国产 一区精品| 国产91av在线免费观看| 国产成年人精品一区二区| 精品人妻视频免费看| 晚上一个人看的免费电影| 少妇人妻久久综合中文| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 国产成人freesex在线| 卡戴珊不雅视频在线播放| 全区人妻精品视频| 97精品久久久久久久久久精品| 欧美日韩在线观看h| 日本三级黄在线观看| 国产成年人精品一区二区| 国产午夜精品一二区理论片| 亚洲,一卡二卡三卡| 亚洲成人av在线免费| 在现免费观看毛片| 日日啪夜夜撸| 欧美成人午夜免费资源| 国产av不卡久久| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩卡通动漫| 国产午夜福利久久久久久| 亚洲欧美日韩另类电影网站 | 亚洲伊人久久精品综合| 成年女人在线观看亚洲视频 | 欧美日韩综合久久久久久| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 国产欧美日韩一区二区三区在线 | 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 十八禁网站网址无遮挡 | 偷拍熟女少妇极品色| 国产白丝娇喘喷水9色精品| 国产精品熟女久久久久浪| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 免费看不卡的av| 91久久精品国产一区二区成人| 一级毛片黄色毛片免费观看视频| 99热全是精品| 亚洲av成人精品一二三区| 夜夜爽夜夜爽视频| 日韩成人av中文字幕在线观看| 最近中文字幕2019免费版| 国产成人aa在线观看| 97人妻精品一区二区三区麻豆| 乱码一卡2卡4卡精品| 欧美另类一区| 伦理电影大哥的女人| 国产亚洲精品久久久com| 日产精品乱码卡一卡2卡三| 欧美高清性xxxxhd video| 国产av不卡久久| 内射极品少妇av片p| 18禁裸乳无遮挡免费网站照片| 91午夜精品亚洲一区二区三区| 美女视频免费永久观看网站| 各种免费的搞黄视频| 久久亚洲国产成人精品v| 大片免费播放器 马上看| 欧美精品人与动牲交sv欧美| 欧美3d第一页| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 六月丁香七月| 在线观看av片永久免费下载| 国产爽快片一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 精品一区二区三卡| 久久99热这里只频精品6学生| 一级毛片黄色毛片免费观看视频| 国产视频内射| 国产精品一及| av在线亚洲专区| 国语对白做爰xxxⅹ性视频网站| 男人舔奶头视频| 99久久人妻综合| 国国产精品蜜臀av免费| 三级经典国产精品| 最近的中文字幕免费完整| 成人国产麻豆网| 久热这里只有精品99| 色播亚洲综合网| 国内少妇人妻偷人精品xxx网站| 中文字幕亚洲精品专区| 国产成人福利小说| 成人免费观看视频高清| 熟女人妻精品中文字幕| 国产精品秋霞免费鲁丝片| 波多野结衣巨乳人妻| 六月丁香七月| 婷婷色麻豆天堂久久| 精品人妻一区二区三区麻豆| 一级毛片电影观看| 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 精品一区二区免费观看| 另类亚洲欧美激情| 日韩欧美精品免费久久| 久久99蜜桃精品久久| 又黄又爽又刺激的免费视频.| 超碰av人人做人人爽久久| 精品熟女少妇av免费看| 91精品国产九色| 2018国产大陆天天弄谢| 亚洲最大成人中文| 国产精品一区www在线观看| 成人国产麻豆网| 小蜜桃在线观看免费完整版高清| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级专区第一集| 中文字幕人妻熟人妻熟丝袜美| 欧美性感艳星| 欧美xxⅹ黑人| 欧美日韩亚洲高清精品| 国产av不卡久久| 成年版毛片免费区| 国产中年淑女户外野战色| 菩萨蛮人人尽说江南好唐韦庄| 小蜜桃在线观看免费完整版高清| 欧美日韩国产mv在线观看视频 | 久久人人爽av亚洲精品天堂 | 亚洲av福利一区| 黄色配什么色好看| 97精品久久久久久久久久精品| 美女国产视频在线观看| 91狼人影院| 久久久色成人| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 国产在视频线精品| 精华霜和精华液先用哪个| 国产伦精品一区二区三区四那| 好男人视频免费观看在线| 自拍偷自拍亚洲精品老妇| 亚洲人成网站高清观看| 女人十人毛片免费观看3o分钟| 日韩一本色道免费dvd| 中文字幕人妻熟人妻熟丝袜美| 综合色丁香网| 男的添女的下面高潮视频| 久久精品国产a三级三级三级| 一本色道久久久久久精品综合| 免费少妇av软件| 一级毛片电影观看| 欧美人与善性xxx| 毛片一级片免费看久久久久| 色网站视频免费| 男人和女人高潮做爰伦理| 国产精品国产三级专区第一集| 久久久久久久国产电影| www.色视频.com| 中文字幕久久专区| 国产男女内射视频| 日韩欧美一区视频在线观看 | 十八禁网站网址无遮挡 | 舔av片在线| 亚洲欧美一区二区三区黑人 | 黄色视频在线播放观看不卡| 国产精品久久久久久精品电影| 特级一级黄色大片| 日韩 亚洲 欧美在线| 99久久中文字幕三级久久日本| 中文资源天堂在线| 亚洲国产精品成人久久小说|