【作 者】邵鴻,戴剛,李玉吉
1 甘肅中醫(yī)藥大學,蘭州市,730000
2 甘肅省中醫(yī)院,蘭州市,730050
關節(jié)軟骨組織工程支架材料的研究進展
【作 者】邵鴻2,戴剛2,李玉吉2
1 甘肅中醫(yī)藥大學,蘭州市,730000
2 甘肅省中醫(yī)院,蘭州市,730050
近年來因創(chuàng)傷或骨病等所致關節(jié)軟骨損傷在臨床上十分常見。當前針對關節(jié)軟骨損傷治療方法很多,然而各自都有其局限性。隨著納米技術和仿生技術的發(fā)展,應用組織工程技術在關節(jié)軟骨損傷治療中的支架材料具有舉足輕重的作用,其中復合材料的研究和開發(fā)是熱點,充分應用納米技術和仿生技術前景廣闊。
關節(jié)軟骨;組織工程;支架材料;納米技術;仿生技術
近年來因創(chuàng)傷或骨病等所致關節(jié)軟骨損傷在臨床上十分常見,因為沒有血管、神經(jīng)支配和淋巴回流,所以軟骨磨損退變或缺損超過2 mm直徑后恢復到原來的結構和狀態(tài)非常困難,修復能力有限[1]。以前采用微骨折術等方法治療關節(jié)軟骨損傷,但是大部分均使用纖維軟骨,并沒有形成透明軟骨[2]。隨著組織工程技術研究的深入,治療關節(jié)軟骨損傷的方法有了很大發(fā)展。
目前組織工程技術主要從支架材料、有軟骨分化能力的種子細胞和細胞調(diào)節(jié)生長因子[3]三個方面深入研究,支架材料不僅為種子細胞提供了新陳代謝的場所,同時也為細胞調(diào)節(jié)生長因子提供暫時的接合點,是二者修復損傷軟骨的載體。支架材料要求有優(yōu)良的孔隙率,力學性能佳,生物相容性好,機械支撐好,具有一定的彈性,不易脫落,不引起排斥反應等特點,支架材料在關節(jié)軟骨組織工程技術中具有至關重要的作用。
天然支架有膠原、殼聚糖、透明質(zhì)酸、藻酸鹽、纖維蛋白、脫細胞軟骨基質(zhì)、硫酸軟骨素等[4],具有生物相容性好,毒副作用小,易降解,并且降解產(chǎn)物易吸收等優(yōu)勢[5]。其中膠原支架對細胞黏附具有突出作用,殼聚糖支架生物相容性和降解性好,且其降解產(chǎn)物體內(nèi)不蓄積[6]。但天然支架有力學性能差、來源有限、降解速度快等缺點。
目前對膠原、殼聚糖、藻酸鹽、透明質(zhì)酸等及其衍生物的研究是熱點。國外Crawford DC等[7]通過臨床試驗證實采用軟骨細胞膠原復合物治療關節(jié)軟骨損傷療效滿意。Correia CR等[8]采用殼聚糖/透明質(zhì)酸支架材料顯示透明質(zhì)酸的加入可有效提高殼聚糖的力學強度,軟骨細胞在復合支架材料上的黏附、增殖和分化能力得到明顯增強,同時促進了軟骨細胞外基質(zhì)的形成。此外有研究發(fā)現(xiàn)在藻酸鹽凝膠輔助下種子細胞能持續(xù)釋放生長因子,促進細胞增殖[9]。雖然有關天然支架材料研究很熱,但是其抗原性消除不確定、機械強度較差等問題依然是影響其研究的瓶頸。近年來人們開始逐漸將天然支架材料的優(yōu)點歸并,其中MintzBR等[10]提出混合透明質(zhì)酸水凝膠/聚(ε-caprolactone)支架促進了細胞外基質(zhì)的形成,提供了機械良好的軟骨組織工程研究的材料。許多專家傾向于天然支架材料復合物的研究,將天然支架材料的缺點消弭,同時通過耦合將它們優(yōu)點發(fā)揮到極致。
人工合成支架材料有聚乳酸(polylactic acid,PLA)、聚羥基乙酸(polyglycolic acid,PGA)、PLA-PGA復合物[poly(lactic-co-glycolic acid),PLGA]、聚氧化乙烯、聚乙烯醇、聚環(huán)氧乙烯、聚已內(nèi)酯等,主要包括有機高分子材料和無機高分子材料兩類。人工合成支架具有降解時間可調(diào)控,來源不受限制,物理機械性能好等優(yōu)點,國外有人提出一種創(chuàng)新和簡易的聚乙烯醇(PVA)/細胞外基質(zhì)(ECM)支架可以促進軟骨再生,Qi Y等[11]認為在兔模型上利用間充質(zhì)干細胞和聚乳酸-聚羥基乙酸(PLGA)支架能修復軟骨缺損。盡管經(jīng)過諸多研究使得人工合成支架材料生物相容性改善,如使用聚乙烯醇-聚乳酸水凝膠,由于其含水量高適合關節(jié)軟骨修復,生物相容性相對較好。但其生物相容性終究不如天然支架材料,降解速度難以控制,易引起炎癥反應,引起免疫排斥反應后又破壞支架結構等缺陷[12],因此在人工合成支架材料研究方面,目前研究者大都致力于改善和提高人工合成支架材料的生物相容性研究。
