戴靈豪,伍義行(中國(guó)計(jì)量大學(xué)生命科學(xué)學(xué)院藥學(xué)系,浙江省生物計(jì)量及檢驗(yàn)檢疫技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江杭州 310018)
血紅素加氧酶-1及其產(chǎn)物在肝病中的作用及其機(jī)制
戴靈豪,伍義行(中國(guó)計(jì)量大學(xué)生命科學(xué)學(xué)院藥學(xué)系,浙江省生物計(jì)量及檢驗(yàn)檢疫技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江杭州 310018)
血紅素加氧酶(HO)是降解血紅素成為一氧化碳(CO)、鐵離子和膽綠素過(guò)程中的限速酶,其亞型HO-1的誘導(dǎo)、超表達(dá)或抑制降解可顯著抑制乙肝和丙肝病毒復(fù)制,改善肝急/慢性炎癥及纖維化。HO-1及其代謝產(chǎn)物通過(guò)抗炎、抗氧化和抗凋亡作用與細(xì)胞保護(hù)密切相關(guān),能改善多種因素引起的肝損傷,并對(duì)缺血再灌注損傷、急/慢性免疫排斥反應(yīng)及肝移植生存率均有改善作用。HO-1在腫瘤細(xì)胞中過(guò)表達(dá),抑制HO-1表達(dá)能促進(jìn)肝癌細(xì)胞凋亡、減緩肝癌生長(zhǎng)及其血管生成,提示它可能是肝癌治療的潛在靶點(diǎn)。本文分析了HO-1及其產(chǎn)物在病毒性肝炎、肝損傷、肝纖維化、肝移植和肝癌中的作用及其機(jī)制,旨在闡明HO-1的靶點(diǎn)特性。鑒于HO-1具有顯著的抗病毒、抗炎和保肝作用,且抑制HO-1表達(dá)能抑制肝癌生長(zhǎng),故靶向HO-1可能成為臨床治療肝病及新藥研發(fā)的一種新策略。
血紅素加氧酶-1;病毒性肝炎;肝損傷;肝纖維化;肝移植;肝癌
血紅素加氧酶(heme oxygenase,HO)是血紅素代謝的限速酶,催化血紅素氧化降解成一氧化碳(CO)、鐵離子和膽綠素;膽綠素隨后在膽紅素還原酶的作用下轉(zhuǎn)變?yōu)槟懠t素[1]。血紅素加氧酶存在3種亞型即HO-1,HO-2和HO-3。HO-1(Hsp32)幾乎在每種細(xì)胞中均能應(yīng)激誘導(dǎo)產(chǎn)生[2]。HO-1表達(dá)的一個(gè)關(guān)鍵調(diào)節(jié)元件是Bach-1,它是一種高度保守的亮氨酸拉鏈蛋白,其中包含了血紅素的結(jié)合位點(diǎn)[3]。使用小干擾RNA(siRNA)靶向Bach-1 mRNA能明顯降低其mRNA和蛋白水平,并誘導(dǎo)HO-1基因的表達(dá)[4]。HO-1的誘導(dǎo)、過(guò)表達(dá)或抑制其降解能干預(yù)急慢性肝炎[5-6]、肝硬化[7]、肝細(xì)胞損傷[5]、乙肝病毒(HBV)和丙肝病毒(HCV)的復(fù)制[8-11],保護(hù)由肝移植[12]或出血/復(fù)蘇[13]造成的缺血再灌注損傷。此外,HO-1在多種癌癥包括口腔鱗癌、胰腺癌、肝癌等中過(guò)表達(dá)[14-16],抑制HO-1的表達(dá)或活性能促進(jìn)體內(nèi)外癌細(xì)胞凋亡[16]。HO-2是組成酶,其產(chǎn)物參與神經(jīng)信號(hào)的傳遞。HO-3最初是從大鼠大腦中分離得到,并表現(xiàn)出血紅素依賴(lài)性細(xì)胞功能調(diào)控作用[17]。
HO-1缺陷小鼠致死率高,而存活的缺陷小鼠則發(fā)展成為與貧血相關(guān)的氧化損傷、組織損傷和慢性炎癥,同時(shí)還出現(xiàn)異常的低血清鐵水平和肝腎組織鐵沉積[18]。此外,HO-1缺陷患者出現(xiàn)持續(xù)性溶血性貧血、血管內(nèi)溶血和凝血功能異常,在腎和肝組織中檢測(cè)到鐵沉積[19-20]。顯然,HO-1對(duì)維持機(jī)體的正常功能具有重要意義,而且HO-1的表達(dá)水平與各種肝病的發(fā)生密切相關(guān),通過(guò)調(diào)控HO-1的表達(dá)水平有可能干預(yù)肝病的進(jìn)程,從而改善并恢復(fù)肝的正常功能。因此,本文綜述了HO-1及其產(chǎn)物在病毒性肝炎、肝損傷、肝纖維化、肝移植及肝癌中的作用及其機(jī)制,旨在闡明HO-1的潛在靶點(diǎn)特性,以期為肝病的臨床治療及新藥研發(fā)提供一種新的策略和思路。
HBV和HCV慢性感染是肝進(jìn)行性炎癥并發(fā)展為肝癌的主要原因[21]。HO-1誘導(dǎo)表達(dá)或過(guò)量表達(dá)能干預(yù)HBV[8,22]和HCV[9-11]的復(fù)制。采用急性(將含1.3倍HBV基因組的重組腺病毒載體AdHBV注射野生型小鼠)和慢性(HBV轉(zhuǎn)基因動(dòng)物)HBV感染模型研究表明,HO-1誘導(dǎo)表達(dá)能顯著改善肝損傷且具有顯著的直接的抗病毒效應(yīng)。通過(guò)轉(zhuǎn)染HBV的肝癌細(xì)胞研究顯示,這種抗HBV作用是在轉(zhuǎn)錄后水平上實(shí)現(xiàn)的,由于HO-1降低了核殼蛋白的穩(wěn)定性,從而阻斷cccDNA池的補(bǔ)充,進(jìn)一步抑制了HBV復(fù)制[8]。而且在人肝中大量表達(dá)的微RNA (microRNA122,miR-122)能干預(yù)HO-1表達(dá),從而促進(jìn)HBV的復(fù)制[22-23]。
