• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling Decision-making Behavior Based on keg-BDI Agents*

    2016-02-02 10:45:36XiaojunZhang
    邏輯學研究 2016年1期

    Xiaojun Zhang

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    Fujian Provincial Key Laboratory of Brain-Like Intelligent Systems

    zhangxj566@163.com

    Baoxiang Wu

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    495171973@qq.com

    ?

    Modelling Decision-making Behavior Based on keg-BDI Agents*

    Xiaojun Zhang

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    Fujian Provincial Key Laboratory of Brain-Like Intelligent Systems

    zhangxj566@163.com

    Baoxiang Wu

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    495171973@qq.com

    Abstract.Inthispaperweextendtherangeoftruthvalueofinfinite-valued?ukasiewiczlogic from[0,1]to[-1,1],and propose an extended emotional graded BDI logic,i.e.,keg-BDI logic that is based on this extended ?ukasiewicz logic and propositional dynamic logic to formalize knowledge states,mental states(such as belief,desire,intention)and emotional states(such as fear,anxiety and self-confidence)which influence on the keg-BDI agent’s decision-making behavior.This behavior is determined by the different measure of each context that is added by concrete conditions.After presenting the language and semantics of keg-BDI logic and illustratingrelationshipsbetween/amongcontextsforthekeg-BDIagent,anexampleofmilitary decision-making behavior is given.This study will provide a formal support for distributed artificial intelligence and military simulation.

    1 Introduction

    The formalization of BDI(Belief-Desire-Intention)agents is a topic of continuing interest in Artificial Intelligence about how mental states(such as belief(B),desire(D)and intention(I))and actions influence each other.Research on this subject has held the limelight ever since the pioneering work of Bratman([4])which lays the foundation of BDI approach to describe artificial agent behavior.Then researches try to formalize Bratman’s theory using many logical ways.There are three well-known approaches:the first one is based on a linear-time style temporal logic([8]),the second one is based on the branching-time temporal logic([17]),the third one takes propositional dynamic logic as a basis instead of a temporal logic([25]).Over the years important contributions have been made on both mental aspects like desire and intention([17,18,19]),and informational aspects like knowledge and belief([11,23,24,25,26]).Recent developments include the work on graded BDI models for agent architectures([5,6,7,9,28]),formal modelling of emotions in BDI agents([14,21]),and modelling emotional agents based on graded BDI architectures([27]),and many others([15,22]).

    Whenbuildingemotionalagents,theBDImodelhasbeenprovedtobeoneofthe best options one can select.For example,Emotional-BDI logic presented by Pereira et al.illustrates that agents’behavior is guided not only by beliefs,desires and intentions,but also by the role of emotions in reasoning and decision-making([13,12,14]).KARO logic for emotional agents based on dynamic logic deals with the behavior of rational agents([20]).The strongly related work by Adam et al.is devoted to a formalization of OCC emotions in BDI terms([1,2]).The Emotional-BDI agent models developed by Puic? integrates emotions,resources,and personality features intoartificialintelligentsoastoobtainahuman-likebehaviorofthisagent([16]).The generic model for decision making of virtual agents in relation to emotions and trust takes the BDI framework as point of departure,and extends this with mechanisms to represent the dynamics of emotions and trust.The model has been tested by means of simulation experiments,and then been successfully incorporated into the virtual agents with the RoboCup 2D soccer environment([3]).

    In our research([27])we defined an emotional graded BDI logic(eg-BDI logic forshort)forrationalagents,i.e.,alogicthatisusedtospecify,andtoreasonaboutthe behavior of rational agents.In our framework we concentrated on how mental states (such as belief,desire and intention)and emotional states(such as fear,anxiety and self-confidence)influence the agent’s behavior.In the basic architecture,we blend the infinite-valued ?ukasiewicz logic and propositional dynamic logic to formulize the emotional graded BDI agents.

    The aim of this paper is a formalization of decision-making behavior based on the framework mentioned above,i.e.,eg-BDI logic.This paper can for instance be modelled that an agent knows that some action is a correct plan to achieve her goal since she knows that performing the action will lead to the goal,and that she knows some action is a feasible plan since the agent knows of her ability to perform the action.In subsequent research,we extend the eg-BDI logic with modal operators for knowledge.

    Not all knowledge is trivial.In order to simplify the model,we focus only on the critical knowledge which has a significant impact on the agent’s decision-making behavior.We directly use Kφ to say that the agent knows the critical knowledge φ. The knowledge which prompts the agent to take actions is called positive knowledge,and the knowledge which prevents the agent to take actions is called negative knowledge.Correspondingly,there are positive and negative critical knowledge.Similarly,there are positive and negative desires.At present,the vast majority of scholars suchas Pereira et al.([23])introduce positive and negative desire operators at the same time to handle desires.Therefore,even if the factors with which we are dealing are not too much,the model is too complicated.

    In order to reduce the number of modal operators that we introduce,and to simplify the model and able to handle more factors,it is necessary for us to extend the range of value of the infinite-valued ?ukasiewicz logic from[0,1]to[-1,1].Thus,we need a unified provisions:the range of truth value corresponding to the positive factorswhichprompttheagenttotakeactionsis[0,1],andtherangeoftruevaluecorresponding to the negative factors which prevent the agent to take actions is[-1,0].

    The rest of the paper is organized in the following way:in Section 2 we define the keg-BDI logic.This new logic is based on eg-BDI logic([27])and we begin by presenting the new modal operators for critical knowledge that were added.Besides the syntax and semantics of keg-BDI logic,we present the axiom systems for the new modal operators.In Section 3 we illustrate the relationship between/among contexts for knowledge states,mental states and emotional states.An application of the keg-BDI agent for military decision-making behavior is given in Section 4.In Section 5,and finally,we present some conclusions about this work and point some topics for ongoing and future lines of work in the keg-BDI logic.

    2 keg-BDI Logic

    The keg-BDI logic is a multi-modal and multi-valued logic which combines the above Extended infinite-valued ?ukasiewicz Logic(ELL for short)and Propositional Dynamic Logic(PDL for short).([13])The formal semantics of keg-BDI logic is based on Kripke models with accessibility relations between possible worlds which correspond to different knowledge states,mental states and emotional states.

    2.1The keg-BDI Language

    Wedefinemodaloperatorsforrepresentingtheknowledgestatesofcriticalknowledge(K),the mental states of belief(B),desire(D)and intention(I),and emotional states of fear,anxiety and self-confidence in ELL.Now we define the language Lkeg-BDIby adding action modalities of the form[α]where α is an action,and seven fuzzy modal operators K,B,D,I,F(xiàn)ear,Anx and SConf to the classical propositional language L:

    Kφ,Bφ,Dφ and I mean that“φ is known”,“φ is believable”,“φ is desired”and“φ is intended”,respectively,and their truth degrees refer to the agent’s level of satisfaction when becomes true.The meanings of Fearφ,Anxφ and SConfφ are similar to Bφ,Dφ and Iφ.

