• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling Decision-making Behavior Based on keg-BDI Agents*

    2016-02-02 10:45:36XiaojunZhang
    邏輯學研究 2016年1期

    Xiaojun Zhang

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    Fujian Provincial Key Laboratory of Brain-Like Intelligent Systems

    zhangxj566@163.com

    Baoxiang Wu

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    495171973@qq.com

    ?

    Modelling Decision-making Behavior Based on keg-BDI Agents*

    Xiaojun Zhang

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    Fujian Provincial Key Laboratory of Brain-Like Intelligent Systems

    zhangxj566@163.com

    Baoxiang Wu

    College of Political Education,Sichuan Normal University

    Institute of Logic and Information,Sichuan Normal University

    495171973@qq.com

    Abstract.Inthispaperweextendtherangeoftruthvalueofinfinite-valued?ukasiewiczlogic from[0,1]to[-1,1],and propose an extended emotional graded BDI logic,i.e.,keg-BDI logic that is based on this extended ?ukasiewicz logic and propositional dynamic logic to formalize knowledge states,mental states(such as belief,desire,intention)and emotional states(such as fear,anxiety and self-confidence)which influence on the keg-BDI agent’s decision-making behavior.This behavior is determined by the different measure of each context that is added by concrete conditions.After presenting the language and semantics of keg-BDI logic and illustratingrelationshipsbetween/amongcontextsforthekeg-BDIagent,anexampleofmilitary decision-making behavior is given.This study will provide a formal support for distributed artificial intelligence and military simulation.

    1 Introduction

    The formalization of BDI(Belief-Desire-Intention)agents is a topic of continuing interest in Artificial Intelligence about how mental states(such as belief(B),desire(D)and intention(I))and actions influence each other.Research on this subject has held the limelight ever since the pioneering work of Bratman([4])which lays the foundation of BDI approach to describe artificial agent behavior.Then researches try to formalize Bratman’s theory using many logical ways.There are three well-known approaches:the first one is based on a linear-time style temporal logic([8]),the second one is based on the branching-time temporal logic([17]),the third one takes propositional dynamic logic as a basis instead of a temporal logic([25]).Over the years important contributions have been made on both mental aspects like desire and intention([17,18,19]),and informational aspects like knowledge and belief([11,23,24,25,26]).Recent developments include the work on graded BDI models for agent architectures([5,6,7,9,28]),formal modelling of emotions in BDI agents([14,21]),and modelling emotional agents based on graded BDI architectures([27]),and many others([15,22]).

    Whenbuildingemotionalagents,theBDImodelhasbeenprovedtobeoneofthe best options one can select.For example,Emotional-BDI logic presented by Pereira et al.illustrates that agents’behavior is guided not only by beliefs,desires and intentions,but also by the role of emotions in reasoning and decision-making([13,12,14]).KARO logic for emotional agents based on dynamic logic deals with the behavior of rational agents([20]).The strongly related work by Adam et al.is devoted to a formalization of OCC emotions in BDI terms([1,2]).The Emotional-BDI agent models developed by Puic? integrates emotions,resources,and personality features intoartificialintelligentsoastoobtainahuman-likebehaviorofthisagent([16]).The generic model for decision making of virtual agents in relation to emotions and trust takes the BDI framework as point of departure,and extends this with mechanisms to represent the dynamics of emotions and trust.The model has been tested by means of simulation experiments,and then been successfully incorporated into the virtual agents with the RoboCup 2D soccer environment([3]).

    In our research([27])we defined an emotional graded BDI logic(eg-BDI logic forshort)forrationalagents,i.e.,alogicthatisusedtospecify,andtoreasonaboutthe behavior of rational agents.In our framework we concentrated on how mental states (such as belief,desire and intention)and emotional states(such as fear,anxiety and self-confidence)influence the agent’s behavior.In the basic architecture,we blend the infinite-valued ?ukasiewicz logic and propositional dynamic logic to formulize the emotional graded BDI agents.

    The aim of this paper is a formalization of decision-making behavior based on the framework mentioned above,i.e.,eg-BDI logic.This paper can for instance be modelled that an agent knows that some action is a correct plan to achieve her goal since she knows that performing the action will lead to the goal,and that she knows some action is a feasible plan since the agent knows of her ability to perform the action.In subsequent research,we extend the eg-BDI logic with modal operators for knowledge.

    Not all knowledge is trivial.In order to simplify the model,we focus only on the critical knowledge which has a significant impact on the agent’s decision-making behavior.We directly use Kφ to say that the agent knows the critical knowledge φ. The knowledge which prompts the agent to take actions is called positive knowledge,and the knowledge which prevents the agent to take actions is called negative knowledge.Correspondingly,there are positive and negative critical knowledge.Similarly,there are positive and negative desires.At present,the vast majority of scholars suchas Pereira et al.([23])introduce positive and negative desire operators at the same time to handle desires.Therefore,even if the factors with which we are dealing are not too much,the model is too complicated.

    In order to reduce the number of modal operators that we introduce,and to simplify the model and able to handle more factors,it is necessary for us to extend the range of value of the infinite-valued ?ukasiewicz logic from[0,1]to[-1,1].Thus,we need a unified provisions:the range of truth value corresponding to the positive factorswhichprompttheagenttotakeactionsis[0,1],andtherangeoftruevaluecorresponding to the negative factors which prevent the agent to take actions is[-1,0].

    The rest of the paper is organized in the following way:in Section 2 we define the keg-BDI logic.This new logic is based on eg-BDI logic([27])and we begin by presenting the new modal operators for critical knowledge that were added.Besides the syntax and semantics of keg-BDI logic,we present the axiom systems for the new modal operators.In Section 3 we illustrate the relationship between/among contexts for knowledge states,mental states and emotional states.An application of the keg-BDI agent for military decision-making behavior is given in Section 4.In Section 5,and finally,we present some conclusions about this work and point some topics for ongoing and future lines of work in the keg-BDI logic.

    2 keg-BDI Logic

    The keg-BDI logic is a multi-modal and multi-valued logic which combines the above Extended infinite-valued ?ukasiewicz Logic(ELL for short)and Propositional Dynamic Logic(PDL for short).([13])The formal semantics of keg-BDI logic is based on Kripke models with accessibility relations between possible worlds which correspond to different knowledge states,mental states and emotional states.

