康爭春, 李 勃, 蔡 慧, 馬立業(yè)*
1.第二軍醫(yī)大學(xué)長海醫(yī)院普通外科, 上?!?00433 2.北京軍區(qū)北戴河療養(yǎng)院, 秦皇島 066100
?
細(xì)胞周期蛋白與胃癌相關(guān)性的研究進(jìn)展
康爭春1△, 李勃2△, 蔡慧1, 馬立業(yè)1*
1.第二軍醫(yī)大學(xué)長海醫(yī)院普通外科, 上海200433 2.北京軍區(qū)北戴河療養(yǎng)院, 秦皇島066100
[摘要]細(xì)胞周期蛋白(cyclins)是一類通過cyclins激酶(cyclin dependent kinase ,CDK)調(diào)控細(xì)胞周期進(jìn)而控制細(xì)胞增殖的蛋白家族,分為細(xì)胞周期正性調(diào)節(jié)蛋白和負(fù)性調(diào)節(jié)蛋白,其異常表達(dá)與胃癌發(fā)生發(fā)展密切相關(guān)。通過一些細(xì)胞信號通路調(diào)節(jié)cyclins進(jìn)而干預(yù)腫瘤的進(jìn)展是目前胃癌研究的熱點(diǎn)。本文就胃癌臨床病理特點(diǎn)與cyclins的關(guān)系及與cyclins相關(guān)的治療靶點(diǎn)作一綜述。
[關(guān)鍵詞]胃癌;cyclins;信號通路
胃癌(gastric cancer)嚴(yán)重威脅人類健康,中國每年約有68萬新發(fā)病例,并且每年約有50萬死于胃癌;胃癌發(fā)病人數(shù)在男性中位居惡性腫瘤第2位,在女性位于第3位,死亡人數(shù)在男性、女性中均位于惡性腫瘤第2位[1]。腫瘤細(xì)胞的顯著特點(diǎn)是細(xì)胞增殖失調(diào)。細(xì)胞增殖受一系列細(xì)胞周期調(diào)控因子的調(diào)節(jié),細(xì)胞周期蛋白(cyclins)就是其中之一。
Cyclins是驅(qū)動細(xì)胞周期轉(zhuǎn)換的關(guān)鍵調(diào)控因子,其異常表達(dá)會導(dǎo)致細(xì)胞周期破壞[2]。Cyclins最早在早期分裂的海膽卵中發(fā)現(xiàn),因其濃度在細(xì)胞中呈周期性變化而命名。目前,在哺乳動物中已經(jīng)發(fā)現(xiàn)cyclin A、cyclin J,它們的分子結(jié)構(gòu)存在一定差異,但都有一段高度保守的cyclins盒序列和降解盒序列,前者與cyclins 激酶(cyclin dependent kinase, CDK)結(jié)合,后者參與自身降解[3-4]。Cyclins受基因轉(zhuǎn)錄及蛋白降解調(diào)節(jié),除參與細(xì)胞周期的調(diào)控外,還參與分化、損傷修復(fù)、凋亡及轉(zhuǎn)錄調(diào)節(jié)等過程[3-5]。研究[4-6]表明:Cyclins在腫瘤的發(fā)生發(fā)展中起重要作用,對明確腫瘤的生物學(xué)特征、預(yù)后及指導(dǎo)臨床治療有重要意義。因此,本文就cyclins與胃癌臨床病理特點(diǎn)的關(guān)系及與cyclins相關(guān)的胃癌治療靶點(diǎn)作一綜述。
1Cyclins與胃癌
Cyclin D1是由染色體11q13的CCNDl基因編碼產(chǎn)生的cyclin D家族中的重要成員,主要功能是促進(jìn)G1/S期的轉(zhuǎn)換,被認(rèn)為是參與細(xì)胞周期正性調(diào)節(jié)的主要cyclins。其作用與腫瘤形成直接相關(guān),合成失控導(dǎo)致細(xì)胞不斷接受生長因子的刺激進(jìn)而過度增殖,促使腫瘤形成。Cyclin D1在胃癌組織中的陽性表達(dá)率為44.4%~55.26%,在腸型胃癌中更高,在分化較差型胃癌中的陽性表達(dá)率明顯高于分化較好型的胃癌;其表達(dá)程度與胃癌細(xì)胞異型程度及淋巴結(jié)轉(zhuǎn)移數(shù)目正相關(guān)[3]。Sugai等[4]發(fā)現(xiàn),cyclin D1在胃癌前病變胃腺瘤中的陽性表達(dá)率亦達(dá)80%,認(rèn)為其可能成為胃癌的早期診斷指標(biāo)。