    Similar to the language Leg-BDI,the language Lkeg-BDIhas two sorts of expressions,that is,propositions φ,ψ,...and actions α,β,...,Φ0and Φ refer to the setof all atomic propositions and of all propositions,respectively,and Π0and Π refer to the set of all atomic actions and of all actions(including atomic actions and plans which are composite actions),respectively.Formulae can be inductively built from the atomic ones using connectives and mixed operators,that is,?(negation),→(implication),[](necessity)and?(test).Otherconnectivescanbedefinedfrom?and→. And then actions can be inductively built from the atomic ones using the following action operators:;(composition),∩(nondeterministic choice)and?(iteration),and the mixed operator?.

    Definition 1Formulae are definable inductively as follows:

    φ::=φ|?φ|φ→ψ|[α]φ|Kφ|Bφ|Dφ|Iφ|Fearφ|Anxφ|SConfφ In definition 1,[α]φ means that φ is necessarily true after performing the action α.

    Definition 2Actions are definable inductively as follows:

    α::=α0|α;β|α∪β|α?|φ?

    Here iterated actions αn(with n≥0)can be inductively defined by α0=id,and αn+1=α;αn.

    Now we define a modal context language for ΣC(here Σ∈{K,B,D,I,F(xiàn)ear,Anx,SConf}),and use the connectives of the above extended infinite-valued ?ukasiewicz logic to build Σ-modal from elementary modal formulae and truth constants rc,for each rational r∈[-1,1]:

    (1)if φ∈Lkeg-BDI,then φ,Σφ∈ΣC;

    (2)if r∈Q∩[-1,1],then rc∈ΣC(Q is the rational set);

    (3)if Σφ,Σψ∈ΣC,then Σφ∧Σψ∈ΣC and Σφ→LΣψ∈ΣC.

    For example,if Σ=K and φ∈Lkeg-BDI,then φ,Kφ∈KC by clause(1).If Σ=K and Kφ,Kψ∈KC,then Kφ∧Kψ∈KC and Kφ→LKψ∈KC by clause(3).The other cases are similar.In clause(3),→Land∧are similar to the implication and conjunction of ?ukasiewicz logic,respectively.The truth value of Σφ→LΣψ is 1 if and only if the truth value of Σφ is greater or equal to that of Σψ. rc→LΣφ means that the probability of φ is at least rc,which is denoted as(Σφ,rc).

    In order to make?Σφ become a two-valued Boolean formula,we use ?ukasiewicz logic extended with a new unary connective?(known as Baaz’s connective). For any modal formula Σφ,if the truth value of Σφ is smaller than 1,then?Σφ gets value 0;otherwise,if of Σφ is 1,then?Σφ gets value 1.

    2.2The keg-BDI Semantics

    Differentpossibleworldscorrespondtodifferentknowledgestates,mentalstates and emotional states.As in usual in modal logics,the formal semantics of keg-BDIlogic is based on Kripke models.By adding the structure and function λ that handles knowledge to the Emotional Graded BDI model,that is,a 9-tuple Kripke structure F=〈W,υ,ρ,τ,θ,{μw}w∈W,ε,η,κ〉([27]),we can define a 10-tuple Kripke structure F=〈W,υ,ρ,τ,θ,{μw}w∈W,λ,ε,η,κ〉where:

    (4)W is a set of possible worlds,and w,w′∈W ?=?;

    (5)υ:Φ×W → {0,1}assigns a Boolean evaluation to each φ∈Φ and w∈W,and υ(φ,w)∈{0,1};

    (6)ρ:2W→[0,1]is a finitely additive probability measure on subsets of W,and for φ∈Φ0,{w|υ(φ,w)=1}is measurable;

    (7)τ:Π0→2W×Wgivesasetofpairsofworldsreferringtoworldtransitions for each atomic action;

    (8)θ:W →[-1,1]is a distribution of pover possible worlds,and |θ(w)|<|θ(w′)|means that w′is more preferred than w;

    (9)μw:W → [-1,1]is a possibility distribution,for each w∈W.Where μw(w′)∈[-1,1]is the degree on which the agent may try to reach w′from w;

    (10)λ:W→ [-1,1]is a distribution of knowledge over possible worlds,|λ(w)|<|λ(w′)|means that w′is greater impacted on w;

    (11)ε:W →[-1,1]isadistributionoffearoverpossibleworlds,and|ε(w)|< |ε(w′)|means that w′is more feared than w;

    (12)η:W → [-1,1]is a distribution of anxiety over possible worlds.And |η(w)|<|η(w′)|means that w′is more anxious than w;

    (13)κ:W →[-1,1]is a distribution of self-confidence over possible worlds. And|κ(w)|<|κ(w′)|means that w′is more self-confident than w.

    Lkeg-BDIcan be defined by extending L using action modalities and classical connectives.And Σ-formulae(here Σ∈{K,B,D,I,F(xiàn)ear,Anx and SConf})are defined by extending ?ukasiewicz logic as follows:

    (14)υ(Σφ,w)=ξ({w′∈W|υ(φ,w′)=1},for each φ.Here ξ∈{ρ,θ,μw,λε,η,κ};

    (15)υ(rc,w)=r,for all r∈Q∩[-1,1];

    (16)υ(Σφ&Σψ,w)=max(υ(Σφ)+υ(Σψ)-1,0);

    (17)υ(Σφ→LΣψ,w)=min(1-υ(Σφ)+υ(Σψ),1);

    (18)‖Σφ‖F(xiàn)=tdw∈Wυ(Σφ,w),where‖Σφ‖F(xiàn)is the truth degree of a formula Σφ in the Kripke structure F=〈W,υ,ρ,τ,θ,{μw}w∈W,λ,η,ε,κ〉;

    (19)if υ(Σφ,w)=1,then υ(?Σφ,w)=1;

    (20)if υ(Σφ,w)?=1,then υ(?Σφ,w)=0;

    (21)td?=1;

    (22)for all w∈W,υ(Σ⊥,w)=1.In clauses(18)and(21)td refers to the truth degree of a formula Σφ in the Kripke structure F= 〈W,υ,ρ,τ,θ,{μw}w∈W,λ,η,ε,κ〉.The evaluation of Σ-formulae just depends on the formula itself—represented in its corresponding measure over possible worlds where the rational agent is situated.