有關(guān)HCV感染期間HO-1表達(dá)的內(nèi)源性調(diào)控作用尚存在爭(zhēng)議,但在HCV復(fù)制的肝癌細(xì)胞中發(fā)現(xiàn)HO-1表達(dá)增加而B(niǎo)ach-1表達(dá)減少現(xiàn)象[24]。在表達(dá)HCV核心蛋白的細(xì)胞系中HO-1表達(dá)受到抑制,同時(shí)在感染HCV的患者中HO-1水平下調(diào),而未感染HCV肝中HO-1水平上調(diào)[25-26]。還有報(bào)道,HCV核心蛋白能干預(yù)由血紅素、重金屬和過(guò)氧化物誘導(dǎo)的HO-1表達(dá)[27]。這些證據(jù)提示,HCV核心蛋白可能負(fù)責(zé)HCV感染細(xì)胞中HO-1表達(dá)的調(diào)控。同時(shí),HO-1對(duì)HCV復(fù)制的影響已通過(guò)miRNA研究得到闡明,miR-122可能是HCV RNA復(fù)制所需要的成分[28]。通過(guò)使用miR-122抑制劑減少HCV RNA復(fù)制,而轉(zhuǎn)染甲基化miR-122則提高HCV復(fù)制水平多達(dá)2.5倍;miR-122抑制劑還能降低Bach-1水平而增加HO-1 mRNA水平,這表明miR-122對(duì)HCV復(fù)制影響的可能機(jī)制[9]。此外,還有報(bào)道,miR-196能下調(diào)HO-1轉(zhuǎn)錄抑制因子Bach-1水平,從而上調(diào)HO-1的表達(dá)[29]。
雖然尚無(wú)足夠證據(jù)表明HO-1降解產(chǎn)物具有抑制HBV的作用,但它對(duì)HCV復(fù)制已確定具有影響。采用HCV復(fù)制子細(xì)胞系研究表明,CO和鐵離子都不能干預(yù)HCV的復(fù)制[11],而膽綠素能通過(guò)誘導(dǎo)干擾素表達(dá)來(lái)降低HCV復(fù)制介導(dǎo)的氧化應(yīng)激[11-12]。最近研究表明,膽綠素有抑制HCV非結(jié)構(gòu)蛋白NS3/4A的作用[30],而NS3/4A也是新近開(kāi)發(fā)的抗HCV藥物特拉匹韋(telaprevir)的一個(gè)作用靶點(diǎn)[31]。
HO-1誘導(dǎo)表達(dá)或其降解產(chǎn)物對(duì)急性肝炎和敗血癥動(dòng)物模型顯示了明顯的改善作用[5-6,32-33]。在由脂多糖和D-半乳糖胺誘導(dǎo)的急性肝損傷小鼠模型中,HO-1的誘導(dǎo)減少了細(xì)胞因子表達(dá),改善了小鼠肝損傷并延長(zhǎng)了其存活時(shí)間[5]。HO-1系統(tǒng)還通過(guò)增加M2巨噬細(xì)胞表型及減少M(fèi)1巨噬細(xì)胞表型、趨化因子和細(xì)胞因子表達(dá)發(fā)揮其抗大鼠肝炎的作用[34]。對(duì)硫代乙酰胺誘導(dǎo)的大鼠肝損傷研究表明,HO-1的抗氧化和抗炎效應(yīng)是通過(guò)減少NO產(chǎn)生實(shí)現(xiàn)的[35]。采用大鼠乙醇性肝炎模型研究顯示,脂聯(lián)素(adiponectin)的抗炎作用是通過(guò)Kupffer細(xì)胞HO-1依賴(lài)途徑被介導(dǎo)的[36]。
HO-1催化血紅素降解的產(chǎn)物(CO、膽紅素和游離鐵)均與細(xì)胞保護(hù)相關(guān),其中CO具有抑制炎癥反應(yīng)以及促進(jìn)巨噬細(xì)胞抗炎的作用[37]。采用免疫介導(dǎo)的小鼠肝損傷模型研究表明,單用CO并不能干預(yù)細(xì)胞因子釋放,卻能抑制肝細(xì)胞凋亡[5]。而外源性CO能誘導(dǎo)HO-1表達(dá),這說(shuō)明CO的抗炎作用可能是通過(guò)誘導(dǎo)HO-1所介導(dǎo)的。通過(guò)乙醇致肝損傷小鼠模型研究顯示,HO-1誘導(dǎo)釋放的CO可能是通過(guò)激活P38絲裂原激活蛋白激酶信號(hào)通路發(fā)揮其抗氧化和抗炎作用的[38]。雖然HO-1誘導(dǎo)產(chǎn)生的膽綠素并不干預(yù)細(xì)胞因子釋放,但CO和膽綠素聯(lián)合應(yīng)用卻抑制如腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)等細(xì)胞因子的產(chǎn)生[5]。膽紅素和膽綠素的保護(hù)作用主要是基于它們的抗氧化效應(yīng),膽紅素在體外對(duì)淋巴細(xì)胞和粒細(xì)胞具有免疫抑制作用,在體內(nèi)接觸抗原后能影響免疫細(xì)胞的分化[39]。此外,HO-1誘導(dǎo)的膽紅素能通過(guò)膽綠素氧化酶信號(hào)通路對(duì)抗乙醇致大鼠肝細(xì)胞毒性[40]。
HO-1催化血紅素降解的第3種產(chǎn)物鐵離子也具有抗肝炎作用[41]。Kupffer細(xì)胞能產(chǎn)生TNF-α和白細(xì)胞介素6等細(xì)胞因子,而Kupffer細(xì)胞在紅細(xì)胞吞噬的鐵離子循環(huán)過(guò)程中起關(guān)鍵作用。增加敗血癥模型中血紅素的攝取量會(huì)導(dǎo)致巨噬細(xì)胞誘導(dǎo)產(chǎn)生大量HO-1[42]。HO-1能抑制由脂多糖誘導(dǎo)的RAW 264.7巨噬細(xì)胞的細(xì)胞因子的釋放,說(shuō)明這可能是一種免疫調(diào)節(jié)作用[43]。此外,將二價(jià)亞鐵離子應(yīng)用于Kupffer細(xì)胞,能以一種氧化還原依賴(lài)的方式直接激活I(lǐng)κB激酶/NF-κB和TNF-α的啟動(dòng)子活性,從而增加TNF-α釋放[44]。來(lái)源于血紅素的游離鐵離子還能促進(jìn)Kupffer細(xì)胞NF-κB的激活,并表達(dá)TNF-α和白細(xì)胞介素6等促炎基因[45]。然而,來(lái)源于血紅素的鐵離子的抗炎或促炎作用依舊缺乏體內(nèi)實(shí)驗(yàn)證據(jù)。