Cyclin E1呈明顯的周期性表達(dá),正常情況下cyclin E1合成于G1中期,至G1/S轉(zhuǎn)換期含量達(dá)高峰,S期 cyclin E1經(jīng)與“PEST”序列有關(guān)的蛋白結(jié)合被分解或被泛素化降解。正常情況下,cyclin E1在G1晚期和S早期通過磷酸化CDK2使之被激活,進(jìn)而促進(jìn)G1/S 轉(zhuǎn)換;異常情況下,cyclin E1在整個細(xì)胞周期中呈無序的過度表達(dá),使CDK2被持續(xù)激活,導(dǎo)致細(xì)胞異常增殖,加速細(xì)胞通過G1期。Cyclin E1在胃癌組織中的陽性表達(dá)率為46.4%~55.93%[5],明顯高于正常胃黏膜中的陽性表達(dá)率(10.53% )[6]。Choi等[5]通過研究166例胃癌組織發(fā)現(xiàn),cyclin E1表達(dá)陽性者與表達(dá)陰性者在Lauren分型(腸型、彌漫型、混合型)、浸潤深度、淋巴結(jié)轉(zhuǎn)移、神經(jīng)脈管侵犯、遠(yuǎn)處轉(zhuǎn)移及5年生存率方面差異無統(tǒng)計學(xué)意義。Cyclin E2與cyclin E1的調(diào)節(jié)活性相似,cyclin E1主要在大多數(shù)正常增殖細(xì)胞和致腫瘤性轉(zhuǎn)化細(xì)胞中表達(dá);而cyclin E2在非轉(zhuǎn)化細(xì)胞中幾乎難以檢測到,在腫瘤源性細(xì)胞中顯著升高。早期研究[7]發(fā)現(xiàn),cyclin E2與胃癌浸潤轉(zhuǎn)移及預(yù)后顯著相關(guān)。
Cyclin A是S期的主要調(diào)節(jié)蛋白,主要參與DNA的復(fù)制。Cyclin A緊隨cyclin E后開始表達(dá)、合成。 Begnami等[8]通過研究482例胃癌組織標(biāo)本發(fā)現(xiàn),cyclin A的陽性表達(dá)率為69%。但是目前對胃癌患者預(yù)后影響的研究較少。
Cyclin G1主要定位于細(xì)胞核,在細(xì)胞周期各時相表達(dá)水平基本一致,并呈現(xiàn)出一定程度的p53蛋白依賴性。胃癌組織cyclin G1陽性表達(dá)率為62.96%,低分化腺癌的陽性表達(dá)率顯著高于其他類型。Cyclin G2蛋白主要定位在細(xì)胞質(zhì),是一種細(xì)胞周期負(fù)性調(diào)節(jié)蛋白,其調(diào)節(jié)細(xì)胞周期不依賴p53。Choi等[5]和Sun等[9]通過研究胃癌組織發(fā)現(xiàn),cyclin G2的陽性表達(dá)率為66.3%,其在胃癌組織中表達(dá)量較正常胃黏膜組織明顯減少(P<0.05)。胃腸上皮化生杯狀細(xì)胞中cyclin G2無表達(dá)或表達(dá)水平極低,而目前普遍的觀點(diǎn)認(rèn)為腸上皮化生是一種癌前期病變,表明cyclin G2可能與胃癌發(fā)生有關(guān)[9]。腫瘤分化程度越低,cyclin G2蛋白表達(dá)水平越低;cyclin G2在女性和未分化癌組織中表達(dá)較低;cyclin G2表達(dá)陽性者較陰性者總體生存期(overall survival,OS)較長,cyclin G2表達(dá)陽性者與表達(dá)陰性者在Lauren分型(腸型和彌漫浸潤型)、組織分化程度、淋巴結(jié)轉(zhuǎn)移、腫瘤分期、神經(jīng)侵犯及5年生存期方面差異有統(tǒng)計學(xué)意義(P<0.05),但多因素分析中提示cyclin G2陽性表達(dá)不能作為胃癌的獨(dú)立預(yù)后因素[5]。由此可知,cyclin G1對胃癌預(yù)后的影響目前未明確;而cyclin G2表達(dá)水平降低可能提示胃癌患者預(yù)后不良,但不是胃癌預(yù)后的獨(dú)立危險因素。
Cyclin B1的主要功能是誘導(dǎo)細(xì)胞通過G2/M期及M期。Begnami等[8]通過研究482例胃癌組織標(biāo)本發(fā)現(xiàn),Cyclin B1的陽性表達(dá)率為49%,在彌漫性胃癌中更明顯,其與淋巴結(jié)轉(zhuǎn)移及預(yù)后不良相關(guān)。Cyclin B1在G2/M期轉(zhuǎn)換中發(fā)揮重要作用,在胃組織癌變早期可檢測到,并且敏感性及特異度較高,可作為診斷胃癌的指標(biāo)之一[10]。
Cyclin L2是新發(fā)現(xiàn)的一種cyclin,它不僅可以調(diào)節(jié)細(xì)胞周期,而且具有調(diào)節(jié)基因轉(zhuǎn)錄的功能。Li等[11]通過體外實驗證實,cyclin L2的高表達(dá)可以抑制胃癌細(xì)胞的生長,并且可以增強(qiáng)癌細(xì)胞對5-FU、多西他賽和順鉑等化療藥物的敏感性,其機(jī)制可能是阻止細(xì)胞從G0期轉(zhuǎn)換到G1期或誘導(dǎo)細(xì)胞凋亡。