    2.1The keg-BDI Language

    Wedefinemodaloperatorsforrepresentingtheknowledgestatesofcriticalknowledge(K),the mental states of belief(B),desire(D)and intention(I),and emotional states of fear,anxiety and self-confidence in ELL.Now we define the language Lkeg-BDIby adding action modalities of the form[α]where α is an action,and seven fuzzy modal operators K,B,D,I,F(xiàn)ear,Anx and SConf to the classical propositional language L:

    Kφ,Bφ,Dφ and I mean that“φ is known”,“φ is believable”,“φ is desired”and“φ is intended”,respectively,and their truth degrees refer to the agent’s level of satisfaction when becomes true.The meanings of Fearφ,Anxφ and SConfφ are similar to Bφ,Dφ and Iφ.

    Similar to the language Leg-BDI,the language Lkeg-BDIhas two sorts of expressions,that is,propositions φ,ψ,...and actions α,β,...,Φ0and Φ refer to the setof all atomic propositions and of all propositions,respectively,and Π0and Π refer to the set of all atomic actions and of all actions(including atomic actions and plans which are composite actions),respectively.Formulae can be inductively built from the atomic ones using connectives and mixed operators,that is,?(negation),→(implication),[](necessity)and?(test).Otherconnectivescanbedefinedfrom?and→. And then actions can be inductively built from the atomic ones using the following action operators:;(composition),∩(nondeterministic choice)and?(iteration),and the mixed operator?.

    Definition 1Formulae are definable inductively as follows:

    φ::=φ|?φ|φ→ψ|[α]φ|Kφ|Bφ|Dφ|Iφ|Fearφ|Anxφ|SConfφ In definition 1,[α]φ means that φ is necessarily true after performing the action α.

    Definition 2Actions are definable inductively as follows:

    α::=α0|α;β|α∪β|α?|φ?

    Here iterated actions αn(with n≥0)can be inductively defined by α0=id,and αn+1=α;αn.

    Now we define a modal context language for ΣC(here Σ∈{K,B,D,I,F(xiàn)ear,Anx,SConf}),and use the connectives of the above extended infinite-valued ?ukasiewicz logic to build Σ-modal from elementary modal formulae and truth constants rc,for each rational r∈[-1,1]:

    (1)if φ∈Lkeg-BDI,then φ,Σφ∈ΣC;

    (2)if r∈Q∩[-1,1],then rc∈ΣC(Q is the rational set);

    (3)if Σφ,Σψ∈ΣC,then Σφ∧Σψ∈ΣC and Σφ→LΣψ∈ΣC.

    For example,if Σ=K and φ∈Lkeg-BDI,then φ,Kφ∈KC by clause(1).If Σ=K and Kφ,Kψ∈KC,then Kφ∧Kψ∈KC and Kφ→LKψ∈KC by clause(3).The other cases are similar.In clause(3),→Land∧are similar to the implication and conjunction of ?ukasiewicz logic,respectively.The truth value of Σφ→LΣψ is 1 if and only if the truth value of Σφ is greater or equal to that of Σψ. rc→LΣφ means that the probability of φ is at least rc,which is denoted as(Σφ,rc).

    In order to make?Σφ become a two-valued Boolean formula,we use ?ukasiewicz logic extended with a new unary connective?(known as Baaz’s connective). For any modal formula Σφ,if the truth value of Σφ is smaller than 1,then?Σφ gets value 0;otherwise,if of Σφ is 1,then?Σφ gets value 1.

    2.2The keg-BDI Semantics

    Differentpossibleworldscorrespondtodifferentknowledgestates,mentalstates and emotional states.As in usual in modal logics,the formal semantics of keg-BDIlogic is based on Kripke models.By adding the structure and function λ that handles knowledge to the Emotional Graded BDI model,that is,a 9-tuple Kripke structure F=〈W,υ,ρ,τ,θ,{μw}w∈W,ε,η,κ〉([27]),we can define a 10-tuple Kripke structure F=〈W,υ,ρ,τ,θ,{μw}w∈W,λ,ε,η,κ〉where:

    (4)W is a set of possible worlds,and w,w′∈W ?=?;

    (5)υ:Φ×W → {0,1}assigns a Boolean evaluation to each φ∈Φ and w∈W,and υ(φ,w)∈{0,1};

    (6)ρ:2W→[0,1]is a finitely additive probability measure on subsets of W,and for φ∈Φ0,{w|υ(φ,w)=1}is measurable;

    (7)τ:Π0→2W×Wgivesasetofpairsofworldsreferringtoworldtransitions for each atomic action;

    (8)θ:W →[-1,1]is a distribution of pover possible worlds,and |θ(w)|<|θ(w′)|means that w′is more preferred than w;

    (9)μw:W → [-1,1]is a possibility distribution,for each w∈W.Where μw(w′)∈[-1,1]is the degree on which the agent may try to reach w′from w;

    (10)λ:W→ [-1,1]is a distribution of knowledge over possible worlds,|λ(w)|<|λ(w′)|means that w′is greater impacted on w;

    (11)ε:W →[-1,1]isadistributionoffearoverpossibleworlds,and|ε(w)|< |ε(w′)|means that w′is more feared than w;

    (12)η:W → [-1,1]is a distribution of anxiety over possible worlds.And |η(w)|<|η(w′)|means that w′is more anxious than w;

    (13)κ:W →[-1,1]is a distribution of self-confidence over possible worlds. And|κ(w)|<|κ(w′)|means that w′is more self-confident than w.

    Lkeg-BDIcan be defined by extending L using action modalities and classical connectives.And Σ-formulae(here Σ∈{K,B,D,I,F(xiàn)ear,Anx and SConf})are defined by extending ?ukasiewicz logic as follows:

    (14)υ(Σφ,w)=ξ({w′∈W|υ(φ,w′)=1},for each φ.Here ξ∈{ρ,θ,μw,λε,η,κ};

    (15)υ(rc,w)=r,for all r∈Q∩[-1,1];

    (16)υ(Σφ&Σψ,w)=max(υ(Σφ)+υ(Σψ)-1,0);

    (17)υ(Σφ→LΣψ,w)=min(1-υ(Σφ)+υ(Σψ),1);

    (18)‖Σφ‖F(xiàn)=tdw∈Wυ(Σφ,w),where‖Σφ‖F(xiàn)is the truth degree of a formula Σφ in the Kripke structure F=〈W,υ,ρ,τ,θ,{μw}w∈W,λ,η,ε,κ〉;

    (19)if υ(Σφ,w)=1,then υ(?Σφ,w)=1;

    (20)if υ(Σφ,w)?=1,then υ(?Σφ,w)=0;

    (21)td?=1;

    (22)for all w∈W,υ(Σ⊥,w)=1.In clauses(18)and(21)td refers to the truth degree of a formula Σφ in the Kripke structure F= 〈W,υ,ρ,τ,θ,{μw}w∈W,λ,η,ε,κ〉.The evaluation of Σ-formulae just depends on the formula itself—represented in its corresponding measure over possible worlds where the rational agent is situated.