有關(guān)HO-1誘導(dǎo)表達(dá)對(duì)Mdr2ko小鼠的影響研究表明,Mdr2轉(zhuǎn)運(yùn)蛋白的缺失會(huì)導(dǎo)致膽固醇和磷脂酰膽堿的積累,從而造成慢性炎癥和纖維化[46]。在該模型中HO-1誘導(dǎo)表達(dá)的抗炎作用與肝白細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞、CD3+和Foxp3+T細(xì)胞總量的減少有關(guān),同時(shí)CD3+/Foxp3+T細(xì)胞的比例促使小鼠傾向處于免疫抑制狀態(tài)[46]。肝星狀細(xì)胞HO-1誘導(dǎo)表達(dá)顯著降低了它們的體內(nèi)外活性,如產(chǎn)生更少的膠原纖維和α-SMA表達(dá)[7]。Tsui等[47]將重組腺病毒(rAAV-HO-1)導(dǎo)入到肝星狀細(xì)胞中,然后將這些細(xì)胞轉(zhuǎn)入經(jīng)四氯化碳處理的大鼠中,結(jié)果顯著減少小結(jié)節(jié)型肝硬化、降低肝膠原纖維表達(dá),并抑制肝星狀細(xì)胞的增殖能力。此外,在Mdr2ko小鼠體內(nèi)HO-1誘導(dǎo)表達(dá)能干預(yù)纖維化,甚至表現(xiàn)出纖溶活性[7]。
在肝纖維化大鼠模型中,HO-1誘導(dǎo)能通過(guò)增加肝組織過(guò)氧化物酶增殖物激活受體γ表達(dá)和減少NF-κB表達(dá),實(shí)現(xiàn)其對(duì)纖維化肝臟的保護(hù)作用[48]。研究發(fā)現(xiàn),肝硬化患者Kupffer細(xì)胞和肌成纖維細(xì)胞HO-1表達(dá)出現(xiàn)顯著上調(diào),其中肌成纖維細(xì)胞的HO-1誘導(dǎo)表達(dá)與纖溶活性密切相關(guān)[49]。體外研究顯示,輕度氧化應(yīng)激和P38蛋白激酶信號(hào)通路介導(dǎo)激活了人肝成纖維細(xì)胞HO-1的表達(dá)[50]。采用膽管結(jié)扎誘導(dǎo)大鼠肝硬化的模型研究表明,HO-1抑制劑能通過(guò)NF-E2相關(guān)因子2/Keap信號(hào)通路減少肝的鐵沉積和CO水平,從而改善肝纖維化[51]。
肝移植手術(shù)已成為解決終末期肝病患者肝功能恢復(fù)的重要治療手段,肝移植的成功與否主要取決于對(duì)缺血再灌注損傷和急/慢性移植排斥的處理效果。缺血會(huì)導(dǎo)致組織低氧和營(yíng)養(yǎng)缺乏,從而誘導(dǎo)氧化應(yīng)激、細(xì)胞凋亡、激活非特異性免疫反應(yīng)和隨后的適應(yīng)性免疫系統(tǒng)[52]。HO-1能干預(yù)氧化應(yīng)激、細(xì)胞凋亡和促炎性免疫應(yīng)答。肝移植的結(jié)果還與捐贈(zèng)者的HO-1啟動(dòng)子多態(tài)性相關(guān),高移植生存率存在于HO-1高表達(dá)人群[53]。多項(xiàng)研究也表明HO-1過(guò)量表達(dá)有利于缺血再灌注改善和不同器官的移植[54-55]。在大鼠脂肪肝低溫缺血再灌注損傷模型中,通過(guò)CoPP誘導(dǎo)HO-1表達(dá)或通過(guò)腺病毒介導(dǎo)的基因轉(zhuǎn)移誘導(dǎo)HO-1過(guò)量表達(dá)均顯著提高了門(mén)靜脈血流量、增加了膽汁分泌和改善了肝損傷。此外,在大鼠肝原位移植中,采用CoPP預(yù)處理或直接運(yùn)用HO-1能使移植受體存活率提高1倍,并能保護(hù)肝臟結(jié)構(gòu)、改善肝功能、減少T細(xì)胞和巨噬細(xì)胞的浸潤(rùn)[12]。同樣,在其他器官移植中改變HO-1表達(dá)水平也能提高移植存活率。
HO-1降解產(chǎn)物對(duì)缺血再灌注損傷、急性免疫排斥反應(yīng)及移植生存率均有積極影響。采用補(bǔ)充CO的血液體外灌注大鼠肝能顯著降低門(mén)靜脈阻力、增加膽汁分泌、改善肝功能和肝損傷的病理學(xué)改變[56]。據(jù)報(bào)道CO介導(dǎo)的細(xì)胞保護(hù)效應(yīng)不依賴(lài)NO合酶和環(huán)鳥(niǎo)苷酸,而是依賴(lài)P38絲裂原活化蛋白激酶[56]。CO的保護(hù)效應(yīng)也可能是通過(guò)調(diào)控CO釋放分子來(lái)實(shí)現(xiàn)的[57]。膽紅素具有免疫抑制能力,能抑制細(xì)胞毒T細(xì)胞從而干預(yù)肝中CD4+T細(xì)胞所誘導(dǎo)的炎癥反應(yīng),這種抑制作用可能是通過(guò)Fas/ CD95-FasL信號(hào)轉(zhuǎn)導(dǎo)通路實(shí)現(xiàn)的[58-59]。作為HO-1第三種產(chǎn)物的鐵離子所形成的鐵蛋白也具有改善大鼠肝缺血再灌注損傷及同源受體肝移植的細(xì)胞損傷作用,鐵蛋白的體內(nèi)保護(hù)效應(yīng)是與內(nèi)皮細(xì)胞和肝細(xì)胞的凋亡抑制相關(guān)的[60]。
雖然HO-1誘導(dǎo)表達(dá)能干預(yù)慢性肝炎及纖維化過(guò)程,甚至能分解已形成的纖維化,但HO-1在腫瘤細(xì)胞中過(guò)量表達(dá),似乎表明HO-1是引起癌變的一個(gè)因素[7]。事實(shí)上,在多種癌癥細(xì)胞中HO-1過(guò)量表達(dá),如口腔鱗癌[14]、胰腺癌[15]和肝癌[16]等。特別是在口腔鱗癌中HO-1啟動(dòng)子的多態(tài)性與癌癥發(fā)生率相關(guān),甚至可能作為復(fù)發(fā)和存活的預(yù)后標(biāo)志[61]。同樣,在日本女性中高HO-1啟動(dòng)子活性與增加胃癌風(fēng)險(xiǎn)相關(guān)[62]。Lo等[63]鑒定了HO-1啟動(dòng)子中GT重復(fù)序列的長(zhǎng)度和胃腺癌風(fēng)險(xiǎn)的關(guān)聯(lián)。這些研究表明,HO-1增量表達(dá)也許與腫瘤細(xì)胞的生存優(yōu)勢(shì)相關(guān)。抑制HO-1表達(dá)或活性在體內(nèi)外均促進(jìn)肝癌細(xì)胞凋亡[16]。采用siRNA下調(diào)HO-1表達(dá)導(dǎo)致腫瘤細(xì)胞的損傷和凋亡增加,減少細(xì)胞增殖,減緩原位肝癌的生長(zhǎng)和血管的生成[16]。此外,在其他類(lèi)型癌癥中,HO-1的抑制能改善放射治療[64]或藥物治療[65]等的治療效果。