    2.3Axioms,Rules,Soundness and Completeness for keg-BDI Logic

    Similar to eg-BDI semantics,keg-BDI semantics is just augmented with modal operators for knowledge.The important difference is that the range of truth value in eg-BDI logic∈[0,1],while the range of truth value in keg-BDI logic∈[-1,1]. Therefore,we can get the axioms and rules for keg-BDI logic only adding the ones aboutknowledge.Bothofthemarealmostexactlythesame.Andtheotherdifference is that in the eg-BDI logic Σ∈{B,D,I,F(xiàn)ear,Anx,SConf}([27]),while in the keg-BDI logic Σ∈{K,B,D,I,F(xiàn)ear,Anx,SConf}.In other words,Σ can get value K in the latter.The axioms for keg-BDI logic are composed of axioms of Classical Propositional Logic for the non-modal formulae and axioms of the ?ukasiewicz logic for modal formulae,and axioms for Σ over propositional dynamic logic.

    The keg-BDI logic is sound and complete.Its proof is almost exactly the same as that of eg-BDI logic,that is,by embedding of keg-BDI logic into ?ukasiewicz logic and propositional dynamic logic which are sound and complete(cf.,[3]and [10],respectively).Of course,in terms of the soundness and completeness result of eg-BDI logic([27]),we can straightforwardly prove soundness and completeness for the keg-BDI logic by embedding of keg-BDI logic into eg-BDI logic.

    3 Relationship between/among Contexts for the keg-BDI Agent

    According to the knowledge states,mental states and emotional states of the keg-BDI agent,and the possible transformations by performing actions,the planner can build plans generated from actions to fulfill her desires.Relationships among K,D,B,F(xiàn)ear,Anx,SConf,and P contexts are as follows:

    (23)ifK:(K([α]φ,k)),D:???(Dφ,d),B:(B([α]φ,b)),F(xiàn)ear:(Fear(φ,f)),Anx:(Anx(φ,a)),SConf:(SConf(φ,s))andP:action(α,Pre-,Costα),then P:plan(φ,action(α,Pre-,Costα),b)where:

    α∈Π0is an atomic action.The knowledge degrees k in K([α]φ,k)refers to the probability which the agent will take actions α after she knows φ.The other cases are similar.Pre-are the preconditions of the action α,and Costα∈[-1,1]is the associated cost according to the action α involved;k,b,f,a and s∈[-1,1]are respectively knowledge,belief,fear,anxiety,and self-confidence degree of actually achieving φ by performing α.Action(α,Pre-,Costα)expresses an atomic action,and plan(φ,action(α,Pre-,Costα),r)a plan which is a composite action whichallows the agent to move from its current world to another.It is assumed that the current state of the world must satisfy the preconditions,and that the plan must make true the desire that the plan is built for.

    We can use the intention degree to trade off the benefit and the cost of achieving a goal,thus for each composite action α which allows to reach the goal,the degree of Iφ can be deduced from the degree of Kφ,Dφ,F(xiàn)earφ,Anxφ,SConfφ and the cost of a plan that satisfies the desire φ.That is,the degree of Iφ is calculated by a function F as follows:

    (24)ifK:(K([α]φ,k)),D:(Dφ,d),B:(B[α]φ,b),F(xiàn)ear:(Fear([α]φ,f)),Anx:(Anx([α]φ,a)),SConf:(SConf([α]φ,s))and P :plan(φ,action(α,Pre-,Costα),b),then I:(Iφ,F(xiàn)(k,d,b,f,a,s,Costα)).

    Different functions F(k,d,b,f,a,s,Costα)may model different decision-making behavior.It is assumed that the agent full beliefs in achieving φ after performing α,the degree of the intention to bring about φ mainly depends on the satisfaction and the degree of Kφ,Dφ,F(xiàn)earφ,Anxφ,SConfφ and Costαthat it bring the agent. It is needed to find what kind of the relationship between/among i,k,d,f,a,s,b and Costα.The degree of intention can be the ultimate embodiment of knowledge states,the other mental states,and emotional states.

    We can assign different weights to knowledge states,mental states,and emotional states according to their influence on the degree of the intention.The weights allow simple revisions and frequent modifications according to the information about the keg-BDI agent.For example,after a preliminary study,for the military decisionmaking behavior examined in this paper,we assign respectively weights to k,d,b,f,a,s and Costα0.13,0.26,0.22,0.09,0.08,0.15 and 0.07.Thus,the function F(k,d,b,f,a,s,Costα)can be defined as follows:

    (25)F(k,d,b,f,a,s,Costα)=0.13k+0.26d+0.22b+0.09f+0.08a+ 0.15s+0.07Costα.

    If the agent intends φ at imax,then the rational agent will choose the best plan.Therefore:

    (26)if I:(Iφ,imax),and P :bestplan(φ,action(α,Pre-,Costα),r),then C:C(does(α)).

    4 An Example of Military Decision-making Behavior for the keg-BDI Agent

    Now we instruct a keg-BDI agent to look for a military decision-making package.We assign to the agent the following critical knowledge:enemy reinforcements having arrived in time;having got the enemy garrison chart;and having got the enemy’s battle scheme.At the same time,we assign to the agent the following desires:fewer casualties;shorter battle time;and the battle sites from an assumed location no more than 500 nautical miles.And then,we instruct the agent with the three emotions:fear of being surrounded;anxiety of that command system is destroyed;and self-confidence of wining the final victory.In order to determine which battle scheme is better,the agent will have to take into consideration the critical knowledge,the benefit(with respect to fewer casualties,shorter battle time and wining the final victory),fear,anxiety and the cost of the battle.In this scenario,different decisionmaking behavior is to choose a different battle scheme,and the chosen schemes are as follows:

    (27)Π0={scheme-A,scheme-B,scheme-C,scheme-D,scheme-E}.

    In this case,KC,BC,DC,F(xiàn)earC,AnxC,SConfC and PC contexts are as follows:

    Knowledge Contexts(KC):The agent has the following critical knowledge:

    (28)K([scheme-A]enemy reinforcements having arrived in time,k1=-0.88);

    (29)K([scheme-B]enemy reinforcements having arrived in time,k1=0.73);

    (30)K([scheme-C]enemy reinforcements having arrived in time,k1=0.53);

    (31)K([scheme-D]enemy reinforcements having arrived in time,k1=0.64);

    (32)K([scheme-E]enemy reinforcements having arrived in time,k1=0.46);

    (33)K([scheme-A]having got the enemy garrison chart,k2=0.75);

    (34)K([scheme-B]having got the enemy garrison chart,k2=0.89);

    (35)K([scheme-C]having got the enemy garrison chart,k2=0.72);

    (36)K([scheme-D]having got the enemy garrison chart,k2=0.80);

    (37)K([scheme-E]having got the enemy garrison chart,k2=0.92);

    (38)K([scheme-A]having got the enemy’s battle scheme,k3=0.79);

    (39)K([scheme-B]having got the enemy’s battle scheme,k3=0.93);

    (40)K([scheme-C]having got the enemy’s battle scheme,k3=0.86);

    (41)K([scheme-D]having got the enemy’s battle scheme,k3=0.79);

    (42)K([scheme-E]having got the enemy’s battle scheme,k3=0.97).