    2.3Axioms,Rules,Soundness and Completeness for keg-BDI Logic

    Similar to eg-BDI semantics,keg-BDI semantics is just augmented with modal operators for knowledge.The important difference is that the range of truth value in eg-BDI logic∈[0,1],while the range of truth value in keg-BDI logic∈[-1,1]. Therefore,we can get the axioms and rules for keg-BDI logic only adding the ones aboutknowledge.Bothofthemarealmostexactlythesame.Andtheotherdifference is that in the eg-BDI logic Σ∈{B,D,I,F(xiàn)ear,Anx,SConf}([27]),while in the keg-BDI logic Σ∈{K,B,D,I,F(xiàn)ear,Anx,SConf}.In other words,Σ can get value K in the latter.The axioms for keg-BDI logic are composed of axioms of Classical Propositional Logic for the non-modal formulae and axioms of the ?ukasiewicz logic for modal formulae,and axioms for Σ over propositional dynamic logic.

    The keg-BDI logic is sound and complete.Its proof is almost exactly the same as that of eg-BDI logic,that is,by embedding of keg-BDI logic into ?ukasiewicz logic and propositional dynamic logic which are sound and complete(cf.,[3]and [10],respectively).Of course,in terms of the soundness and completeness result of eg-BDI logic([27]),we can straightforwardly prove soundness and completeness for the keg-BDI logic by embedding of keg-BDI logic into eg-BDI logic.

    3 Relationship between/among Contexts for the keg-BDI Agent

    According to the knowledge states,mental states and emotional states of the keg-BDI agent,and the possible transformations by performing actions,the planner can build plans generated from actions to fulfill her desires.Relationships among K,D,B,F(xiàn)ear,Anx,SConf,and P contexts are as follows:

    (23)ifK:(K([α]φ,k)),D:???(Dφ,d),B:(B([α]φ,b)),F(xiàn)ear:(Fear(φ,f)),Anx:(Anx(φ,a)),SConf:(SConf(φ,s))andP:action(α,Pre-,Costα),then P:plan(φ,action(α,Pre-,Costα),b)where:

    α∈Π0is an atomic action.The knowledge degrees k in K([α]φ,k)refers to the probability which the agent will take actions α after she knows φ.The other cases are similar.Pre-are the preconditions of the action α,and Costα∈[-1,1]is the associated cost according to the action α involved;k,b,f,a and s∈[-1,1]are respectively knowledge,belief,fear,anxiety,and self-confidence degree of actually achieving φ by performing α.Action(α,Pre-,Costα)expresses an atomic action,and plan(φ,action(α,Pre-,Costα),r)a plan which is a composite action whichallows the agent to move from its current world to another.It is assumed that the current state of the world must satisfy the preconditions,and that the plan must make true the desire that the plan is built for.

    We can use the intention degree to trade off the benefit and the cost of achieving a goal,thus for each composite action α which allows to reach the goal,the degree of Iφ can be deduced from the degree of Kφ,Dφ,F(xiàn)earφ,Anxφ,SConfφ and the cost of a plan that satisfies the desire φ.That is,the degree of Iφ is calculated by a function F as follows:

    (24)ifK:(K([α]φ,k)),D:(Dφ,d),B:(B[α]φ,b),F(xiàn)ear:(Fear([α]φ,f)),Anx:(Anx([α]φ,a)),SConf:(SConf([α]φ,s))and P :plan(φ,action(α,Pre-,Costα),b),then I:(Iφ,F(xiàn)(k,d,b,f,a,s,Costα)).

    Different functions F(k,d,b,f,a,s,Costα)may model different decision-making behavior.It is assumed that the agent full beliefs in achieving φ after performing α,the degree of the intention to bring about φ mainly depends on the satisfaction and the degree of Kφ,Dφ,F(xiàn)earφ,Anxφ,SConfφ and Costαthat it bring the agent. It is needed to find what kind of the relationship between/among i,k,d,f,a,s,b and Costα.The degree of intention can be the ultimate embodiment of knowledge states,the other mental states,and emotional states.

    We can assign different weights to knowledge states,mental states,and emotional states according to their influence on the degree of the intention.The weights allow simple revisions and frequent modifications according to the information about the keg-BDI agent.For example,after a preliminary study,for the military decisionmaking behavior examined in this paper,we assign respectively weights to k,d,b,f,a,s and Costα0.13,0.26,0.22,0.09,0.08,0.15 and 0.07.Thus,the function F(k,d,b,f,a,s,Costα)can be defined as follows:

    (25)F(k,d,b,f,a,s,Costα)=0.13k+0.26d+0.22b+0.09f+0.08a+ 0.15s+0.07Costα.

    If the agent intends φ at imax,then the rational agent will choose the best plan.Therefore:

    (26)if I:(Iφ,imax),and P :bestplan(φ,action(α,Pre-,Costα),r),then C:C(does(α)).

    4 An Example of Military Decision-making Behavior for the keg-BDI Agent

    Now we instruct a keg-BDI agent to look for a military decision-making package.We assign to the agent the following critical knowledge:enemy reinforcements having arrived in time;having got the enemy garrison chart;and having got the enemy’s battle scheme.At the same time,we assign to the agent the following desires:fewer casualties;shorter battle time;and the battle sites from an assumed location no more than 500 nautical miles.And then,we instruct the agent with the three emotions:fear of being surrounded;anxiety of that command system is destroyed;and self-confidence of wining the final victory.In order to determine which battle scheme is better,the agent will have to take into consideration the critical knowledge,the benefit(with respect to fewer casualties,shorter battle time and wining the final victory),fear,anxiety and the cost of the battle.In this scenario,different decisionmaking behavior is to choose a different battle scheme,and the chosen schemes are as follows:

    (27)Π0={scheme-A,scheme-B,scheme-C,scheme-D,scheme-E}.