HO-1的抗凋亡作用主要是由血紅素降解產(chǎn)物CO實(shí)現(xiàn)的[5,65]。研究表明,CO能直接干預(yù)通過(guò)抗CD95單抗[5]或氧化損傷[66]誘導(dǎo)產(chǎn)生的肝細(xì)胞凋亡。雖然HO-1和CO能通過(guò)抑制c-Jun N端激酶活性保護(hù)原代肝細(xì)胞對(duì)抗超氧陰離子誘導(dǎo)的凋亡,但肝中CO依賴(lài)的抗凋亡下游信號(hào)還未完全闡明[66]。HO-1的第二個(gè)產(chǎn)物膽綠素尚無(wú)有關(guān)抗肝細(xì)胞凋亡作用的報(bào)道,而由HO-1的第3個(gè)產(chǎn)物鐵離子誘導(dǎo)的鐵蛋白能保護(hù)由多種刺激誘導(dǎo)的內(nèi)皮細(xì)胞凋亡[60]。由重組腺病毒介導(dǎo)的鐵蛋白重鏈基因的過(guò)度表達(dá)也能保護(hù)大鼠肝的缺血再灌注損傷,且能防止移植到同源受體的血管內(nèi)皮細(xì)胞和肝細(xì)胞發(fā)生凋亡[60]。最近報(bào)道HO-1通過(guò)抑制TNF/TNFR1介導(dǎo)的凋亡信號(hào)、調(diào)節(jié)凋亡誘導(dǎo)復(fù)合物的形成和線粒體TNFR1的易位來(lái)實(shí)現(xiàn)其抗凋亡的細(xì)胞保護(hù)效應(yīng)[67]。上述研究表明,HO-1或CO對(duì)外在因素誘導(dǎo)的凋亡損傷可能是一種有用的保護(hù)工具,但如果在腫瘤細(xì)胞中大量存在,它可能是肝癌治療的一個(gè)潛在靶點(diǎn)。
HO-1作為一種保護(hù)性酶,其重要性在HO-1缺陷患者中已得到證實(shí),而HO-1表達(dá)的調(diào)控可能成為臨床上肝炎和肝癌治療的一種新策略。一方面,由于HO-1具有顯著的抗病毒、抗炎、抗氧化、抗凋亡及保肝作用,故HO-1的誘導(dǎo)或超表達(dá)可用于病毒性肝炎(包括乙肝和丙肝)[8-9]、各種原因引起的肝損傷以及肝纖維化的治療[5,48],還可改善缺血再灌注損傷、減少急/慢性免疫排斥反應(yīng)及提高肝移植生存率[53-55]。但目前存在的問(wèn)題是,雖然HO-1能被多種刺激劑所誘導(dǎo),但仍缺乏有效的HO-1特異性誘導(dǎo)劑;而在體外或動(dòng)物實(shí)驗(yàn)中使用的HO-1誘導(dǎo)劑(如CoPP)并不適合直接用于患者。為解決這個(gè)問(wèn)題,有學(xué)者試圖使用miR-196[29]、miR-122拮抗劑[9]、蛋白轉(zhuǎn)導(dǎo)域-HO-1蛋白(PTD-HO-1)[68]、或通過(guò)siRNA直接沉默HO-1轉(zhuǎn)錄抑制因子Bach-1來(lái)提高HO-1表達(dá)[4]。而三羥基三甲基戊二酸單酰輔酶A (HMG輔酶A)還原酶抑制劑具有在多種組織中誘導(dǎo)HO-1表達(dá)的作用[69],但臨床上這些HO-1誘導(dǎo)劑的應(yīng)用(如治療HCV)仍受到爭(zhēng)議主要受限于其療效的差異性[70-71]。另外,本課題組探討了HBV感染與HO-1表達(dá)的動(dòng)態(tài)相關(guān)性,也證實(shí)了HO-1誘導(dǎo)表達(dá)與HBV感染的直接關(guān)系,驗(yàn)證了HO-1對(duì)HBV復(fù)制的顯著抑制作用[72-73]。顯然,今后的方向仍然是尋找肝特異性安全有效的HO-1誘導(dǎo)劑,包括天然和合成的小分子以及生物制品。
另一方面,由于HO-1被發(fā)現(xiàn)在多種腫瘤細(xì)胞中過(guò)量表達(dá)(如肝癌[16]、口腔鱗癌[14]、胰腺癌[15]、腎癌[74]和前列腺癌[75]等),而抑制HO-1表達(dá)或活性能促進(jìn)肝癌細(xì)胞凋亡,減少細(xì)胞增殖,減緩肝癌生長(zhǎng)及其血管生成[16],提示它可能成為肝癌潛在的治療靶點(diǎn),故下調(diào)HO-1表達(dá)的選擇性HO-1抑制劑可能成為包括肝癌在內(nèi)的多種腫瘤治療的新方向。例如,小分子選擇性HO-1抑制劑OB-24在體內(nèi)外被證明具有廣譜抗腫瘤活性,尤其是能顯著抑制前列腺癌細(xì)胞增殖和腫瘤生長(zhǎng),而且還與腫瘤化療藥物具有協(xié)同作用[65,76]。因此,新型小分子選擇性HO-1抑制劑仍有必要繼續(xù)深入研究。綜上所述,肝特異性HO-1誘導(dǎo)劑和小分子選擇性HO-1抑制劑分別在肝炎和肝癌治療中具有重要意義和巨大潛力。
[1] Maines MD.Heme oxygenase:function,multiplicity,regulatory mechanisms,and clinical applications [J].FASEB J,1988,2(10):2557-2568.
[2] Elbirt KK, Bonkovsky HL.Hemeoxygenase:recent advances in understanding its regulation and role[J].Proc Assoc Am Physicians,1999,111(5):438-447.
[3] Sun J,Hoshino H,Takaku K,Nakajima O,Muto A,Suzuki H,et al.Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene [J].EMBO J,2002,21(19):5216-5224.