    Since‘enemy reinforcements having arrived in time’will prevent the agent to take action,the truth value which it corresponds to∈[-1,0].Since‘having got the enemy garrison chart’will prompt the agent to take action,the truth value which it correspondsto∈[0,1].Theothercasesaresimilar.Itisassumedthatthethreecritical knowledge are stochastically independent.In this scenario,we may assign to the following inference rule for knowledge contexts according to the critical knowledge in this practical situation influence on different weights:

    (43)ifK([α]enemyreinforcementshavingarrivedintime,k1)andK([α]having got the enemy garrison chart,k2)and K([α]having got the enemy’s battle scheme,k3),then K([α]enemy reinforcements having arrived in time∧having got the enemy garrison chart∧having got the enemy’s battle scheme,k=0.25k1+0.35k2+0.40k3).

    Desire Contexts(DC):The agent has desires as follows:

    (44)(D(fewer casualties),d=0.82);

    (45)(D(shorter battle time),d=0.89);

    (46)(D(fewer casualties∧shorter battle time),d=0.98);

    (47)(D(distance≤500nm),d=0.85).

    Belief Contexts(BC):The keg-BDI agent has knowledge about the interrelations between possible actions that she can take and formulae made true by their execution.

    ThedegreeofB([α]fewercasualties)referstotheprobabilityoffewercasualties after performing α.The degree of B([α]shorter battle time)is similar.The agent is assigned to the following beliefs:

    (48)B([scheme-A]fewer casualties,b1=0.68);

    (49)B([scheme-B]fewer casualties,b1=0.72);

    (50)B([scheme-C]fewer casualties,b1=0.89);

    (51)B([scheme-D]fewer casualties,b1=0.53);

    (52)B([scheme-E]fewer casualties,b1=0.40);

    (53)B([scheme-A]shorter battle time,b2=0.65);

    (54)B([scheme-B]shorter battle time,b2=0.78);

    (55)B([scheme-C]shorter battle time,b2=0.86);

    (56)B([scheme-D]shorter battle time,b2=0.79);

    (57)B([scheme-E]shorter battle time,b2=0.90).

    It is assumed that the desires are stochastically independent.We may add the following inference rule for belief contexts:

    (58)if B([α]fewer casualties,b1)and B([α]shorter battle time,b2),then B([α]fewer casualties∧shorter battle time,b=0.56b1+0.44b2)

    Fear Contexts(FearC):In this case,the agent has the following measure of fear:

    (59)Fear([scheme-A]being surrounded,f=-0.66);

    (60)Fear([scheme-B]being surrounded,f=-0.87);

    (61)Fear([scheme-C]being surrounded,f=-0.70);

    (62)Fear([scheme-D]being surrounded,f=-0.36);

    (63)Fear([scheme-E]being surrounded,f=-0.48).

    AnxietyContexts(AnxC):Inthisscenario,weassigntotheagentthefollowing measure of anxiety:

    (64)Anx([scheme-A]command system is destroyed,a=-0.56);

    (65)Anx([scheme-B]command system is destroyed,a=-0.84);

    (66)Anx([scheme-C]command system is destroyed,a=-0.75);

    (67)Anx([scheme-D]command system is destroyed,a=-0.62);

    (68)Anx([scheme-E]command system is destroyed,a=-0.92).

    Self-confidenceContexts(SConfC):Inthisexample,theagent hasthefollowing measure of self-confidence:

    (69)SConf([scheme-A]wining the final victory,s=0.93);

    (70)SConf([scheme-B]wining the final victory,s=0.82);

    (71)SConf([scheme-C]wining the final victory,s=0.68);

    (72)SConf([scheme-D]wining the final victory,s=0.79);

    (73)SConf([scheme-E]wining the final victory,s=0.89).

    Plan Contexts(PC):In this scenario,a series of atomic actions are as follows:

    (74)action(scheme-A,dist-=400 nm,cost=500 billions,Costα=-0.72);

    (75)action(scheme-B,dist-=300 nm,cost=400 billions,Costα=-0.65);

    (76)action(scheme-C,dist-=800 nm,cost=900 billions,Costα=-0.98);

    (77)action(scheme-D,dist-=700 nm,cost=800 billions,Costα=-0.92);

    (78)action(scheme-E,dist-=450 nm,cost=600 billions,Costα=-0.78).

    Now the keg-BDI agent can determine which intention to adopt and which plan is associated with that intention.The agent’s desires are conveyed to plan contexts by desire contexts,and then the agent finds plans for each desire within plan contexts.The agent looks for a set of different battle schemes in terms of knowledge states,mental states and emotional states,and takes into comprehensive consideration various aspects of these contexts.Due to the restriction by the desire(47),that is,the distance no more than 500nms,the agent gives up plans(76)and(77),that is,the agentgivesuptochoosescheme-C andscheme-D.Therefore,plansaregeneratedfor each desire by(23).For instance,for the most preferred desire,i.e.fewer casualties shorter battle time,the generated plans are as follows:

    (79)plan(fewercasualties∧shorterbattletime,action(scheme-A,{dist-=400nm},{cost=500 billion},Costα=-0.72),b=0.56b1+0.44b2=0.6668);

    (80)plan(fewercasualties∧shorterbattletime,action(scheme-B,{dist-=300nm},{cost=400 billion},Costα=-0.65),b=0.56b1+0.44b2=0.7464);

    (81)plan(fewercasualties∧shorterbattletime,action(scheme-E,{dist-=450nm},{cost=600 billion},Costα=-0.78),b=0.56b1+0.44b2=0.62);

    The agent is now in conditions to determine the degree of intentions according to knowledge states,mental states,emotional states and the plans.Since the function f is monotonically increasing with respect to d by(25),it is enough to take into consideration the most preferred desire,i.e.fewer casualties∧shorter battle time,which is preferred to a degree 0.98.In terms of(25),using F(k,d,b,f,a,s,Costα)=0.13k+0.26d+0.22b+0.09f+0.08a+0.15s+0.07Costα,we successively have for α∈{scheme-A,scheme-B,scheme-E}as follows:

    (82)I(fewer casualties∧shorter battle time,0.13k+0.26d+0.22b+0.09f+ 0.08a+0.15s+0.07Costα=0.429845);

    (83)I(fewer casualties∧shorter battle time,0.13k+0.26d+0.22b+0.09f+ 0.08a+0.15s+0.07Costα=0.416138);

    (84)I(fewer casualties∧shorter battle time,0.13k+0.26d+0.22b+0.09f+ 0.08a+0.15s+0.07Costα=0.43065).