2胃癌相關(guān)cyclins的調(diào)控機(jī)制及應(yīng)用
2.1Cyclin D1相關(guān)的胃癌調(diào)控機(jī)制及應(yīng)用目前對cyclin D1與胃癌發(fā)生發(fā)展的關(guān)系進(jìn)行了廣泛的研究,如miR-9[12]、miR-145、miR-133a和miR-133b[13]在胃癌組織中能下調(diào)cyclin D1,進(jìn)而抑制腫瘤細(xì)胞增殖、浸潤、轉(zhuǎn)移;體外研究[14]中,miR-449a在胃癌SGC 7901細(xì)胞中表達(dá)減少,進(jìn)一步實驗證實外源性miR-449a可通過下調(diào) cyclin D1抑制胃癌SGC 7901細(xì)胞增殖。Seo等[15]研究發(fā)現(xiàn),在胃癌細(xì)胞及動物實驗中,由靶向cyclin D1的慢病毒介導(dǎo)的shRNA可以顯著抑制體外細(xì)胞的增殖、活力及克隆形成能力,并且顯著抑制在成瘤裸鼠的腫瘤生長。因此認(rèn)為,由慢病毒構(gòu)建的shRNA有望成為胃癌治療的新方法。NO[16]和凋亡信號調(diào)節(jié)激酶1(apoptosis signal regulating kinase 1,ASK1)[17]通過影響cyclin D1相關(guān)信號轉(zhuǎn)導(dǎo)通路而抑制胃癌細(xì)胞的增殖。Luo等[18]通過體外實驗研究還發(fā)現(xiàn),Twist基因通過負(fù)性調(diào)節(jié)AP-1的活性,使cyclin D1表達(dá)下調(diào),進(jìn)而導(dǎo)致MKN45胃癌細(xì)胞增殖活性降低。在胃癌細(xì)胞系中發(fā)現(xiàn)AP-25和BTG1基因[19]過表達(dá)通過下調(diào) cyclin D1抑制胃癌的增殖、浸潤、轉(zhuǎn)移,可能成為胃癌基因治療的靶點(diǎn)[20]。目前也不乏通過細(xì)胞調(diào)節(jié)因子上調(diào)cyclin D1促進(jìn)腫瘤增殖的研究,如Li等[21]研究發(fā)現(xiàn),p115與MIF (macrophagemigration inhibitory factor)通過協(xié)同上調(diào)cyclin D1表達(dá),促進(jìn)胃癌細(xì)胞的增殖;最新研究發(fā)現(xiàn),WISP3 (Wnt1-inducible signaling protein-3)[22]、HIF2α(hypoxia-inducible factor-2α)[23]和HOXB5(homeobox-5)[24]表達(dá)與胃癌的增殖、浸潤、轉(zhuǎn)移有關(guān),且與cyclin D1表達(dá)正相關(guān)。
研究還發(fā)現(xiàn)通過細(xì)胞信號通路影響cyclins可以干預(yù)腫瘤發(fā)展,如Sirtuin 1 (SIRT1)通過介導(dǎo) NF-κB/cyclin D1信號通路抑制腫瘤增殖[25];Zhang等發(fā)現(xiàn)p21活化激酶4(PAK4)抑制劑LCH-7749944可以通過下調(diào)PAK4/c-Src/EGFR/cyclin D1信號通路而抑制人胃癌細(xì)胞的增殖,同時發(fā)現(xiàn)LCH7749944還可通過抑制PAK4/LIMK1/cofili和PAK4/MEK-1/ERK1/2/MMP2信號轉(zhuǎn)導(dǎo)通路,顯著降低胃癌細(xì)胞的轉(zhuǎn)移性和浸潤性,而且LCH 7749944可抑制絲狀偽足的形成和EGFR功能,其有望成為治療胃癌的藥物[26];Guo等[27]利用特異性小鼠胃黏膜上皮PTEN基因缺失誘發(fā)胃癌模型中證實誘發(fā)胃癌發(fā)生的機(jī)制為Akt-p53-miR-365-cyclin D1/cdc25通路的激活,即PTEN基因缺失致Akt激活,進(jìn)一步導(dǎo)致p53和miR-365表達(dá)減少,進(jìn)而使cyclin D1和cdc25A表達(dá)增多,最終促使腫瘤細(xì)胞增殖。最新研究發(fā)現(xiàn)TRIM24 (tripartite motif protein tripartite motif-containing 24)激活A(yù)kt通路上調(diào)cyclin D1,進(jìn)而促進(jìn)SGC-7901胃癌細(xì)胞增殖且與化療耐藥密切相關(guān)[28]。