[4] Shan Y,Lambrecht RW,Ghaziani T,Donohue SE,Bonkovsky HL.Role of Bach-1 in regulation of heme oxygenase-1 in human liver cells:insights from studies with small interfering RNAs[J].J Biol Chem,2004,279(50):51769-51774.
[5] SassG, SeyfriedS,ParreiraSoaresM,Yamashita K,Kaczmarek E,Neuhuber WL,et al. CooperativeeffectofbiliverdinandCarbon monoxide on survival of mice in immune-mediated liver injury[J].Hepatology,2004,40(5):1128-1135.
[6] Sass G,Soares MC,Yamashita K,Seyfried S,Zimmermann WH,Eschenhagen T,et al.Heme oxygenase-1 and its reaction product,carbon monoxide,prevent inflammation-related apoptotic liver damage in mice[J].Hepatology,2003,38 (4):909-918.
[7] Barikbin R, Neureiter D, Wirth J, Erhardt A,Schwinge D,Kluwe J,et al.Induction of heme oxygenase 1 prevents progression of liver fibrosis in Mdr2 knockout mice[J].Hepatology,2012,55 (2):553-562.
[8]Protzer U,Seyfried S,Quasdorff M,Sass G,Svorcova M,Webb D,et al.Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection[J].Gastroenterology,2007,133(4):1156-1165.
[9] Shan Y,Zheng J,Lambrecht RW,Bonkovsky HL. Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes inhumanhepatocytes[J].Gastroenterology,2007,133(4):1166-1174.
[10] Zhu Z,Wilson AT, Mathahs MM,Wen F,Brown KE,Luxon BA,et al.Heme oxygenase-1 suppresseshepatitisCvirusreplicationandincreases resistance of hepatocytes to oxidant injury[J].Hepatology,2008,48(5):1430-1439.
[11]LehmannE,El-TantawyWH,OckerM,Bartenschlager R,Lohmann V,Hashemolhosseini S,et al.The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response [J].Hepatology,2010,51(2):398-404.
[12] Amersi F,Buelow R,Kato H,Ke B,Coito AJ,Shen XD,et al.Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury[J].J Clin Invest,1999,104(11):1631-1639.
[13] Rensing H, Bauer I, Datene V, P?tau C,Pannen BH,Bauer M.Differential expression pattern of heme oxygenase-1/heat shock protein 32 and nitric oxide synthase-Ⅱ and their impact on liver injury in a rat model of hemorrhage and resuscitation[J].Crit Care Med,1999,27(12):2766-2775.
[14] Lee J,Lee SK,Lee BU,Lee HJ,Cho NP,Yoon JH,et al.Upregulation of heme oxygenase-1 in oral epithelial dysplasias[J].Int J Oral Maxillofac Surg,2008,37(3):287-292.
[15] NuhnP,KünzliBM,HennigR,Mitkus T,Ramanauskas T,Nobiling R,et al.Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo[J].Mol Cancer,2009,8:37.
[16] Sass G,Leukel P,Schmitz V,Raskopf E,Ocker M,Neureiter D,et al.Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice[J].Int J Cancer,2008,123(6):1269-1277.