    The maximal degree of intention for fewer casualties∧shorter battle time by the plan scheme-E is 0.43065.At last,the agent can adopt the best plan and take the corresponding action according to the maximal degree of intention.Now,the action α=choosing scheme-E can be selected and passed to the communication context by [2].

    5 Conclusions and Future Work

    In this paper we extend the truth value of infinite-valued ?ukasiewicz logic from [0,1]to[-1,1],and propose keg-BDIlogic that is anextended emotional graded BDI logic to formalize knowledge states,mental states and emotional states that influence ondecision-makingbehavior.Thisbehaviorisdeterminedbythedifferentmeasureof eachcontextwhichisaddedbyconcreteconditions.Afterpresentingthelanguageand semanticsofkeg-BDIlogicandillustratingrelationshipsbetween/amongcontextsfor the keg-BDI agent,an application of military decision-making behavior is given.It is hopedthatthisstudywillprovideaformalsupportfordistributedartificialintelligence and military simulation.

    As a future work,it would be interesting to extend keg-BDI agent to include other mental states and other emotional states,and to extend a multi-agent scenario by introducing a social context,and explore other applications.

    References

    [1] C.Adam,2007,Emotions:From Psychological Theories to Logical Formalization and Implementation in a BDI Agent,PhD thesis,Insititut National Polytechnique de Toulouse.

    [2] C.Adam,A.Herzig and D.Longin,2009,“A logical formalization of the OCC theory of emotions”,Sythese,168(2):201-248.

    [3] T.Bosse and D.H?hle,2011,“Enhancing believability of virtual soccer players:Application of a BDI-model with emotions and trust,developing concepts in applied intelligence”,Studies in Computational Intelligence,363:119-128.

    [4] M.E.Bratman,1987,Intentions,Plans,and Practical Reason,Cambridge:Harvard University Press.

    [5] A.Casali,L.Godo and C.Sierra,2005,“Graded BDI models for agent architecture”,inJ.LeiteandP.Torroni(eds.),ComputationalLogicinMulti-agentSystems,pp.126-143,Springer.

    [6] A.Casali,L.Godo and C.Sierra,2008,“A logical framework to represent and reason about graded preferences and intentions”,Knowledge Representation,pp.27-37,Menlo Park:AAAI Press.

    [7] A.Casali,L.Godo and C.Sierra,2011,“A graded BDI agent model to represent and reason about preferences”,Artificial Intelligence,175(7-8):1468-1478.

    [8] P.R.Cohen and H.Levesque,1991,“Teamwork”,No?s,24(4):487-512.

    [9] N.Criado,E.Argente and V.Botti,2010,“Normative deliberation in graded BDI agents”,in J.D.C.Witteveen(ed.),MATES 2010,LNAI,Vol.6251,pp.52-63.

    [10] D.Harel,D.Kozen and J.Tiuryn,2000,Dynamic Logic,Cambridge:The MIT Press.

    [11] J.-J.Ch.Meyer,W.van der Hoek and B.van Linder,1999,“A logical approach to the dynamics of commitments”,Artificial Intelligence,113:1-40.

    [12] D.Pereira,E.Oliveira and N.Moreira,2006,“Modelling emotional BDI agents”,Workshop on Formal Approaches to Multi-Agent Systems,Italy:Riva Del Garda.

    [13] D.Pereira,E.Oliveira,N.Moreira and L.Sarmento,2005,“Towards an architecture for emotional BDI agents”,12th Portu-guese Conference on Artificial Intelligence,pp.40-46.

    [14] D.Pereira,E.Oliveria and N.Moreira,2008,“Formal modeling of emotions in BDI agents”,in F.Sadri and K.Satoh(eds.),Computational Logic in Multi-Agent Systems,pp.62-81,Springer.

    [15] I.Pezlar,2012,“Humean machine:When desire are in change”,in J.Romportl et al. (eds.),Beyond AI:Artificial Dreams,pp.1-9.

    [16] M.A.Puic,2013,“Emotional Belief-Desire-intention agent model:Previous work and proposed architecture”,International Journal of Advanced Research in Artificial Intelligence,2(2):1-8.

    [17] A.Rao and M.Georgeff,1991,“Modeling rational agents within a BDI-architecture”,Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning(KR-92),pp.473-484.

    [18] A.Rao and M.Georgeff,1995,“BDI agents:From theory to practice”,Proceedings of the 1st International Conference on Multi-Agents Systems,pp.312-319.

    [19] A.RaoandM.Georgeff,1998,“DecisionproceduresforBDIlogics”,JournalofLogic and Computation,8(3):293-342.

    [20] R.A.Schmidt,D.TishkovskyandU.Hustadt,2004,“Interactionsbetweenknowledge,action,and commitment with dynamic logic”,Studia Logica,78(3):381-415.

    [21] B.R.Steunebrink,M.Dastani and J.-J.C.Meyer,2011,“A formal model of emotion triggers:An approach for BDI agents”,Synthese,185:83-129.

    [22] G.S.Thumé and R.E.da Silva,2012,“An extended EBDI model applied to autonomous digital actors”,Proceedings of SBGames 2012.

    [23] W.van der Hoek,B.van Linder and J.-J.Ch.Meyer,1998,“An integrated modal approach to rational agents”,in M.Wooldridge and A.Rao(eds.),F(xiàn)oundations of Rational Agency,Applied Logic Series,Vol.14,pp.133-168,Dordrecht:Kluwer.

    [24] B.vanLinder,1996,ModalLogicsforRationalagents,PhDthesis,UtrechtUniversity.

    [25] B.van Linder,W.van der Hoek and J.-J.Ch.Meyer,1995,“Actions that make you change your mind:Belief revision in an agent-oriented setting”,in A.Laux and H. Wansing(eds.),KnowledgeandBeliefinPhilosophyandArtificialIntelligence,pp.103-146,Berlin:Akademie Verlag.

    [26] B.van Linder,W.van der Hoek and J.-J.Ch.Meyer,1997,“Seeing is believing(and so are hearing and jumping)”,Journal of Logic,Language and Information,6:33-61.