    In this case,KC,BC,DC,F(xiàn)earC,AnxC,SConfC and PC contexts are as follows:

    Knowledge Contexts(KC):The agent has the following critical knowledge:

    (28)K([scheme-A]enemy reinforcements having arrived in time,k1=-0.88);

    (29)K([scheme-B]enemy reinforcements having arrived in time,k1=0.73);

    (30)K([scheme-C]enemy reinforcements having arrived in time,k1=0.53);

    (31)K([scheme-D]enemy reinforcements having arrived in time,k1=0.64);

    (32)K([scheme-E]enemy reinforcements having arrived in time,k1=0.46);

    (33)K([scheme-A]having got the enemy garrison chart,k2=0.75);

    (34)K([scheme-B]having got the enemy garrison chart,k2=0.89);

    (35)K([scheme-C]having got the enemy garrison chart,k2=0.72);

    (36)K([scheme-D]having got the enemy garrison chart,k2=0.80);

    (37)K([scheme-E]having got the enemy garrison chart,k2=0.92);

    (38)K([scheme-A]having got the enemy’s battle scheme,k3=0.79);

    (39)K([scheme-B]having got the enemy’s battle scheme,k3=0.93);

    (40)K([scheme-C]having got the enemy’s battle scheme,k3=0.86);

    (41)K([scheme-D]having got the enemy’s battle scheme,k3=0.79);

    (42)K([scheme-E]having got the enemy’s battle scheme,k3=0.97).

    Since‘enemy reinforcements having arrived in time’will prevent the agent to take action,the truth value which it corresponds to∈[-1,0].Since‘having got the enemy garrison chart’will prompt the agent to take action,the truth value which it correspondsto∈[0,1].Theothercasesaresimilar.Itisassumedthatthethreecritical knowledge are stochastically independent.In this scenario,we may assign to the following inference rule for knowledge contexts according to the critical knowledge in this practical situation influence on different weights:

    (43)ifK([α]enemyreinforcementshavingarrivedintime,k1)andK([α]having got the enemy garrison chart,k2)and K([α]having got the enemy’s battle scheme,k3),then K([α]enemy reinforcements having arrived in time∧having got the enemy garrison chart∧having got the enemy’s battle scheme,k=0.25k1+0.35k2+0.40k3).

    Desire Contexts(DC):The agent has desires as follows:

    (44)(D(fewer casualties),d=0.82);

    (45)(D(shorter battle time),d=0.89);

    (46)(D(fewer casualties∧shorter battle time),d=0.98);

    (47)(D(distance≤500nm),d=0.85).

    Belief Contexts(BC):The keg-BDI agent has knowledge about the interrelations between possible actions that she can take and formulae made true by their execution.

    ThedegreeofB([α]fewercasualties)referstotheprobabilityoffewercasualties after performing α.The degree of B([α]shorter battle time)is similar.The agent is assigned to the following beliefs:

    (48)B([scheme-A]fewer casualties,b1=0.68);

    (49)B([scheme-B]fewer casualties,b1=0.72);

    (50)B([scheme-C]fewer casualties,b1=0.89);

    (51)B([scheme-D]fewer casualties,b1=0.53);

    (52)B([scheme-E]fewer casualties,b1=0.40);

    (53)B([scheme-A]shorter battle time,b2=0.65);

    (54)B([scheme-B]shorter battle time,b2=0.78);

    (55)B([scheme-C]shorter battle time,b2=0.86);

    (56)B([scheme-D]shorter battle time,b2=0.79);

    (57)B([scheme-E]shorter battle time,b2=0.90).

    It is assumed that the desires are stochastically independent.We may add the following inference rule for belief contexts:

    (58)if B([α]fewer casualties,b1)and B([α]shorter battle time,b2),then B([α]fewer casualties∧shorter battle time,b=0.56b1+0.44b2)

    Fear Contexts(FearC):In this case,the agent has the following measure of fear:

    (59)Fear([scheme-A]being surrounded,f=-0.66);

    (60)Fear([scheme-B]being surrounded,f=-0.87);

    (61)Fear([scheme-C]being surrounded,f=-0.70);

    (62)Fear([scheme-D]being surrounded,f=-0.36);

    (63)Fear([scheme-E]being surrounded,f=-0.48).

    AnxietyContexts(AnxC):Inthisscenario,weassigntotheagentthefollowing measure of anxiety:

    (64)Anx([scheme-A]command system is destroyed,a=-0.56);

    (65)Anx([scheme-B]command system is destroyed,a=-0.84);

    (66)Anx([scheme-C]command system is destroyed,a=-0.75);

    (67)Anx([scheme-D]command system is destroyed,a=-0.62);

    (68)Anx([scheme-E]command system is destroyed,a=-0.92).

    Self-confidenceContexts(SConfC):Inthisexample,theagent hasthefollowing measure of self-confidence:

    (69)SConf([scheme-A]wining the final victory,s=0.93);

    (70)SConf([scheme-B]wining the final victory,s=0.82);

    (71)SConf([scheme-C]wining the final victory,s=0.68);

    (72)SConf([scheme-D]wining the final victory,s=0.79);

    (73)SConf([scheme-E]wining the final victory,s=0.89).

    Plan Contexts(PC):In this scenario,a series of atomic actions are as follows:

    (74)action(scheme-A,dist-=400 nm,cost=500 billions,Costα=-0.72);

    (75)action(scheme-B,dist-=300 nm,cost=400 billions,Costα=-0.65);

    (76)action(scheme-C,dist-=800 nm,cost=900 billions,Costα=-0.98);

    (77)action(scheme-D,dist-=700 nm,cost=800 billions,Costα=-0.92);

    (78)action(scheme-E,dist-=450 nm,cost=600 billions,Costα=-0.78).

    Now the keg-BDI agent can determine which intention to adopt and which plan is associated with that intention.The agent’s desires are conveyed to plan contexts by desire contexts,and then the agent finds plans for each desire within plan contexts.The agent looks for a set of different battle schemes in terms of knowledge states,mental states and emotional states,and takes into comprehensive consideration various aspects of these contexts.Due to the restriction by the desire(47),that is,the distance no more than 500nms,the agent gives up plans(76)and(77),that is,the agentgivesuptochoosescheme-C andscheme-D.Therefore,plansaregeneratedfor each desire by(23).For instance,for the most preferred desire,i.e.fewer casualties shorter battle time,the generated plans are as follows:

    (79)plan(fewercasualties∧shorterbattletime,action(scheme-A,{dist-=400nm},{cost=500 billion},Costα=-0.72),b=0.56b1+0.44b2=0.6668);

    (80)plan(fewercasualties∧shorterbattletime,action(scheme-B,{dist-=300nm},{cost=400 billion},Costα=-0.65),b=0.56b1+0.44b2=0.7464);

    (81)plan(fewercasualties∧shorterbattletime,action(scheme-E,{dist-=450nm},{cost=600 billion},Costα=-0.78),b=0.56b1+0.44b2=0.62);

    The agent is now in conditions to determine the degree of intentions according to knowledge states,mental states,emotional states and the plans.Since the function f is monotonically increasing with respect to d by(25),it is enough to take into consideration the most preferred desire,i.e.fewer casualties∧shorter battle time,which is preferred to a degree 0.98.In terms of(25),using F(k,d,b,f,a,s,Costα)=0.13k+0.26d+0.22b+0.09f+0.08a+0.15s+0.07Costα,we successively have for α∈{scheme-A,scheme-B,scheme-E}as follows:

    (82)I(fewer casualties∧shorter battle time,0.13k+0.26d+0.22b+0.09f+ 0.08a+0.15s+0.07Costα=0.429845);

    (83)I(fewer casualties∧shorter battle time,0.13k+0.26d+0.22b+0.09f+ 0.08a+0.15s+0.07Costα=0.416138);

    (84)I(fewer casualties∧shorter battle time,0.13k+0.26d+0.22b+0.09f+ 0.08a+0.15s+0.07Costα=0.43065).