Hayakawa等[17]通過實驗證實ASK1依賴激活A(yù)P-1促使cyclin D1轉(zhuǎn)錄增多,cyclin D1又可通過Rb-E2F通路調(diào)節(jié)ASK1水平,ASK1這一自身調(diào)節(jié)的正反饋通路在胃癌的發(fā)生發(fā)展中發(fā)揮重要作用。最新研究發(fā)現(xiàn)Notch4激活Wnt1/β-catenin信號通路,上調(diào)cyclin D1促進(jìn)胃癌增殖[29],Tomizawa等[30]在MKN45和MKN74胃癌細(xì)胞中發(fā)現(xiàn)Wnt1/β-catenin信號通路中的frizzled-2 (Fz2)過表達(dá)亦通過上調(diào)cyclin D1調(diào)節(jié)胃癌細(xì)胞增殖。以上與cyclin D1相關(guān)的信號通路可能成為胃癌的治療靶點(diǎn)。
由上可知,多種基因表達(dá)產(chǎn)物通過cyclin D1調(diào)節(jié)胃癌的發(fā)生發(fā)展,并且其可能成為胃癌的治療靶點(diǎn),目前報道較多的是其對胃癌化療的影響。Seo等通過體外實驗研究發(fā)現(xiàn)ShCCND1(shRNA targeting cyclin D1)可以增強(qiáng)胃癌細(xì)胞對5-FU的化療敏感性, 具體機(jī)制是下調(diào)pAKT和 pNF-κB表達(dá),阻滯細(xì)胞于 G1期和誘導(dǎo)細(xì)胞凋亡[31]。實驗證實下調(diào)CDX2,繼而下調(diào)E2F-1表達(dá)可抑cyclin D1表達(dá),增強(qiáng)SGC7901胃癌細(xì)胞對順鉑、阿霉素和5-FU的敏感性,E2F-1可能通過多種通路逆轉(zhuǎn)MDR(multidrug resistance)[32],外源性miR-449a可通過下調(diào) BCL2 和cyclin D1而增強(qiáng)腫瘤細(xì)胞對順鉑的敏感性[14]。最近研究發(fā)現(xiàn)脫氧膽酸(deoxycholic acid,DCA)通過下調(diào)cyclin D1將BGC-823胃癌細(xì)胞阻滯于G1期[33];在中藥研究中發(fā)現(xiàn)川芎嗪(tetramethypyrazine,TMP)[34]和野甘草提取物Scopadulciol[35]亦可通過下調(diào)cyclin D1抑制胃癌細(xì)胞增殖,有望進(jìn)行深入的臨床研究。
2.2其他細(xì)胞周期相關(guān)蛋白的調(diào)控機(jī)制及應(yīng)用研究發(fā)現(xiàn)miR-29家族[36]和miR-206[37]抑制cyclin D2表達(dá)進(jìn)而抑制胃癌的進(jìn)展。Gou等[38]發(fā)現(xiàn)核糖體蛋白L6(ribosomal protein L6,RPL6)在人胃癌細(xì)胞中過表達(dá),并且可以通過誘導(dǎo)cyclin E過表達(dá)進(jìn)而引起腫瘤細(xì)胞的增殖。Ye等[39]研究發(fā)現(xiàn)一種真菌代謝物clavatustide B下調(diào)MGC-803胃癌細(xì)胞cyclin E2表達(dá),阻滯細(xì)胞于G1/S期檢查點(diǎn),從而抑制細(xì)胞增殖;雌馬酚通過下調(diào)cyclin D1/ E1阻滯胃癌細(xì)胞于G0/G1期[40]。Licochalcone A (LCA)可以使體外培養(yǎng)的MKN-28、AGS和MKN-45胃癌細(xì)胞系cyclin A和cyclin B1表達(dá)減少并且誘導(dǎo)細(xì)胞凋亡[41]。組蛋白脫乙?;?histone deacetylases, HDACs)激活DTWD1基因,進(jìn)而抑制胃癌細(xì)胞cyclin B1表達(dá)[42]。Silibinin可以在蛋白和mRNA水平上減少cyclin B1及CDK1的表達(dá),并且以時間及劑量依賴方式抑制胃癌細(xì)胞(MGC803)的生長,使其細(xì)胞周期停滯及促進(jìn)細(xì)胞凋亡[43]。丹參酮ⅡA (Tanshinone ⅡA ,Tan-ⅡA)[44]和厚樸酚(honokiol)[45]下調(diào)胃癌細(xì)胞cyclin B1表達(dá),阻滯細(xì)胞于G2/M檢查點(diǎn)。上述兩種物質(zhì)有望成為新的胃癌治療藥物。