[17] Mccoubrey WK,Huang TJ,Maines MD.Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3[J]. Eur J Biochem,1997,247(2):725-732.
[18] Poss KD,Tonegawa S.Hemeoxygenase 1is required for mammalian iron reutilization[J].Proc Natl Acad Sci USA,1997,94(20):10919-10924.
[19] Yachie A,Niida Y,Wada T,Igarashi N,Kaneda H,Toma T,et al.Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency[J].J Clin Invest,1999,103(1):129-135.
[20] Kawashima A,Oda Y,Yachie A,Koizumi S,Nakanishi I.Heme oxygenase-1 deficiency:the first autopsy case[J].Hum Pathol,2002,33(1):125-130.
[21] El-Serag HB,Rudolph KL.Hepatocellular carcinoma:epidemiology and molecular carcinogenesis[J]. Gastroenterology,2007,132(7):2557-2576.
[22] Qiu L,F(xiàn)an H,Jin W,Zhao B,Wang Y,Ju Y,et al.miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV[J].Biochem Biophys Res Commun,2010,398(4):771-777.
[23] Chang J,Nicolas E,Marks D,Sander C,Lerro A,Buendia MA,et al.miR-122,a mammalian liverspecific microRNA,is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1[J].RNA Biol,2004,1(2):106-113.
[24] Ghaziani T,Shan Y,Lambrecht RW,Donohue SE,Pietschmann T,Bartenschlager R,et al.HCV proteins increase expression of heme oxygenase-1 (HO-1)anddecreaseexpressionofBach1inhuman hepatoma cells[J].J Hepatol,2006,45(1):5-12.
[25] Abdalla MY,Mathahs MM,Ahmad IM.Reduced heme oxygenase-1 expression in steatotic livers infected with hepatitis C virus[J].Eur J Intern Med,2012,23(7):649-655.
[26]Abdalla MY,Britigan BE,Wen F,Icardi M,Mccormick ML,Labrecque DR,et al.Down-regulation of heme oxygenase-1 by hepatitis C virus infection in vivo and by the in vitro expression of hepatitis C core protein[J].J Infect Dis,2004,190(6):1109-1118.
[27]Wen F,Brown KE,Britigan BE,Schmidt WN. Hepatitis C core protein inhibits induction of heme oxygenase-1 and sensitizes hepatocytes to cytotoxicity[J].Cell Biol Toxicol,2008,24(2):175-188.
[28] Jopling CL,Yi M,Lancaster AM,Lemon SM,Sarnow P.Modulation of hepatitis C virus RNA abundancebyaliver-specificmicroRNA[J]. Science,2005,309(5740):1577-1581.
[29] Hou W, Tian Q, Zheng J,Bonkovsky HL. MicroRNA-196repressesBach1proteinand hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins [J].Hepatology,2010,51(5):1494-1504.
[30]Zhu Z, Wilson AT, Luxon BA,Brown KE,Mathahs MM,Bandyopadhyay S,et al.Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity:mechanism for the antiviral effects of heme oxygenase?[J].Hepatology,2010,52(6):1897-1905.
[31] Lin C,Kwong AD,Perni RB.Discovery and development of VX-950,a novel,covalent,and reversible inhibitor of hepatitis C virus NS3.4Aserine protease[J].Infect Disord Drug Targets,2006,6(1):3-16.
[32] Tsoyi K,Lee TY,Lee YS,Kim HJ,Seo HG,Lee JH,et al.Heme-oxygenase-1 induction and Carbon monoxide-releasing molecule inhibit lipopolysaccharide(LPS)-inducedhigh-mobilitygroup box 1 release in vitro and improve survival of mice in LPS-and cecal ligation and puncture-induced sepsis model in vivo[J].Mol Pharmacol,2009,76(1):173-182.
[33] Chung SW,Liu X,Macias AA,Baron RM,Perrella MA.Heme oxygenase-1-derived Carbon monoxide enhances the host defense response to microbial sepsis in mice[J].J Clin Invest,2008,118(1):239-247.
[34] Salley TN,Mishra M,Tiwari S,Jadhav A,Ndisang JF.The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes[J].PLoS One,2013,8 (11):e79270.
[35] Develi-Is S,Bekpinar S,Kalaz EB,Evran B,Unlucerci Y,Gulluoglu M,et al.The protection by heme oxygenase-1 induction against thioacetamide-induced liver toxicity is associatedwith changes in arginine and asymmetric dimethylarginine[J].Cell Biochem Funct,2013,31(2):122-128.
[36] Mandal P,Park PH,Mcmullen MR,Pratt BT,Nagy LE.The anti-inflammatory effects of adiponectin are mediated via a heme oxygenase-1-dependentpathwayinratKupffercells[J]. Hepatology,2010,51(4):1420-1429.
[37] Otterbein LE,Soares MP,Yamashita K,Bach FH. Heme oxygenase-1:unleashing the protective properties of heme[J].Trends Immunol,2003,24(8):449-455.
[38] Li Y,Gao C,Shi Y,Tang Y,Liu L,Xiong T,et al. Carbonmonoxidealleviatesethanol-induced oxidativedamageandinflammatorystress throughactivatingp38MAPKpathway[J]. Toxicol Appl Pharmacol,2013,273(1):53-58.
[39] Síma P,Malá J,Miler I,Hodr R,Truxová E.The suppressive effect of continuous infusion of bilirubin on the immune response in mice[J].Folia Microbiol (Praha),1980,25(6):483-490.
[40] Jie Q,Tang Y,Deng Y,Li Y,Shi Y,Gao C,et al.Bilirubin participates in protecting of heme oxygenase-1 induction by quercetin against ethanol hepatotoxicityinculturedrathepatocytes[J]. Alcohol,2013,47(2):141-148.