    The maximal degree of intention for fewer casualties∧shorter battle time by the plan scheme-E is 0.43065.At last,the agent can adopt the best plan and take the corresponding action according to the maximal degree of intention.Now,the action α=choosing scheme-E can be selected and passed to the communication context by [2].

    5 Conclusions and Future Work

    In this paper we extend the truth value of infinite-valued ?ukasiewicz logic from [0,1]to[-1,1],and propose keg-BDIlogic that is anextended emotional graded BDI logic to formalize knowledge states,mental states and emotional states that influence ondecision-makingbehavior.Thisbehaviorisdeterminedbythedifferentmeasureof eachcontextwhichisaddedbyconcreteconditions.Afterpresentingthelanguageand semanticsofkeg-BDIlogicandillustratingrelationshipsbetween/amongcontextsfor the keg-BDI agent,an application of military decision-making behavior is given.It is hopedthatthisstudywillprovideaformalsupportfordistributedartificialintelligence and military simulation.

    As a future work,it would be interesting to extend keg-BDI agent to include other mental states and other emotional states,and to extend a multi-agent scenario by introducing a social context,and explore other applications.

    References

    [1] C.Adam,2007,Emotions:From Psychological Theories to Logical Formalization and Implementation in a BDI Agent,PhD thesis,Insititut National Polytechnique de Toulouse.

    [2] C.Adam,A.Herzig and D.Longin,2009,“A logical formalization of the OCC theory of emotions”,Sythese,168(2):201-248.

    [3] T.Bosse and D.H?hle,2011,“Enhancing believability of virtual soccer players:Application of a BDI-model with emotions and trust,developing concepts in applied intelligence”,Studies in Computational Intelligence,363:119-128.

    [4] M.E.Bratman,1987,Intentions,Plans,and Practical Reason,Cambridge:Harvard University Press.

    [5] A.Casali,L.Godo and C.Sierra,2005,“Graded BDI models for agent architecture”,inJ.LeiteandP.Torroni(eds.),ComputationalLogicinMulti-agentSystems,pp.126-143,Springer.

    [6] A.Casali,L.Godo and C.Sierra,2008,“A logical framework to represent and reason about graded preferences and intentions”,Knowledge Representation,pp.27-37,Menlo Park:AAAI Press.

    [7] A.Casali,L.Godo and C.Sierra,2011,“A graded BDI agent model to represent and reason about preferences”,Artificial Intelligence,175(7-8):1468-1478.

    [8] P.R.Cohen and H.Levesque,1991,“Teamwork”,No?s,24(4):487-512.

    [9] N.Criado,E.Argente and V.Botti,2010,“Normative deliberation in graded BDI agents”,in J.D.C.Witteveen(ed.),MATES 2010,LNAI,Vol.6251,pp.52-63.

    [10] D.Harel,D.Kozen and J.Tiuryn,2000,Dynamic Logic,Cambridge:The MIT Press.

    [11] J.-J.Ch.Meyer,W.van der Hoek and B.van Linder,1999,“A logical approach to the dynamics of commitments”,Artificial Intelligence,113:1-40.

    [12] D.Pereira,E.Oliveira and N.Moreira,2006,“Modelling emotional BDI agents”,Workshop on Formal Approaches to Multi-Agent Systems,Italy:Riva Del Garda.

    [13] D.Pereira,E.Oliveira,N.Moreira and L.Sarmento,2005,“Towards an architecture for emotional BDI agents”,12th Portu-guese Conference on Artificial Intelligence,pp.40-46.

    [14] D.Pereira,E.Oliveria and N.Moreira,2008,“Formal modeling of emotions in BDI agents”,in F.Sadri and K.Satoh(eds.),Computational Logic in Multi-Agent Systems,pp.62-81,Springer.

    [15] I.Pezlar,2012,“Humean machine:When desire are in change”,in J.Romportl et al. (eds.),Beyond AI:Artificial Dreams,pp.1-9.

    [16] M.A.Puic,2013,“Emotional Belief-Desire-intention agent model:Previous work and proposed architecture”,International Journal of Advanced Research in Artificial Intelligence,2(2):1-8.

    [17] A.Rao and M.Georgeff,1991,“Modeling rational agents within a BDI-architecture”,Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning(KR-92),pp.473-484.

    [18] A.Rao and M.Georgeff,1995,“BDI agents:From theory to practice”,Proceedings of the 1st International Conference on Multi-Agents Systems,pp.312-319.

    [19] A.RaoandM.Georgeff,1998,“DecisionproceduresforBDIlogics”,JournalofLogic and Computation,8(3):293-342.

    [20] R.A.Schmidt,D.TishkovskyandU.Hustadt,2004,“Interactionsbetweenknowledge,action,and commitment with dynamic logic”,Studia Logica,78(3):381-415.

    [21] B.R.Steunebrink,M.Dastani and J.-J.C.Meyer,2011,“A formal model of emotion triggers:An approach for BDI agents”,Synthese,185:83-129.

    [22] G.S.Thumé and R.E.da Silva,2012,“An extended EBDI model applied to autonomous digital actors”,Proceedings of SBGames 2012.

    [23] W.van der Hoek,B.van Linder and J.-J.Ch.Meyer,1998,“An integrated modal approach to rational agents”,in M.Wooldridge and A.Rao(eds.),F(xiàn)oundations of Rational Agency,Applied Logic Series,Vol.14,pp.133-168,Dordrecht:Kluwer.

    [24] B.vanLinder,1996,ModalLogicsforRationalagents,PhDthesis,UtrechtUniversity.

    [25] B.van Linder,W.van der Hoek and J.-J.Ch.Meyer,1995,“Actions that make you change your mind:Belief revision in an agent-oriented setting”,in A.Laux and H. Wansing(eds.),KnowledgeandBeliefinPhilosophyandArtificialIntelligence,pp.103-146,Berlin:Akademie Verlag.