2.3CDK抑制劑在胃癌治療中的應(yīng)用Cyclins依賴性激酶抑制劑(cyclin-dependent kinase inhibitor,CKI)通過抑制cyclins依賴性激酶(cyclin-dependent kinase,CDK)調(diào)控腫瘤的發(fā)生、發(fā)展。近年來,CKI成為研究熱點(diǎn)。目前的CKI按照其化學(xué)結(jié)構(gòu)的不同分為嘌呤類、嘧啶并雜環(huán)類、黃酮類、吲哚類等。夫拉平度(flavopiridol)是目前研究最廣泛的一種黃酮類的CKI,它通過阻斷ATP結(jié)合位點(diǎn)實現(xiàn)了對CDK1、CDK2、CDK4、CDK7、CDK9的抑制,而CDK4/6通過結(jié)合cyclin D1而發(fā)揮調(diào)控細(xì)胞周期G1期的進(jìn)程[46]。Motwan等[47]通過實驗證實在MKN-74胃癌細(xì)胞系中聯(lián)合使用夫拉平度可加強(qiáng)紫杉醇對腫瘤細(xì)胞生長的抑制作用,這可能與其在轉(zhuǎn)錄水平抑制抗凋亡基因相關(guān)。同樣的,在一項Ⅰ期臨床研究中,Thomas等[48]發(fā)現(xiàn)采用夫拉平度治療方案的患者病情獲益,患者無病生存期間延長。
綜上可知,cyclins在胃癌的發(fā)生發(fā)展中調(diào)控機(jī)制復(fù)雜,針對其調(diào)節(jié)通路可以尋求更多的胃癌治療靶點(diǎn),新近陸續(xù)發(fā)現(xiàn)有望成為治療胃癌的靶點(diǎn)物質(zhì)。本實驗室[49]曾在基因和蛋白的水平上檢測cyclin E1在胃癌組織芯片的表達(dá),發(fā)現(xiàn)在胃癌中其基因、mRNA剪接異構(gòu)體、蛋白表達(dá)水平顯著升高,推斷cyclin E1可能和胃癌的成瘤和進(jìn)展密切相關(guān)。在本實驗室之前的研究中發(fā)現(xiàn)cyclin E1其mRNA剪接異構(gòu)體共有4型,但并非所有類型均在胃癌組織中上調(diào),其中Ⅱ型和Ⅲ型異構(gòu)體與癌旁正常組織相比,在胃癌組織中其表達(dá)水平明顯升高,差異有統(tǒng)計學(xué)意義(P<0.05),而Ⅰ型和Ⅳ型異構(gòu)體在癌旁和癌組織比較中,差異無統(tǒng)計學(xué)意義?;诖隧椦芯浚崾綾yclins未來可能應(yīng)用于胃癌的早期診斷,成為診斷的分子標(biāo)志物;并且可能應(yīng)用于胃癌的治療,為胃癌患者預(yù)后提供參考。闡明cyclins的具體機(jī)制,更加明確cyclins的在胃癌中的作用仍需進(jìn)一步研究。
3總結(jié)及展望
細(xì)胞周期調(diào)節(jié)的異常在胃癌的發(fā)生發(fā)展中扮演了舉足輕重的角色,目前研究取得了一定進(jìn)展,其中cyclins相關(guān)細(xì)胞信號通路的研究是熱點(diǎn),信號通路通過影響cyclins的表達(dá)進(jìn)而干預(yù)腫瘤的生物學(xué)特性。關(guān)于治療的研究主要包括以下3個方面:(1)mi-RNA干擾信號通路相關(guān)基因表達(dá),進(jìn)而影響cyclins表達(dá);(2)細(xì)胞因子及蛋白酶等調(diào)節(jié)細(xì)胞周期相關(guān)基因表達(dá);(3)真菌代謝產(chǎn)物或中藥提取物調(diào)節(jié)cyclins的表達(dá)。本文僅是對cyclins與胃癌的關(guān)系進(jìn)行了一簡要綜述,細(xì)胞周期的調(diào)節(jié)機(jī)制還包括CDK和CDK抑制劑等,其調(diào)節(jié)過程精細(xì)而復(fù)雜,需要更深入的研究以明確細(xì)胞周期與胃癌的關(guān)系,并進(jìn)一步明確胃癌各種促癌因子間的相互關(guān)系。依賴cyclins的胃癌治療,還有待進(jìn)一步深入研究,發(fā)現(xiàn)更多調(diào)節(jié)cyclins相關(guān)細(xì)胞信號通路的靶點(diǎn),針對這些靶點(diǎn)研發(fā)出高效準(zhǔn)確的靶向治療藥物,延長胃癌患者的生存期。
參考文獻(xiàn)
[1]Chen W, Zheng R, Baade PD,et al.Cancer statistics in China, 2015[J].CA Cancer J Clin,2016,66(2):115-132.