復合材料支架兼有上述二者的優(yōu)點,雖然復合材料支架不同材料的制取及配比難以把握,但復合材料支架依然是研究熱點。國外Almeida HV等[13]提出cartilage-ECM-derived支架能促進軟骨形成,收縮率小,可以保留許多合成硫酸黏多糖,這一支架可作為生長因子輸送系統(tǒng)用于關節(jié)軟骨的再生。Lin H等[14]提出VL-photocrosslinked mGL支架是一個有前途的關節(jié)軟骨細胞修復方法,其中甲基丙烯酸酯膠(mGL)具有可注射性和生物可降解性。有的專家[15]提出使用膠原蛋白/聚乳酸(PLA)復合支架來修復關節(jié)軟骨的缺損,為軟骨組織工程微觀結構的分析提供了條件。由此可見復合材料支架均不同程度地改善和提高了支架機械強度、生物可降解性等,其中天然支架材料和人工合成支架材料的選擇也多樣化,研究者通過不同配比比例,企圖實現(xiàn)二者結合后的最優(yōu)化。甚至出現(xiàn)三者結合的復合材料支架,如Zhu Y等[16]提出膠原蛋白/chitosan-polycaprolactone(CH-PCL)/硫酸軟骨素(CS)復合材料支架適用于關節(jié)軟骨修復。
水凝膠材料可以提供細胞代謝的微環(huán)境,尤其雙極性類似軟骨材料成為又一研究的熱點。其中Hong HJ等[17]在兔模型上利用同種異體軟骨細胞、纖維蛋白/透明質(zhì)酸(HA)水凝膠和可降解多孔聚乳酸-聚羥基乙酸(PLGA)支架進行部分氣管重建試驗,術后6~10周兔子顯示無任何呼吸窘迫的跡象。同時,研究者逐漸重視復合材料支架的孔隙,在控制孔隙率、孔隙的形狀、孔隙的尺寸等方面研究較多,希望能夠制備孔隙完全連通的多孔結構支架。
納米技術支架在軟骨組織工程上有獨特的潛力,尤其碳納米管表現(xiàn)出內(nèi)在獨特的物理和化學性質(zhì),其刺激軟骨細胞生長和修復。有的專家[18]提出碳納米復合材料可以為軟骨組織工程支架提供一種改進的刺激軟骨細胞生長的基質(zhì),可以使支架的結構有良好的力學性能。納米技術支架雖然支架纖維孔徑小,不利于細胞生長,但是可以構造出類細胞外基質(zhì)的結構和功能[19],具有表面效應、小尺寸效應和宏觀量子隧道效應等特性。Valiani A等[20]提出一種新型的納米復合凝膠水溶性碳納米管和海藻酸,利用三維支架在促進軟骨形成的基因表達方面效果明顯。
仿生材料支架結構類似于天然正常人體的關節(jié)軟骨結構[21],可以很好地促進損傷軟骨修復,保持軟骨細胞表型,在軟骨組織仿生分層設計、制備工藝以及最優(yōu)化其生物性能的方面成為了新的研究熱點。有學者提出根據(jù)需要或者通過利用能夠負載活性細胞和治療藥物的可注射凝膠支架材料,構造納米纖維結構仿生支架等[22],其具有類細胞外基質(zhì)結構和功能。Zhu Y等[23]提出分層制造膠原蛋白/Chitosanpolycaprolactone(CH-PCL)支架仿生微體系結構。該支架部分類似于關節(jié)軟骨細胞外基質(zhì)成分,多孔微體系結構、含水量和壓縮力學性能表明它們在關節(jié)軟骨修復方面有很大的應用潛力。
3D打印技術根據(jù)計算機輔助設計利用細胞、生物粘合劑、細胞因子構架復雜組織[24]。
Chen C等[25]提出基于三維印刷技術的軟骨修復,使用三維打印技術制造仿生的軟骨復合支架。近年來有研究者認為3D打印技術與靜電紡絲法結合可以提高復合材料支架的機械性能,加速復合材料支架的降解。因此3D打印技術為尋求理想便捷的復合材料支架提供了新的選擇。
隨著組織工程和其他學科的聯(lián)系日益密切,在實驗和臨床上出現(xiàn)了多學科交叉現(xiàn)象,在新的支架材料的開發(fā)研究上開辟了新天地。Sharma等[26]提出結合微骨折術,利用具有光反應性的水凝膠材料,來修復損傷的透明軟骨。有報道認為損傷軟骨下鉆孔使用富含血小板plasma-immersed聚合物,植入后有再生軟骨形成,明顯改善了病人的情況[27]。許多研究者通過不懈努力,旨在提高支架材料的生物性能,有人[28]提出在未來大孔可調(diào)支架對軟骨缺損修復很有潛力,其可促進軟骨細胞播種和擴散。而Filardo G等[29]建議在手術過程中使用纖維蛋白膠用于改善術后早期C-HA支架的穩(wěn)定性和完整性。由此可見,在治療關節(jié)軟骨損傷方面表現(xiàn)出了多元化,相關技術的應用還需不斷努力探索。
關節(jié)軟骨支架材料都有各自的優(yōu)點和缺點,通過利用細胞外基質(zhì)材料、人工合成材料、仿生材料等構造修復軟骨支架材料是當前較熱的研究內(nèi)容之一。隨著材料增多和制備工藝發(fā)展,需要開發(fā)新技術和優(yōu)化當前的技術,取長補短,更多的為臨床服務。隨著現(xiàn)代醫(yī)學技術的發(fā)展,在治療關節(jié)軟骨損傷方面已取得巨大成就,臨床上應根據(jù)患者年齡、軟骨組織受傷的起源、癥狀持續(xù)時間、病變部位、病灶大小、損傷程度等具體情況,采用最優(yōu)個體化治療方案,針對性地選擇最有利于病情康復的軟骨修復支架材料。復合材料特別是在材料制備的工藝和優(yōu)化性能組合方面有待進一步深入研究,納米技術和仿生技術等在關節(jié)軟骨支架材料的開發(fā)應用上前景廣闊。