    [26] B.van Linder,W.van der Hoek and J.-J.Ch.Meyer,1997,“Seeing is believing(and so are hearing and jumping)”,Journal of Logic,Language and Information,6:33-61.

    [27] X.Zhang,2012,“Modeling emotional agents based on graded BDI architectures”,in J.Lei et al.(eds.),Communications in Computer and Information Science,Vol.345,pp.606-616,Springer.

    [28] X.Zhang,M.Jiang,C.Zhou and Y.Hao,2012,“Graded BDI models for agent architectures based on ?ukasiewicz logic and propositional dynamic logic”,in F.L.Wang et al.(eds.),in Proceedings of International Conference on Web Information Systems and Mining,Lecture Notes in Computer Science,Vol.7529,pp.439-450,Springer.

    2015-04-23

    *This work was supported by the Humanities and Social Sciences Planning Foundation of Chinese Ministry of Education(Grant No.13YJA72040001),and by the National Natural Science Foundation of China under Grant No.61273338/F030603.

    高清欧美精品videossex| 久久ye,这里只有精品| 色94色欧美一区二区| 曰老女人黄片| 国国产精品蜜臀av免费| 免费观看在线日韩| 高清黄色对白视频在线免费看| 飞空精品影院首页| 免费日韩欧美在线观看| 国产免费视频播放在线视频| 国产片内射在线| 一区二区av电影网| 日本与韩国留学比较| 2022亚洲国产成人精品| 黄色一级大片看看| 亚洲成av片中文字幕在线观看 | 大话2 男鬼变身卡| 久久99热6这里只有精品| 国产精品熟女久久久久浪| 在线观看美女被高潮喷水网站| 人人妻人人添人人爽欧美一区卜| 久久精品国产综合久久久 | 十八禁网站网址无遮挡| 99re6热这里在线精品视频| 亚洲国产看品久久| 男男h啪啪无遮挡| 欧美bdsm另类| 夜夜爽夜夜爽视频| 少妇熟女欧美另类| 久久综合国产亚洲精品| 1024视频免费在线观看| 精品亚洲乱码少妇综合久久| 2021少妇久久久久久久久久久| 国产激情久久老熟女| 午夜视频国产福利| 亚洲欧美清纯卡通| 99热国产这里只有精品6| 久久久a久久爽久久v久久| 最近最新中文字幕免费大全7| 久久精品国产亚洲av涩爱| 欧美国产精品va在线观看不卡| 国产国语露脸激情在线看| 午夜福利,免费看| 18禁在线无遮挡免费观看视频| 亚洲内射少妇av| 母亲3免费完整高清在线观看 | 天天躁夜夜躁狠狠久久av| 成人亚洲欧美一区二区av| 另类亚洲欧美激情| 一区二区日韩欧美中文字幕 | 精品一区二区三卡| 麻豆精品久久久久久蜜桃| 国产老妇伦熟女老妇高清| 久久精品国产综合久久久 | 国产欧美日韩一区二区三区在线| 欧美3d第一页| 中文乱码字字幕精品一区二区三区| 黄色毛片三级朝国网站| 黄色怎么调成土黄色| 日韩成人av中文字幕在线观看| av一本久久久久| 亚洲国产精品专区欧美| 18在线观看网站| 国产精品 国内视频| 精品熟女少妇av免费看| 久久99蜜桃精品久久| 免费观看av网站的网址| 国产有黄有色有爽视频| 男女下面插进去视频免费观看 | 久久久国产一区二区| 国产精品 国内视频| 国产免费福利视频在线观看| 十八禁网站网址无遮挡| 久久精品国产鲁丝片午夜精品| 久热久热在线精品观看| 在线观看www视频免费| 中国国产av一级| 精品午夜福利在线看| 成人毛片a级毛片在线播放| 久久久久久久久久成人| 欧美97在线视频| 97精品久久久久久久久久精品| 91在线精品国自产拍蜜月| 啦啦啦在线观看免费高清www| 看非洲黑人一级黄片| 制服诱惑二区| 最新中文字幕久久久久| av在线观看视频网站免费| 国产永久视频网站| 天堂中文最新版在线下载| 亚洲欧美精品自产自拍| 插逼视频在线观看| 熟女电影av网| 大香蕉久久网| 精品少妇黑人巨大在线播放| 日韩一区二区视频免费看| 高清毛片免费看| 如何舔出高潮| 欧美丝袜亚洲另类| 51国产日韩欧美| 高清欧美精品videossex| www.色视频.com| 国产精品人妻久久久影院| 在线观看三级黄色| 久久精品国产自在天天线| freevideosex欧美| 国产黄色免费在线视频| 亚洲av国产av综合av卡| 1024视频免费在线观看| 日韩av不卡免费在线播放| 制服丝袜香蕉在线| 免费女性裸体啪啪无遮挡网站| 你懂的网址亚洲精品在线观看| 人人妻人人爽人人添夜夜欢视频| 少妇熟女欧美另类| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情极品国产一区二区三区 | 免费看av在线观看网站| 免费av中文字幕在线| 视频区图区小说| 亚洲av电影在线进入| 99热这里只有是精品在线观看| 亚洲内射少妇av| 精品熟女少妇av免费看| 丁香六月天网| 亚洲欧美清纯卡通| 天堂8中文在线网| 久久久久久久精品精品| 亚洲,一卡二卡三卡| 国产1区2区3区精品| 最近手机中文字幕大全| 精品少妇久久久久久888优播| 色视频在线一区二区三区| 高清不卡的av网站| 精品卡一卡二卡四卡免费| 国内精品宾馆在线| 亚洲国产色片| 美国免费a级毛片| 99久久综合免费| 一区二区三区乱码不卡18| 午夜老司机福利剧场| a 毛片基地| 久久久精品区二区三区| 国产精品蜜桃在线观看| 精品99又大又爽又粗少妇毛片| 亚洲第一av免费看| 精品人妻一区二区三区麻豆| 丁香六月天网| 亚洲国产精品999| 亚洲国产精品999| 欧美97在线视频| 亚洲精品久久成人aⅴ小说| 亚洲三级黄色毛片| a级片在线免费高清观看视频| 欧美激情极品国产一区二区三区 | 大香蕉久久成人网| 99香蕉大伊视频| av免费在线看不卡| √禁漫天堂资源中文www| 少妇的丰满在线观看| av一本久久久久| 最近中文字幕高清免费大全6| 精品少妇内射三级| 黄色毛片三级朝国网站| 黑人欧美特级aaaaaa片| 国国产精品蜜臀av免费| 日韩av免费高清视频| 搡老乐熟女国产| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 一本久久精品| 欧美日韩av久久| 超碰97精品在线观看| 高清毛片免费看| 久久精品熟女亚洲av麻豆精品| 亚洲国产看品久久| 免费看不卡的av| 国产毛片在线视频| 国产在线视频一区二区| 99视频精品全部免费 在线| 男女免费视频国产| 大香蕉久久成人网| www.