[2]Bonelli P, Tuccillo FM, Borrelli A,et al. CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity[J].Biomed Res Int,2014:361020.
[3]Zhang XM, Zhou C, Gu H, et al.Correlation of RKIP, STAT3 and cyclin D1expression in pathogenesis of gastric cancer[J].Int J Clin Exp Pathol, 2014 ,7(9):5902-5908.
[4]Sugai T, Habano W, Endoh M, et al.Molecular analysis of gastric differentiated-typeintramucosaland submucosal cancers[J].Int J Cancer,2010,127(11): 2500-2509.
[5]Choi MG,Noh JH,An JY,et al. Expression levels of cyclin G2, but not cyclin E, correlate with gastric cancer progression[J]. J Surg Res,2009 ,157(2):168-174.
[6]王梅,劉麗娜,呂申.細(xì)胞周期素E蛋白在胃癌組織的表達(dá)及意義[J].腫瘤研究與臨床,2006,18(4):231-232.
[7]薛惠平,倪培華,吳潔敏,等.細(xì)胞周期蛋白E2基因mRNA在胃癌組織中的表達(dá)[J].上海交通大學(xué)學(xué)報:醫(yī)學(xué)版,2007,27(1):95-98.
[8]Begnami MD, Fregnani JH, Nonogaki S, et al. Evaluation of cell cycle protein expression in gastric cancer: cyclin B1expression and its prognostic implication[J]. Hum Pathol,2010,41(8):1120-1127.
[9]Sun GG, Hu WN, Cui DW, et al.Decreased expression of CCNG2 is significantly linked to the malignant transformation of gastric carcinoma[J]. Tumour Biol,2014,35(3):2631-2639.
[10]Wang DG, Chen G, Wen XY, et al. Identification of biomarkers for diagnosis of gastric cancer by bioinformatics[J]. Asian Pac J Cancer Prev, 2015,16(4):1361-1365.
[11]Li HL,Huang DZ,Deng T,et al.Overexpression of cyclin L2 inhibits growth and enhances chemosensitivity in human gastric cancer cells[J]. Asian Pac J Cancer Prev,2012,13(4):1425-1430.
[12]Zheng L,Qi T,Yang D,et al. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1and Ets1[J]. PLoS One,2013,8(1):e55719.
[13]Qiu T, Zhou X, Wang J,et al. MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer[J]. FEBS Lett,2014,588(7):1168-1177.
[14]Hu J,Fang Y,Cao Y,et al.miR-449a Regulates proliferation and chemosensitivity to cisplatin by targeting cyclin D1and BCL2 in SGC7901 cells[J]. Dig Dis Sci,2014,59(2):336-345.