[41] Immenschuh S,Baumgart-Vogt E,Mueller S. Heme oxygenase-1 and iron in liver inflammation:a complex alliance[J].Curr Drug Targets,2010,11(12):1541-1550.
[42] Schaer DJ,Schaer CA,Schoedon G,Imhof A,Kurrer MO.Hemophagocytic macrophages constitute amajorcompartmentofhemeoxygenase expression in sepsis[J].Eur J Haematol,2006,77(5):432-436.
[43] Li QF,Zhu YS,Jiang H,Xu H,Sun Y.Heme oxygenase-1 mediates the anti-inflammatory effect of isoflurane preconditioning in LPS-stimulated macrophages[J].Acta Pharmacol Sin,2009,30 (2):228-234.
[44] She H,Xiong S,Lin M,Zandi E,Giulivi C,Tsukamoto H.IronactivatesNF-kappaB in Kupffer cells[J].Am J Physiol Gastrointest Liver Physiol,2002,283(3):G719-G726.
[45] Tsukamoto H,Lin M,Ohata M,Giulivi C,F(xiàn)rench SW,Brittenham G.Iron primes hepatic macrophages for NF-kappaB activation in alcoholic liver injury[J].Am J Physiol,1999,277(6 Pt 1):G1240-G1250.
[46] Mauad TH,Van Nieuwkerk CM,Dingemans KP,Smit JJ,Schinkel AH,Notenboom RG,et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene.A novel animal model for studies of nonsuppurative inflammatory cholangitis andhepatocarcinogenesis[J].AmJPathol,1994,145(5):1237-1245.
[47] Tsui TY,Lau CK,Ma J,Wu X,Wang YQ,F(xiàn)arkas S,et al.rAAV-mediated stable expression of heme oxygenase-1 in stellatecells:anew approach to attenuate liver fibrosis in rats[J]. Hepatology,2005,42(2):335-342.
[48] Yang H,Zhao LF,Zhao ZF,Wang Y,Zhao JJ,Zhang L.Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARγ and NF-κB[J].World J Gastroenterol,2012,18 (14):1680-1688.
[49]Li L,Grenard P,Nhieu JT,Julien B,Mallat A,Habib A,et al.Heme oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts [J].Gastroenterology,2003,125(2):460-469.
[50] Li L,Julien B,Grenard P, Teixeira-Clerc F,Mallat A,Lotersztajn S.Molecular mechanisms regulatingtheantifibrogenicproteinhemeoxygenase-1 in human hepatic myofibroblasts[J]. J Hepatol,2004,41(3):407-413.
[51] Wang QM,Du JL,Duan ZJ,Guo SB,Sun XY,Liu Z.Inhibiting heme oxygenase-1 attenuates ratliver fibrosis by removing iron accumulation[J]. World J Gastroenterol,2013,19(19):2921-2934.
[52] ?llinger R,Pratschke J.Role of heme oxygenase-1 in transplantation[J].Transpl Int,2010,23(11):1071-1081.
[53] Buis CI,Van Der Steege G,Visser DS,Nolte IM,Hepkema BG,Nijsten M,et al.Heme oxygenase-1 genotype of the donor is associated with graft survivalafterlivertransplantation[J].AmJ Transplant,2008,8(2):377-385.
[54] Katori M,Buelow R,Ke B,Ma J,Coito AJ,Iyer S,et al.Heme oxygenase-1 overexpression protects rat hearts from cold ischemia/reperfusion injury via an antiapoptotic pathway[J].Transplantation,2002,73(2):287-292.
[55] Kato H,Amersi F,Buelow R,Melinek J,Coito AJ,Ke B,et al.Heme oxygenase-1 overexpression protects rat livers from ischemia/reperfusion injury withextendedcoldpreservation[J].AmJ Transplant,2001,1(2):121-128.
[56] Amersi F,Shen XD,Anselmo D,Melinek J,Iyer S,Southard DJ,et al.Ex vivo exposure to Carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway[J]. Hepatology,2002,35(4):815-823.
[57] Clark JE,Naughton P,Shurey S,Green CJ,Johnson TR,Mann BE,et al.Cardioprotective actions by a water-soluble Carbon monoxidereleasingmolecule[J].CircRes,2003,93(2):e2-e8.
[58] StockerR,YamamotoY,McdonaghAF,GlazerAN,Ames BN.Bilirubin is an antioxidant of possible physiological importance[J].Science,1987,235 (4792):1043-1046.
[59] Mcdaid J,Yamashita K,Chora A,Ollinger R,Strom TB,Li XC,et al.Heme oxygenase-1 modulates the allo-immune response by promoting activation-inducedcelldeathofTcells[J]. FASEB J,2005,19(3):458-460.
[60] Berberat PO,Katori M,Kaczmarek E,Anselmo D,Lassman C,Ke B,et al.Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury[J].FASEB J,2003,17(12):1724-1726.
[61] Vashist YK,Uzungolu G,Kutup A,Gebauer F,Koenig A,Deutsch L,et al.Heme oxygenase-1 germ line GTn promoter polymorphism is an Independent prognosticator of tumor recurrence and survival in pancreatic cancer[J].J Surg Oncol,2011,104(3):305-311.
[62]Sawa T,Mounawar M,Tatemichi M,Gilibert I, Katoh T,Ohshima H.Increased risk of gastric cancer in Japanese subjects is associated with microsatellitepolymorphismsintheheme oxygenase-1 and the inducible nitric oxide synthase gene promoters[J].Cancer Lett,2008,269(1):78-84.
[63]Lo SS,Lin SC,Wu CW,Chen JH,Yeh WI,Chung MY, et al.Heme oxygenase-1 gene promoter polymorphism is associated with risk of gastricadenocarcinomaandlymphovascular tumor invasion[J].Ann Surg Oncol,2007,14 (8):2250-2256.
[64] Zhang W,Qiao T,Zha L.Inhibition of heme oxygenase-1 enhances the radiosensitivity in human nonsmall cell lung cancer a549 cells[J].Cancer Biother Radiopharm,2011,26(5):639-645.