[1] Jin GZ, Kim HW. Porous microcarrier-enabled three-dimensional culture of chondrocytes for cartilage engineering: a feasibility study[J].Tissue Eng Regen Med, 2016, 13(3): 235-241.
[2] Hubka KM, Dahlin RL, Meretoja VV, et al. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchyma stem cells[J]. Tissue Eng Part B Rev, 2014, 20(6): 641-654.
[3] Kontturi LS, Jarvinen E, Muhonen V, et al. An injectable, in situ forming type II collagen/ hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering[J]. Drug Deliv Trans Res, 2014,4(2):149-158.
[4] Rodrigues MN, Oliveira MB, Costa RR,et al. Chitosan/chondroitin sulfate membranes produced by polyelectrolyte complexation for cartilage engineering[J]. Biomacromolecules, 2016, 7(6): 2178-2188.
[5] Liao J, Shi K, Ding Q, et al. Recent developments in scaffold-guided cartilage tissue regeneration[J]. J Biomed Nanotechnol, 2014, 10(10): 3085-3104.
[6] Rodríguez-Vázquez M,Vega-Ruiz B, Ramos-Zúniga R,et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine[J]. Biomed Res Int, 2015, 2015(3): 1-15.
[7] Crawford DC, Heveran CM, Cannon WD, et al. An autologous cartilage tissue implant neocart for treatment of grade Ⅲ chondral injury to the distal femur: prospective safety trial at 2 years[J]. Am J Sports Med, 2009, 37(7): 1334-1343.
[8] Correia CR, Moreira-teixeirals, Moroni L, et al. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering[J]. Tissue Eng Part C Meth, 2011, 17(7): 717-730.
[9] Florczyk SJ, Leung M, Jana S, et al. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor[J]. J Biomed Mater Res A, 2012, 100(12): 3408-3415.
[10] Mintz BR, Cooper JA. Hybrid hyaluronic acid hydrogel/poly(εcaprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies[J]. J Biomed Mater Res A, 2014, 102 (9): 2918-2926.
[11] Qi Y, Du Y, Li W, et al. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1424-1433.