[15]Seo JH, Jeong ES, Choi YK.Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1in human gastric cancer[J].BMC Cancer, 2014,14:175.
[16]Sang J, Chen Y, Tao Y.Nitric oxide inhibits gastric cancer cell growth through the modulation of the Akt pathway[J].Mol Med Rep, 2011,4(6):1163-1167.
[17]Hayakawa Y, Hirata Y, Nakagawa H,et al.Apoptosis signal-regulating kinase 1 and cyclin D1compose a positive feedback loop contributing to tumor growth in gastric cancer[J].Proc Natl Acad Sci USA,2011,108(2):780-785.
[18]Luo GQ, Li JH, Cao L,et al.Activator protein-1 involvement in proliferation inhibition by gene silencing of Twist in gastric cancer cells[J].Pathology,2011,43(7):697-701.
[19]Hu J, Cheng T, Zhang L,et al. Anti-tumor peptide AP25 decreases cyclin D1expression and inhibits MGC-803 proliferation via phospho-extracellular signal-regulated kinase-, Src-, c-Jun N-terminal kinase- and phosphoinositide 3-kinase-associated pathways[J]. Mol Med Rep, 2015,12(3):4396-4402.
[20]Zheng HC, Li J, Shen DF,et al. BTG1expression correlates with pathogenesis, aggressive behaviors and prognosis of gastric cancer: a potential target for gene therapy[J]. Oncotarget, 2015,6(23):19685-19705.
[21]Li XJ, Luo Y, Yi YF.P115 promotes growth of gastric cancer through interaction with macrophage migration inhibitory factor[J]. World J Gastroenterol,2013,19(46):8619-8629.
[22]Fang F, Zhao WY, Li RK, et al. Silencing of WISP3 suppresses gastric cancer cell proliferation and metastasis and inhibits Wnt/β-catenin signaling[J].Int J Clin Exp Pathol, 2014,7(10):6447-6461.
[23]Tong WW, Tong GH, Chen XX, et al. HIF2α is associated with poor prognosis and affects the expression levels of survivin and cyclin D1in gastric carcinoma[J]. Int J Oncol, 2015,46(1):233-242.
[24]Hong CS, Jeong O, Piao Z, et al. HOXB5 induces invasion and migration through direct transcriptional up-regulation of β-catenin in human gastric carcinoma[J]. Biochem J, 2015,472(3):393-403.
[25]Yang Q, Wang B, Gao W,et al.SIRT1 is downregulated in gastric cancer and leads to G1-phase arrest via NF-κB/Cyclin D1signaling[J]. Mol Cancer Res,2013,11(12):1497-1507.
[26]Zhang J, Wang J, Guo Q,et al.LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells[J]. Cancer Lett,2012,317(1):24-32.
[27]Guo SL, Ye H, Teng Y,et al.Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency[J]. Nat Commun, 2013,4:2544.
[28]Miao ZF, Wang ZN, Zhao TT, et al.TRIM24 is upregulated in human gastric cancer and promotes gastric cancer cell growth and chemoresistance[J]. Virchows Arch,2015,466(5):525-532.
[29]Qian C, Liu F, Ye B, et al. Notch4 promotes gastric cancer growth through activation of Wnt1/β-catenin signaling[J]. Mol Cell Biochem,2015,401(1-2):165-174.
[30]Tomizawa M, Shinozaki F, Motoyoshi Y, et al.Gastric cancer cell proliferation is suppressed by frizzled-2 short hairpin RNA[J].Int J Oncol,2015,46(3):1018-1024.
[31]Seo JH, Jeong ES, Lee KS, et al. Lentivirus-mediated shRNA targeting of cyclin D1enhances the chemosensitivity of human gastric cancer to 5-fluorouracil[J].Int J Oncol,2013,43(6):2007-2014.
[32]Yan LH, Wang XT, Yang J,et al.Reversal of multidrug resistance in gastric cancer cells by CDX2 downregulation[J]. World J Gastroenterol,2013,19(26):4155-4165.
[33]Yang HB, Song W, Cheng MD, et al.Deoxycholic acid inhibits the growth of BGC-823 gastric carcinoma cells via a p53?mediated pathway[J]. Mol Med Rep,2015,11(4):2749-2754.
[34]Ji AJ, Liu SL, Ju WZ, et al. Anti-proliferation effects and molecular mechanisms of action of tetramethypyrazine on human SGC-7901 gastric carcinoma cells[J]. Asian Pac J Cancer Prev, 2014,15(8):3581-3586.