色视频.com| 久久ye,这里只有精品| 亚洲情色 制服丝袜| 欧美另类一区| 中文字幕av电影在线播放| 91在线精品国自产拍蜜月| 午夜老司机福利剧场| 午夜91福利影院| 色视频在线一区二区三区| 精品卡一卡二卡四卡免费| www日本在线高清视频| 国产乱来视频区| 男女午夜视频在线观看 | 日韩三级伦理在线观看| 精品国产国语对白av| 亚洲美女搞黄在线观看| 午夜激情久久久久久久| 有码 亚洲区| 91在线精品国自产拍蜜月| 一本久久精品| 99热这里只有是精品在线观看| 青春草国产在线视频| 丁香六月天网| 久久毛片免费看一区二区三区| 99国产精品免费福利视频| 色94色欧美一区二区| 日本av免费视频播放| 我的女老师完整版在线观看| 美女xxoo啪啪120秒动态图| 久久国产亚洲av麻豆专区| 日本欧美国产在线视频| 国产无遮挡羞羞视频在线观看| 男女无遮挡免费网站观看| 日本免费在线观看一区| 亚洲av成人精品一二三区| 国产片内射在线| 国产综合精华液| 欧美另类一区| 亚洲成人手机| 在线观看www视频免费| 热re99久久精品国产66热6| 欧美成人精品欧美一级黄| 国产深夜福利视频在线观看| 日韩在线高清观看一区二区三区| 欧美最新免费一区二区三区| 日韩人妻精品一区2区三区| 搡女人真爽免费视频火全软件| 国产精品免费大片| 91在线精品国自产拍蜜月| 色婷婷久久久亚洲欧美| 中文字幕制服av| 国产精品不卡视频一区二区| av有码第一页| 91午夜精品亚洲一区二区三区| 亚洲av成人精品一二三区| 亚洲内射少妇av| 国产av国产精品国产| 高清欧美精品videossex| 天堂俺去俺来也www色官网| 巨乳人妻的诱惑在线观看| 岛国毛片在线播放| 亚洲av中文av极速乱| 亚洲精品乱久久久久久| 综合色丁香网| 9热在线视频观看99| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久成人aⅴ小说| 久久久久精品人妻al黑| 欧美精品人与动牲交sv欧美| av免费观看日本| 亚洲欧美成人综合另类久久久| 国产男人的电影天堂91| 91久久精品国产一区二区三区| 亚洲,一卡二卡三卡| 丝袜脚勾引网站| 国产乱人偷精品视频| av有码第一页| 亚洲精品日韩在线中文字幕| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩卡通动漫| 亚洲欧美一区二区三区国产| 国产精品麻豆人妻色哟哟久久| 人妻一区二区av| 亚洲精品aⅴ在线观看| 免费播放大片免费观看视频在线观看| 国产男人的电影天堂91| 啦啦啦中文免费视频观看日本| 免费日韩欧美在线观看| 99久久人妻综合| 日本黄色日本黄色录像| 国产麻豆69| 国精品久久久久久国模美| av女优亚洲男人天堂| 日本91视频免费播放| 人人妻人人爽人人添夜夜欢视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品一区二区免费开放| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 久久久久久久亚洲中文字幕| 欧美97在线视频| 亚洲精品久久成人aⅴ小说| 中文天堂在线官网| 女人精品久久久久毛片| 精品人妻一区二区三区麻豆| 热re99久久精品国产66热6| 一区二区日韩欧美中文字幕 | 精品视频人人做人人爽| av.在线天堂| 成人国产麻豆网| 91精品国产国语对白视频| 国产精品一区www在线观看| 精品视频人人做人人爽| 国产伦理片在线播放av一区| 午夜福利网站1000一区二区三区| 99香蕉大伊视频| 一边亲一边摸免费视频| 嫩草影院入口| 亚洲国产成人一精品久久久| 亚洲第一区二区三区不卡| av免费在线看不卡| 免费日韩欧美在线观看| 精品国产一区二区三区四区第35| 中文字幕人妻丝袜制服| 色婷婷av一区二区三区视频| 亚洲欧美日韩卡通动漫| 青春草国产在线视频| 两个人免费观看高清视频| 国产成人精品无人区| xxx大片免费视频| 亚洲婷婷狠狠爱综合网| 久久人人97超碰香蕉20202| 久久精品国产亚洲av涩爱| 国产黄色免费在线视频| 精品午夜福利在线看| 人妻人人澡人人爽人人| 亚洲精品国产av蜜桃| 看免费成人av毛片| 精品国产乱码久久久久久小说| 免费大片18禁| 国产精品一二三区在线看| 午夜福利,免费看| 日产精品乱码卡一卡2卡三| 综合色丁香网| 99热这里只有是精品在线观看| 午夜视频国产福利| 久久99一区二区三区| 亚洲综合色网址| 欧美 亚洲 国产 日韩一| 男人添女人高潮全过程视频| videos熟女内射| 热99国产精品久久久久久7| 亚洲av在线观看美女高潮| 人人妻人人澡人人爽人人夜夜| 欧美日韩精品成人综合77777| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 少妇人妻 视频| 91精品伊人久久大香线蕉| 三上悠亚av全集在线观看| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 久久久a久久爽久久v久久| 色网站视频免费| 精品久久蜜臀av无| 一本久久精品| 久久久a久久爽久久v久久| 99视频精品全部免费 在线| 亚洲av男天堂| 精品久久久精品久久久| 欧美精品高潮呻吟av久久| 大话2 男鬼变身卡| xxx大片免费视频| 男人爽女人下面视频在线观看| 国产色婷婷99| 精品福利永久在线观看| 免费久久久久久久精品成人欧美视频 | 在线精品无人区一区二区三| 国产黄色免费在线视频| 国产亚洲最大av| 国产乱来视频区| 国产欧美亚洲国产| 少妇人妻久久综合中文| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 国产 一区精品| 国产免费一区二区三区四区乱码| 新久久久久国产一级毛片| 制服丝袜香蕉在线| 日韩中文字幕视频在线看片| 久久影院123| 免费看av在线观看网站| 伦理电影大哥的女人| 夫妻午夜视频| 久久人人97超碰香蕉20202| 久久免费观看电影| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 赤兔流量卡办理| 国产精品成人在线| 欧美日韩视频高清一区二区三区二| 老熟女久久久| 国产福利在线免费观看视频| 国产精品三级大全| 国产69精品久久久久777片| 色网站视频免费| 国产成人免费观看mmmm| 