    [27] X.Zhang,2012,“Modeling emotional agents based on graded BDI architectures”,in J.Lei et al.(eds.),Communications in Computer and Information Science,Vol.345,pp.606-616,Springer.

    [28] X.Zhang,M.Jiang,C.Zhou and Y.Hao,2012,“Graded BDI models for agent architectures based on ?ukasiewicz logic and propositional dynamic logic”,in F.L.Wang et al.(eds.),in Proceedings of International Conference on Web Information Systems and Mining,Lecture Notes in Computer Science,Vol.7529,pp.439-450,Springer.

    2015-04-23

    *This work was supported by the Humanities and Social Sciences Planning Foundation of Chinese Ministry of Education(Grant No.13YJA72040001),and by the National Natural Science Foundation of China under Grant No.61273338/F030603.

    热99在线观看视频| 亚州av有码| 亚洲不卡免费看| a级毛片免费高清观看在线播放| 欧美最新免费一区二区三区 | 不卡一级毛片| 成人美女网站在线观看视频| 日本 欧美在线| 国产高清激情床上av| 亚洲成人久久性| 在线a可以看的网站| 亚洲av成人精品一区久久| 一本一本综合久久| 黄色女人牲交| 欧美日韩黄片免| 亚洲av中文字字幕乱码综合| 国产精品久久久久久久久免 | 国产单亲对白刺激| 嫩草影院新地址| 国产一区二区激情短视频| 在线观看一区二区三区| 99久久久亚洲精品蜜臀av| 在线观看66精品国产| 亚洲午夜理论影院| 又爽又黄a免费视频| 最近在线观看免费完整版| 最近中文字幕高清免费大全6 | 亚洲av不卡在线观看| 极品教师在线免费播放| 精品国产三级普通话版| 神马国产精品三级电影在线观看| 亚洲,欧美,日韩| 国产精品永久免费网站| 简卡轻食公司| 亚洲aⅴ乱码一区二区在线播放| 哪里可以看免费的av片| 九九久久精品国产亚洲av麻豆| 国产高清视频在线播放一区| 看十八女毛片水多多多| netflix在线观看网站| 亚洲美女搞黄在线观看 | 日韩大尺度精品在线看网址| 久99久视频精品免费| 亚洲狠狠婷婷综合久久图片| 少妇被粗大猛烈的视频| 黄色日韩在线| 九色国产91popny在线| 国产中年淑女户外野战色| 观看美女的网站| 欧美黑人欧美精品刺激| 精品人妻1区二区| 在线观看免费视频日本深夜| 老司机深夜福利视频在线观看| 国产欧美日韩精品一区二区| 亚洲av电影不卡..在线观看| 国产亚洲精品久久久com| 女生性感内裤真人,穿戴方法视频| 3wmmmm亚洲av在线观看| 一区二区三区高清视频在线| 成人国产综合亚洲| 内射极品少妇av片p| 国产成人a区在线观看| 亚洲欧美精品综合久久99| 日韩 亚洲 欧美在线| 丝袜美腿在线中文| 最近中文字幕高清免费大全6 | 亚洲一区二区三区不卡视频| 天堂影院成人在线观看| 国产亚洲欧美98| 国产中年淑女户外野战色| 亚洲五月婷婷丁香| 久久亚洲真实| 亚洲精品久久国产高清桃花| 51午夜福利影视在线观看| or卡值多少钱| 成人特级av手机在线观看| 热99在线观看视频| 男人舔女人下体高潮全视频| 日韩成人在线观看一区二区三区| 亚洲精品在线观看二区| 亚洲中文字幕日韩| 波野结衣二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 99热这里只有是精品50| 精品99又大又爽又粗少妇毛片 | 久久九九热精品免费| 成人无遮挡网站| 一进一出抽搐动态| 桃色一区二区三区在线观看| 日本一二三区视频观看| 色哟哟·www| 国产亚洲欧美在线一区二区| 亚洲av免费在线观看| 搡女人真爽免费视频火全软件 | 成人三级黄色视频| 久久久久久九九精品二区国产| 老熟妇乱子伦视频在线观看| 国产精品人妻久久久久久| 最近最新中文字幕大全电影3| 亚洲精品乱码久久久v下载方式| 97碰自拍视频| 中文字幕av在线有码专区| 国产大屁股一区二区在线视频| xxxwww97欧美| 少妇人妻精品综合一区二区 | 亚洲人成网站高清观看| 亚洲美女搞黄在线观看 | 国产 一区 欧美 日韩| 成人av在线播放网站| av视频在线观看入口| 亚洲最大成人av| 亚洲18禁久久av| 九九久久精品国产亚洲av麻豆| 人人妻,人人澡人人爽秒播| 少妇熟女aⅴ在线视频| 色5月婷婷丁香| 中文字幕久久专区| 国产成人啪精品午夜网站| 老司机午夜十八禁免费视频| 精品人妻熟女av久视频| 在现免费观看毛片| 免费观看人在逋| 欧美一区二区亚洲| 欧美精品国产亚洲| 国产精品一区二区三区四区久久| 久久精品影院6| 深夜精品福利| 88av欧美| 久久人人爽人人爽人人片va | 国产精品自产拍在线观看55亚洲| 午夜福利免费观看在线| а√天堂www在线а√下载| 国产精品精品国产色婷婷| 一夜夜www| 性色avwww在线观看| 精品欧美国产一区二区三| 一级作爱视频免费观看| 一本久久中文字幕| 在现免费观看毛片| av女优亚洲男人天堂| 精品久久久久久久末码| 精品久久久久久久末码| 午夜福利视频1000在线观看| 三级毛片av免费| 桃色一区二区三区在线观看| 国产日本99.