[35]Fuentes RG, Toume K, Arai MA, et al. Scopadulciol, isolated from scoparia dulcis, induces β-catenin degradation and overcomes tumor necrosis factor-related apoptosis ligand resistance in AGS human gastric adenocarcinoma cells[J]. J Nat Prod,2015,78(4):864-872.
[36]Gong J, Li J, Wang Y, et al.Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer[J].Carcinogenesis,2014,35(2):497-506.
[37]Zhang L, Liu X, Jin H,et al. miR-206 inhibits gastric cancer proliferation in part by repressing cyclinD2[J]. Cancer Lett,2013,332(1):94-101.
[38]Gou Y, Shi Y, Zhang Y,et al.Ribosomal protein L6 promotes growth and cell cycle progression through upregulating cyclin E in gastric cancer cells[J].Biochem Biophys Res Commun,2010,393(4):788-793.
[39]Ye P, Shen L, Jiang W, et al.Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of clavatustide B[J]. Mar Drugs, 2014 ,12(6):3203-3217.
[40]Yang ZP, Zhao Y, Huang F, et al.Equol inhibits proliferation of human gastric carcinoma cells via modulating Akt pathway[J]. World J Gastroenterol,2015,21(36):10385-10399.
[41]Xiao XY, Hao M, Yang XY,et al.Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis[J]. Cancer Lett, 2011,302(1):69-75.
[42]Ma Y, Yue Y, Pan M, et al.Histone deacetylase 3 inhibits new tumor suppressor gene DTWD1 in gastric cancer[J]. Am J Cancer Res,2015,5(2):663-673.
[43]Wang YX, Cai H, Jiang G,et al.Silibinin inhibits proliferation, induces apoptosis and causes cell cycle arrest in human gastric cancer MGC803 cells via STAT3 pathway inhibition [J]. Asian Pac J Cancer Prev,2014,15(16):6791-6798.
[44]Su CC.Tanshinone ⅡA inhibits gastric carcinoma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1expression[J]. Anticancer Res,2014,34(12):7097-7110.
[45]Yan B, Peng ZY.Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line[J].Int J Clin Exp Med,2015,8(4):5454-5461.
[46]Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration[J]. Cancer Res,1997,57(16):3375-3380.
[47]Motwani M, Rizzo C, Sirotnak F,et al. Flavopiridol enhances the effect of docetaxel in vitro and in vivo in human gastric cancer cells[J]. Mol Cancer Ther, 2003,2(6):549-555.
[48]Thomas JP, Tutsch KD, Cleary JF,et al. Phase Ⅰ clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol[J]. Cancer Chemother Pharmacol,2002,50(6):465-472.
[49]顧立強(qiáng),常文軍,韓一芳,等.細(xì)胞周期蛋白E1基因表達(dá)上調(diào)與胃癌發(fā)生的關(guān)系[J].第二軍醫(yī)大學(xué)學(xué)報, 2010,31(5):508-512.
[本文編輯]葉婷, 賈澤軍
[收稿日期]2016-02-17[接受日期]2016-03-21
[基金項目]國家自然基金青年科學(xué)基金(81402433),中國博士后科學(xué)基金(2015T81088). Supported by National Natural Science Foundation of China (81402433) and China Postdoctoral Science Foundation (2015T81088).
[作者簡介]康爭春,碩士生. E-mail: ytrkzc@163.com; 李勃,碩士,住院醫(yī)師. E-mail: percybob@sina.com *通信作者(Corresponding author). Tel: 021-31161591, E-mail: malydr@163.com
[中圖分類號]R 735.2
[文獻(xiàn)標(biāo)志碼]A
Cyclins and gastric cancer: recent progress
KANG Zheng-chun1△, LI Bo2△, CAI Hui1, MA Li-ye1*
1. Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai200433, China 2. Beidaihe Sanatorium of Beijing Military Region, Qinhuangdao066100, Hebei, China
[Abstract]Cyclins are a family of proteins that control the progression of cells through the cell cycle by activating cyclin dependent kinase (CDK). Cyclins include positive regulatory ones and negative regulatory ones. Abnormal expression of cyclins is closely related with the pathogenesis and progression of gastric cancer.It is the focus of study related with gastric cancer that some cell signal pathways regulate cyclins and impact the progression of the tumor.The present paper reviews the relationship between clinicopathologic characteristics of gastric cancer and cyclins status and the therapeutic target related with cyclins in gastric cancer.
[Key Words]gastric cancer; cyclins; signal pathways
△共同第一作者(Co-first authors).
·綜述·