国内精品宾馆在线| 亚洲精品久久成人aⅴ小说| 精品熟女少妇av免费看| 国产精品欧美亚洲77777| 国产日韩欧美视频二区| 欧美日本中文国产一区发布| 亚洲美女视频黄频| 欧美国产精品va在线观看不卡| 成年动漫av网址| 欧美精品一区二区免费开放| 精品少妇久久久久久888优播| 高清毛片免费看| 全区人妻精品视频| 丰满乱子伦码专区| 妹子高潮喷水视频| 国产成人精品在线电影| 高清av免费在线| 性色av一级| 久久久久久久久久人人人人人人| 亚洲成国产人片在线观看| 欧美xxxx性猛交bbbb| 国产欧美亚洲国产| 亚洲av男天堂| 国产 精品1| 国产欧美亚洲国产| 国产男人的电影天堂91| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| 午夜激情av网站| 亚洲高清免费不卡视频| 亚洲精品中文字幕在线视频| 老司机影院毛片| 伦理电影免费视频| 欧美成人精品欧美一级黄| 国产有黄有色有爽视频| 一级毛片电影观看| 久久久久久人人人人人| 99国产综合亚洲精品| √禁漫天堂资源中文www| 999精品在线视频| 99国产综合亚洲精品| 制服人妻中文乱码| 精品99又大又爽又粗少妇毛片| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 在线亚洲精品国产二区图片欧美| 成人亚洲精品一区在线观看| 免费播放大片免费观看视频在线观看| 青青草视频在线视频观看| 女的被弄到高潮叫床怎么办| 精品国产露脸久久av麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞在线观看毛片| 黄色一级大片看看| 啦啦啦在线观看免费高清www| 国产无遮挡羞羞视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲综合色网址| 美女视频免费永久观看网站| 肉色欧美久久久久久久蜜桃| 成人漫画全彩无遮挡| 日本91视频免费播放| 两性夫妻黄色片 | 日韩欧美精品免费久久| 在线天堂最新版资源| 国产av精品麻豆| 国产片内射在线| 老熟女久久久| 男女边摸边吃奶| 午夜91福利影院| 国产又爽黄色视频| 免费观看a级毛片全部| 99久久精品国产国产毛片| 国产午夜精品一二区理论片| 国产极品粉嫩免费观看在线| a 毛片基地| 国产av精品麻豆| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 国产色爽女视频免费观看| 日产精品乱码卡一卡2卡三| 我要看黄色一级片免费的| 欧美老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 国产成人欧美| 成人毛片60女人毛片免费| av在线播放精品| 在线观看一区二区三区激情| 91国产中文字幕| 女性被躁到高潮视频| 女性生殖器流出的白浆| 国产欧美另类精品又又久久亚洲欧美| 一级毛片我不卡| kizo精华| 少妇人妻 视频| 少妇人妻精品综合一区二区| a级片在线免费高清观看视频| 在线看a的网站| 美女xxoo啪啪120秒动态图| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 高清av免费在线| 久久人人97超碰香蕉20202| 日韩av不卡免费在线播放| 人妻人人澡人人爽人人| 久久久久久久久久成人| 国产欧美另类精品又又久久亚洲欧美| 国产 一区精品| 成年人午夜在线观看视频| 亚洲成色77777| 中文字幕av电影在线播放| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| av在线app专区| 最黄视频免费看| 99热6这里只有精品| 国产欧美亚洲国产| 国国产精品蜜臀av免费| 国产乱人偷精品视频| av播播在线观看一区| www日本在线高清视频| 国产欧美亚洲国产| 一边亲一边摸免费视频| 日日啪夜夜爽| 日韩中字成人| 在线免费观看不下载黄p国产| 黑丝袜美女国产一区| 久久97久久精品| 宅男免费午夜| 一级a做视频免费观看| 18禁动态无遮挡网站| 91午夜精品亚洲一区二区三区| 热99国产精品久久久久久7| 你懂的网址亚洲精品在线观看| av国产精品久久久久影院| 宅男免费午夜| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 亚洲熟女精品中文字幕| 侵犯人妻中文字幕一二三四区| 国产av码专区亚洲av| 国产日韩一区二区三区精品不卡| 久久久a久久爽久久v久久| 一区二区av电影网| 妹子高潮喷水视频| a级毛片在线看网站| 欧美人与性动交α欧美软件 | 日本色播在线视频| 99热6这里只有精品| 男女下面插进去视频免费观看 | 国产成人午夜福利电影在线观看| 五月玫瑰六月丁香| 日韩制服丝袜自拍偷拍| 日本午夜av视频| 国产69精品久久久久777片| 国产福利在线免费观看视频| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区 | 少妇精品久久久久久久| 中文字幕人妻熟女乱码| 亚洲五月色婷婷综合| 亚洲欧美精品自产自拍| 久久精品国产综合久久久 | 激情五月婷婷亚洲| 国产淫语在线视频| 日本猛色少妇xxxxx猛交久久| 91成人精品电影| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 国产免费福利视频在线观看| 国产亚洲最大av| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| a级毛片在线看网站| 久久韩国三级中文字幕| 精品一区二区三卡| 波多野结衣一区麻豆| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 国产亚洲精品久久久com| 国产精品人妻久久久久久| 欧美bdsm另类| 欧美国产精品va在线观看不卡| 少妇的逼水好多| 最新中文字幕久久久久| 在现免费观看毛片| 久久久久久久久久成人| 女人精品久久久久毛片| 久久久久国产精品人妻一区二区| 亚洲精品美女久久av网站| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 日本wwww免费看| 女性被躁到高潮视频| 国产在线视频一区二区| 少妇的丰满在线观看| 欧美成人精品欧美一级黄| 永久免费av网站大全| 亚洲精品久久午夜乱码| 18+在线观看网站| 丰满乱子伦码专区| 午夜视频国产福利| av一本久久久久| 国产av一区二区精品久久| 色哟哟·www| 久久毛片免费看一区二区三区| 久久影院123| 免费看光身美女| 亚洲情色 制服丝袜| 久久久久精品人妻al黑| 国精品久久久久久国模美| 女性生殖器流出的白浆| 成人无遮挡网站| 九九在线视频观看精品| 高清欧美精品videossex|