免费观看| 性欧美人与动物交配| 国产成人欧美在线观看| 亚洲欧美激情综合另类| 国产精品亚洲av一区麻豆| 校园春色视频在线观看| 校园春色视频在线观看| 别揉我奶头 嗯啊视频| 精品一区二区三区av网在线观看| 赤兔流量卡办理| h日本视频在线播放| 日韩欧美国产一区二区入口| 九九久久精品国产亚洲av麻豆| 国产欧美日韩精品亚洲av| 欧美一区二区国产精品久久精品| 我要看日韩黄色一级片| 久久久久国内视频| 久久草成人影院| 国产又黄又爽又无遮挡在线| 成人欧美大片| 亚洲一区二区三区不卡视频| 婷婷亚洲欧美| 国产黄片美女视频| 欧美日韩综合久久久久久 | 亚洲无线在线观看| 天堂√8在线中文| 淫秽高清视频在线观看| 舔av片在线| 欧美日韩中文字幕国产精品一区二区三区| 综合色av麻豆| 日本a在线网址| 最近在线观看免费完整版| 成人av在线播放网站| 日本 欧美在线| 成年人黄色毛片网站| 一级av片app| 色尼玛亚洲综合影院| 在线播放无遮挡| 啦啦啦韩国在线观看视频| 日日摸夜夜添夜夜添av毛片 | 国模一区二区三区四区视频| av女优亚洲男人天堂| 午夜久久久久精精品| 国产av一区在线观看免费| 9191精品国产免费久久| 欧美区成人在线视频| 亚洲国产精品999在线| 国产欧美日韩精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 天堂av国产一区二区熟女人妻| 在线天堂最新版资源| 搡女人真爽免费视频火全软件 | 亚洲国产精品久久男人天堂| 日韩欧美在线乱码| 国产精品久久久久久亚洲av鲁大| 97人妻精品一区二区三区麻豆| 国产av不卡久久| 日韩亚洲欧美综合| 黄色丝袜av网址大全| 美女被艹到高潮喷水动态| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费一区二区三区在线| 美女cb高潮喷水在线观看| 91麻豆av在线| 日日摸夜夜添夜夜添av毛片 | 精品福利观看| 好男人电影高清在线观看| 亚洲,欧美精品.| 精品久久久久久久末码| 又爽又黄a免费视频| 欧美最新免费一区二区三区 | 性色av乱码一区二区三区2| 99热6这里只有精品| 国产久久久一区二区三区| 色综合欧美亚洲国产小说| 午夜日韩欧美国产| 日本黄大片高清| 在线免费观看的www视频| 深爱激情五月婷婷| 男人狂女人下面高潮的视频| 亚洲在线自拍视频| 午夜两性在线视频| 国内精品一区二区在线观看| 国产毛片a区久久久久| 美女大奶头视频| 一个人免费在线观看电影| 亚洲一区高清亚洲精品| 搞女人的毛片| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 蜜桃久久精品国产亚洲av| 内射极品少妇av片p| 美女大奶头视频| 国模一区二区三区四区视频| 观看免费一级毛片| 国产精品1区2区在线观看.| 97人妻精品一区二区三区麻豆| 色综合站精品国产| 成人av在线播放网站| 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看| 亚洲精华国产精华精| 国产久久久一区二区三区| av福利片在线观看| 午夜a级毛片| 亚洲av一区综合| 老司机午夜福利在线观看视频| 久久久久免费精品人妻一区二区| 色在线成人网| а√天堂www在线а√下载| 亚洲精品456在线播放app | 欧美日本视频| 久久久久亚洲av毛片大全| 欧美日韩乱码在线| 亚洲av电影不卡..在线观看| 国产精品国产高清国产av| 久久婷婷人人爽人人干人人爱| 91在线精品国自产拍蜜月| 欧美中文日本在线观看视频| 在线观看舔阴道视频| 欧美日本亚洲视频在线播放| av视频在线观看入口| 欧美3d第一页| 成人美女网站在线观看视频| 伦理电影大哥的女人| 精品国产三级普通话版| 久久久久国内视频| 欧美最黄视频在线播放免费| 久久热精品热| 色综合站精品国产| 国产单亲对白刺激| 日韩国内少妇激情av| 亚洲乱码一区二区免费版| 亚洲最大成人av| 亚洲成人久久爱视频| 久久久久久久久久成人| 精品人妻视频免费看| 欧美zozozo另类| 欧美xxxx黑人xx丫x性爽| 999久久久精品免费观看国产| 日本熟妇午夜| 无遮挡黄片免费观看| 岛国在线免费视频观看| av福利片在线观看| 免费电影在线观看免费观看| 青草久久国产| 国产激情偷乱视频一区二区| 国产三级中文精品| av在线天堂中文字幕| 如何舔出高潮| 一个人看的www免费观看视频| 欧美午夜高清在线| 毛片一级片免费看久久久久 | 久久国产乱子伦精品免费另类| 国产精品女同一区二区软件 | 91麻豆av在线| 啦啦啦观看免费观看视频高清| 麻豆成人午夜福利视频| 亚洲最大成人av| 国产在视频线在精品| 国产高潮美女av| 成年女人永久免费观看视频| 日本a在线网址| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 午夜影院日韩av| 岛国在线免费视频观看| 高清在线国产一区| 动漫黄色视频在线观看| 床上黄色一级片| 51国产日韩欧美| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 欧美zozozo另类| 久久久久久久亚洲中文字幕 | 中亚洲国语对白在线视频| 亚洲美女搞黄在线观看 | 国产精品自产拍在线观看55亚洲| 日本黄色片子视频| 欧美激情国产日韩精品一区| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 99久久成人亚洲精品观看| 欧美三级亚洲精品| 少妇的逼好多水| 99热6这里只有精品| 国产精品98久久久久久宅男小说| 99热只有精品国产| 成人av在线播放网站| 国产精品亚洲美女久久久| 亚洲精品一区av在线观看| 69人妻影院| 久久人妻av系列| 成人国产一区最新在线观看| 一夜夜www| 国产精品永久免费网站| 亚洲专区国产一区二区| 99热只有精品国产| 亚洲国产色片| 在线国产一区二区在线| eeuss影院久久| 国产亚洲精品久久久com| 久久久久久久久中文| 九九久久精品国产亚洲av麻豆| av女优亚洲男人天堂| 国产精品乱码一区二三区的特点| 天堂动漫精品| 老司机午夜福利在线观看视频| 亚洲av中文字字幕乱码综合| 波多野结衣高清无吗| 天美传媒精品一区二区| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 国产精品三级大全| bbb黄色大片| 欧美激情国产日韩精品一区| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 日日摸夜夜添夜夜添小说| 神马国产精品三级电影在线观看| 欧美zozozo另类| 国产成人a区在线观看| 午夜免费成人在线视频| 亚洲狠狠婷婷综合久久图片| 欧美极品一区二区三区四区| 久久香蕉精品热| 国产成人福利小说| 免费看日本二区| 精品不卡国产一区二区三区| 国产aⅴ精品一区二区三区波| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 成人欧美大片| 国产91精品成人一区二区三区| 女人被狂操c到高潮| 久久久久久久久久成人| 精品人妻1区二区| av在线天堂中文字幕| 久久九九热精品免费| 国内精品久久久久精免费| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| x7x7x7水蜜桃| 欧美日韩国产亚洲二区| 国产真实伦视频高清在线观看 | 成年人黄色毛片网站| 亚洲av五月六月丁香网| av在线天堂中文字幕| 91九色精品人成在线观看| 欧美性感艳星| 国内精品一区二区在线观看| 午夜福利在线观看吧| av天堂中文字幕网| 在线观看午夜福利视频| 三级国产精品欧美在线观看| 一进一出抽搐动态| 97碰自拍视频| 成年女人毛片免费观看观看9| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| www.