[12] Naranda J,Susec M,Maver U, et al. Polyester type PolyHIPE scaffolds with an interconnected porous structure for cartilage regeneration[J]. Sci Rep, 2016, 24(6): 1-11.
[13] Almeida HV, Liu Y, Cunniffe GM, et al. Controlled release of transforming growth factor-β3 from cartilage-extra-cellularmatrix-derived scaffolds to promote chondrogenesis of humanjoint-tissue-derived stem cells[J]. Acta Biomater, 2014, 10 (10): 4400-4409.
[14] Lin H, Cheng AW,Alexander PG,et al. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-lightactivated gelation capability in both air and aqueous solution[J]. Tissue Eng Part A, 2014, 20 (17-18): 2402-2411.
[15] Haaparanta AM, Jarvinen E, Cengiz IF, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/ chitosan/PLA hybrid scaffolds for cartilage tissue engineering[J]. J Mater Sci Mater Med, 2014, 25 (4): 1129-1136.
[16] Zhu Y,Wan Y, Zhang J,et al. Manufacture of layered collagen/ chitosan-polycaprolactone scaffolds with biomimetic microarchitecture[J]. Colloids Surf B Biointerfaces, 2014, 11(33): 352-360.
[17] Hong HJ, Chang JW, Park JK, et al. Tracheal reconstruction usingchondrocytes seeded on a poly(L-Lactic-Co-Glycolic Acid)-fbrin/ hyaluronan[J]. J Biomed Mater Res A, 2014,102(11): 4142-4150.
[18] Chahine NO, Collette NM,Thomas CB, et al. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization[J].Tissue Eng Part A, 2014, 20(17-18): 2305-2315.
[19] Uchida N,Sivaraman S, Amoroso NJ, et al. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications[J]. J Biomed Mater Res A, 2016, 104(1): 94-103.
[20] Valiani A, Hashemibeni B, Esfandiary E, et al. Study of carbon nano-tubes effects on the chondrogenesis of human adipose derived stem cells in alginate scaffold[J]. Int J Prev Med, 2014, 5(7): 825-834.
[21]Levingstone TJ, Matsiko A, Dickson GR, et al. A biomimetic multilayered collagen-based scaffold?for osteochondral repair[J]. Acta Biomater, 2014, 10(5): 1996-2004.
[22] Shao W, He J, Han Q, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and tussah silk fbroin as a scaffold for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67(1): 599-610.
[23] Zhu Y,Wu H, Sun S, et al. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix[J]. J Mech Behav Biomed Mater, 2014, 36(8): 32-46.
[24] Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering[J]. J Med Biol Eng, 2015, 35(3): 285-292.
[25] Chen C, Bang S, Cho Y, et al. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modifcation, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone[J]. Biomater Res, 2016, 20(10): 1-7.
[26] Sharma B, Fermanian S, Gibson M, et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite[J]. Sci Trans Med, 2013, 5(167): 166-167.
[27] Siclari A, Mascaro G, Gentili C, et al. Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasmaimmersed polymer-based implant[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1225-1234.
[28] Ng KW, Torzilli PA,Warren RF,et al. Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects[J]. J Tissue Eng Regen Med, 2014, 8(2): 164-168.
[29] Filardo G, Kon E, Perdisa F, et al. Osteochondral scaffold reconstruction for complex knee lesions:a comparative evaluation[J]. Knee, 2013, 20(6): 570-576.
Research Progress of Articular Cartilage Scaffold Materials for Tissue Engineering
【 Writers 】SHAO Hong1, DAI Gang2, LI Yuji2
1 Gansu University of Traditional Chinese Medicine, Lanzhou, 730000
2 Gansu Province of Traditional Chinese Medicine, Lanzhou, 730050
Articular cartilage injury is common in clinical in recent years, due to the trauma or bone disease. There are many methods for the repair of articular cartilage injury currently, but each has its limitations. With the development of nanotechnology and bionic-technology, the scaffold plays an important role with tissue engineering technique in the repair of articular cartilage injury, in which the composite materials are the hot direction of the research and development, the full application of nanotechnology and bionic-technology prospect in the future.
articular cartilage, tissue engineering, scaffold material, nanotechnology, bionic technology
R318.08
A
10.3969/j.issn.1671-7104.2016.06.009
1671-7104(2016)06-0425-03
2016-04-11
國家自然科學基金地區(qū)項目(31360230);甘肅省科技重大專項(1203FKDA036)
邵鴻,E-mail: 1871569165@qq.com
戴剛,E-mail: Daigang60@163.com