[65] Alaoui-Jamali MA,Bismar TA,Gupta A,Szarek WA,Su J,Song W,et al.A novel experimental heme oxygenase-1-targeted therapy for hormonerefractoryprostatecancer[J].CancerRes,2009,69(20):8017-8024.
[66] CondeDL, VrenkenTE, HannivoortRA,Buist-Homan M,Havinga R,Slebos DJ,et al. Carbon monoxide blocks oxidative stress-induced hepatocyte apoptosis via inhibition of the p54 JNK isoform[J].Free Radic Biol Med,2008,44(7):1323-1333.
[67]Kim SJ,Eum HA,Billiar TR,Lee SM.Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats[J].Shock,2013,39(4):380-388.
[68] Ogawa T,H?nggi D,Steiger HJ.Treatment of experimental cerebral vasospasm by protein transduction of heme oxygenase 1(HO-1)conjugated to a residue of 11 arginines[J].Acta Neurochir Suppl,2011,112:111-113.
[69] Chen JC,Huang KC, Lin WW.HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages viaERK,p38MAPKandproteinkinaseG pathways[J].Cell Signal,2006,18(1):32-39.
[70] O′leary JG,Chan JL,McMahon CM,Chung RT. Atorvastatindoesnotexhibitantiviralactivity against HCV at conventional doses:a pilot clinical trial[J].Hepatology,2007,45(4):895-898.
[71] Milazzo L,Caramma I,Mazzali C,Cesari M,Olivetti M,Galli M,et al.Fluvastatin as an adjuvant to pegylated interferon and ribavirin in HIV/hepatitis C virus genotype 1 co-infected patients:an openlabel randomized controlled study[J].J AntimicrobChemother,2010,65(4):735-740.
[72] Shen YM,Zhang HL,Wu YH,Yu XP,Hu HJ,Dai LH.Dynamic correlation between induction of the expression of heme oxygenase-1 and hepatitis B viral replication[J].Mol Med Rep,2015,11 (6):4706-4712.
[73] Wu YH,Hao BJ,Cao HC,Xu W,Li YJ,Li LJ. Anti-hepatitis B virus effect and possible mechanism of action of 3,4-o-dicaffeoylquinic acid in vitro and in vivo[J].Evid Based Complement Alternat Med,2012:356806.
[74] GoodmanAI, Choudhury M, Da Silva JL,Schwartzman ML,Abraham NG.Overexpression of the heme oxygenase gene in renal cell carcinoma [J].Proc Soc Exp Biol Med,1997,214(1):54-61.
[75]Maines MD,Abrahamsson PA.Expression of heme oxygenase-1(HSP32)in human prostate:normal,hyperplastic,and tumor tissue distribution [J].Urology,1996,47(5):727-733.
[76]Alaoui-Jamali MA,Szarek WA,Nakatsu KA,Gupta A,Schipper HM.OB-24,a novel selective and potent HO-1 inhibitor,induces a wide spectrum anti-tumor activity in vitro and in vivo and synergizes with chemotherapy drugs[J].Mol Cancer Ther,2007,6(11 Suppl):C82-C82.
Effect and mechanism of heme oxygenase-1 and its reaction products of heme degradation on liver diseases
DAI Ling-hao,WU Yi-hang
(Zhejiang Provincial Key Laboratory of Biometrology and Inspection&Quarantine,Department of Pharmacy,College of Life Sciences,China Jiliang University,Hangzhou 310018,China)
Heme oxygenases(HO)are rate-limiting enzymes which degrade heme into carbon monoxide,biliverdin and free iron.HO-1 is the inducible form of HO.Induction and over-expression of HO-1 or inhibition of HO-1 degradation have been shown to interfere with replication of hepatitis B and C viruses,acute and chronic liver inflammation,and progression to fibrosis.HO-1 as well as its reaction products of heme degradation has been linked to cytoprotection by its anti-inflammatory,antioxidative and anti-apoptotic effects,displayed a broad range of protective effects against hepatic damage,and showed beneficial effects on ischemia-reperfusion injury,acute/chronic graft rejection and graft survival rate in liver transplantation.However,HO-1 has been found to be over-expressed in tumor cells.Inhibition of HO-1 expression can promote tumor cell apoptosis,decrease growth of HCC and reduce angiogenesis,suggesting that HO-1 is a potential target in the treatment of hepatic cancer.To validate the target property of HO-1,this review analyzed the effects and mechanism of action of HO-1 and its products in viral hepatitis,liver injury,hepatic fibrosis,liver transplantation and hepatocellular carcinoma.Given HO-1′s marked anti-viral,anti-inflammatory and hepatoprotective properties,the inhibitory effect of its downmodulation on hepatic cancer and the strategy to target HO-1 may promise new areas in both drug development and clinical therapy of liver diseases.
heme oxygenase-1;viral hepatitis;liver injury;hepatic fibrosis;liver transplantation;hepatocellular carcinoma
The project supported by Zhejiang Prooincial Natural Science Foundation of China(LY14H310010);and Scientific Research Foundation for Key Project of Chinese Ministry of Education(212073)
WU Yi-hang,E-mail:yihangwu@126.com,Tel:(0571)86875676
R963
A
1000-3002-(2016)02-0165-08
10.3867/j.issn.1000-3002.2016.02.012
2015-02-15接受日期:2015-11-23)
(本文編輯:齊春會(huì))
浙江省自然科學(xué)基金(LY14H310010);教育部科技研究重點(diǎn)項(xiàng)目(212073)
戴靈豪,碩士研究生,主要從事肝臟藥理學(xué)研究;伍義行,醫(yī)學(xué)博士,教授,主要從事肝臟藥理學(xué)與抗肝炎藥物研究。
伍義行,E-mail:yihangwu@126.com;Tel:(0571)86875676
中國(guó)藥理學(xué)與毒理學(xué)雜志2016年2期