熟女人妻精品国产| 亚洲18禁久久av| 可以在线观看毛片的网站| 国产一区二区在线av高清观看| 中文字幕av在线有码专区| 我要看日韩黄色一级片| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人| 国产精品1区2区在线观看.| 最后的刺客免费高清国语| 精品国产亚洲在线| 亚洲av免费高清在线观看| 99久久久亚洲精品蜜臀av| 在线免费观看不下载黄p国产 | 国内毛片毛片毛片毛片毛片| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 在线天堂最新版资源| 亚洲最大成人手机在线| 日韩欧美国产一区二区入口| 国产精品久久久久久久久免 | 久久久久性生活片| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 高清日韩中文字幕在线| 啦啦啦观看免费观看视频高清| 国产精品日韩av在线免费观看| 中文资源天堂在线| 夜夜爽天天搞| 亚洲第一区二区三区不卡| 日韩有码中文字幕| 亚洲国产精品sss在线观看| 亚洲男人的天堂狠狠| 国产私拍福利视频在线观看| 窝窝影院91人妻| 国产黄a三级三级三级人| 亚洲成av人片在线播放无| 最近中文字幕高清免费大全6 | 国产高清视频在线播放一区| 麻豆av噜噜一区二区三区| 美女免费视频网站| 精品久久久久久久久久久久久| 亚洲熟妇中文字幕五十中出| 国产亚洲精品av在线| 成人午夜高清在线视频| 国产老妇女一区| 久久久国产成人免费| 亚洲真实伦在线观看| 99久久九九国产精品国产免费| 老鸭窝网址在线观看| 一区二区三区激情视频| 一级黄片播放器| 精品久久久久久久久亚洲 | 一个人看的www免费观看视频| 免费观看的影片在线观看| 91字幕亚洲| 欧美黄色淫秽网站| 国产欧美日韩一区二区三| 国内精品久久久久精免费| 最近视频中文字幕2019在线8| 久久精品国产亚洲av涩爱 | 成人av一区二区三区在线看| 99热这里只有是精品在线观看 | 亚洲在线自拍视频| 国产精品自产拍在线观看55亚洲| 国产乱人伦免费视频| 午夜精品在线福利| 久久人人精品亚洲av| 日本在线视频免费播放| 亚洲精品粉嫩美女一区| 久久久久久久久久成人| 高清毛片免费观看视频网站| 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 国产精品免费一区二区三区在线| 日韩欧美在线乱码| 中亚洲国语对白在线视频| 99久久久亚洲精品蜜臀av| 成人鲁丝片一二三区免费| 草草在线视频免费看| 看免费av毛片| 51午夜福利影视在线观看| 在线观看免费视频日本深夜| 国产中年淑女户外野战色| 一a级毛片在线观看| 淫妇啪啪啪对白视频| 最近视频中文字幕2019在线8| 免费无遮挡裸体视频| 亚洲欧美日韩高清专用| 国产野战对白在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一级av片app| 久久精品国产清高在天天线| 免费av观看视频| 男女视频在线观看网站免费| 国产爱豆传媒在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品色激情综合| 搡老熟女国产l中国老女人| 欧美xxxx黑人xx丫x性爽| 大型黄色视频在线免费观看| 国产精品久久电影中文字幕| 麻豆国产97在线/欧美| 国产精品99久久久久久久久| 美女cb高潮喷水在线观看| av在线观看视频网站免费| 亚洲国产精品久久男人天堂| 欧美一区二区国产精品久久精品| 国产白丝娇喘喷水9色精品| 麻豆成人午夜福利视频| 精品久久久久久久久亚洲 | 国产aⅴ精品一区二区三区波| 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 色吧在线观看| 亚洲三级黄色毛片| 丰满乱子伦码专区| 一本综合久久免费| 亚洲国产精品成人综合色| 九九在线视频观看精品| 好男人在线观看高清免费视频| 免费在线观看影片大全网站| 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 如何舔出高潮| 九九久久精品国产亚洲av麻豆| 99久久成人亚洲精品观看| 国产高清视频在线观看网站| 丁香六月欧美| 亚洲狠狠婷婷综合久久图片| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜爽天天搞| 一区二区三区激情视频| 国产成人aa在线观看| 最好的美女福利视频网| 午夜福利成人在线免费观看| 久久久久久久久大av| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 伦理电影大哥的女人| 一区二区三区免费毛片| 亚洲一区二区三区色噜噜| 精品人妻熟女av久视频| 哪里可以看免费的av片| 成人欧美大片| 超碰av人人做人人爽久久| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 少妇高潮的动态图| 久久久久九九精品影院| 亚洲中文字幕日韩| 久久性视频一级片| 我的老师免费观看完整版| 很黄的视频免费| 最好的美女福利视频网| 女人被狂操c到高潮| 午夜福利欧美成人| 久久久久精品国产欧美久久久| 欧美黄色片欧美黄色片| 成人一区二区视频在线观看| 一个人免费在线观看的高清视频| 国产亚洲精品av在线| 欧美zozozo另类| 在线天堂最新版资源| 久久久色成人| 91午夜精品亚洲一区二区三区 | 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 男女那种视频在线观看| 亚洲国产欧美人成| 国产精品亚洲美女久久久| 啪啪无遮挡十八禁网站| 亚洲精品在线美女| 可以在线观看的亚洲视频| 国产av在哪里看| 欧美另类亚洲清纯唯美| 香蕉av资源在线| 国产精品电影一区二区三区| 久久久精品欧美日韩精品| 国内精品一区二区在线观看| 国产亚洲av嫩草精品影院| 中文字幕人成人乱码亚洲影| 麻豆一二三区av精品| 俺也久久电影网| av国产免费在线观看| 赤兔流量卡办理| 午夜福利视频1000在线观看| 国产一区二区在线观看日韩| 小蜜桃在线观看免费完整版高清| 高清毛片免费观看视频网站| 18禁黄网站禁片免费观看直播| 国产激情偷乱视频一区二区| 日本 欧美在线| 精品一区二区三区人妻视频| 老司机午夜十八禁免费视频| 成人三级黄色视频| 欧美另类亚洲清纯唯美| 丰满人妻一区二区三区视频av| 丁香六月欧美| 日本a在线网址| 亚洲中文字幕一区二区三区有码在线看| 成人性生交大片免费视频hd| 两个人的视频大全免费| 在线看三级毛片| 久久精品久久久久久噜噜老黄 | 午夜免费激情av|