• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于團(tuán)塊分析的人數(shù)統(tǒng)計(jì)

    2016-01-22 03:44:51李冬梅黃仁杰趙雪專
    關(guān)鍵詞:目標(biāo)跟蹤支持向量機(jī)

    李 濤,李冬梅,黃仁杰,趙雪專

    (1.電子科技大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院,四川 成都 611731;

    2. 河南廣播電視大學(xué) 信息工程系,河南 鄭州 450008;

    3. 中國(guó)科學(xué)院 成都計(jì)算機(jī)應(yīng)用研究所,四川 成都 610041)

    ?

    基于團(tuán)塊分析的人數(shù)統(tǒng)計(jì)

    李濤1,2,李冬梅2,黃仁杰1,趙雪專3

    (1.電子科技大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院,四川 成都611731;

    2. 河南廣播電視大學(xué) 信息工程系,河南 鄭州450008;

    3. 中國(guó)科學(xué)院 成都計(jì)算機(jī)應(yīng)用研究所,四川 成都610041)

    摘要:為了提高視頻監(jiān)控領(lǐng)域人數(shù)統(tǒng)計(jì)的準(zhǔn)確性,提出一種基于團(tuán)塊分析的人數(shù)統(tǒng)計(jì)方法.首先通過光流算法獲取前景團(tuán)塊的方向及能量強(qiáng)度信息,并結(jié)合團(tuán)塊大小等相關(guān)信息形成團(tuán)塊特征;然后針對(duì)人數(shù)統(tǒng)計(jì)提出一種新的目標(biāo)跟蹤算法;最后基于SVM對(duì)該團(tuán)塊特征進(jìn)行訓(xùn)練分析,得到人數(shù)估計(jì)模型.實(shí)驗(yàn)結(jié)果表明,該方法正確率達(dá)到95%以上,能準(zhǔn)確實(shí)現(xiàn)人數(shù)統(tǒng)計(jì).

    關(guān)鍵詞:光流算法;人數(shù)統(tǒng)計(jì);目標(biāo)跟蹤;支持向量機(jī)

    Received date:2014-10-03

    Foundation item:Supported by the Key Scientific and Technological Project of Henan Province (142102210010), the Key Research Project in Science and Technology of the Education Department of Henan Province (14A520028, 14A520052), the Ph.D. Programs Foundation of the Ministry of Education of China (YBXSZC20131031)

    Author’s brief:LI Tao(1979-), male, born in Linying of Henan Province, doctor degree candidate of University of Electronic Science and Technology of China, lecturer of Henan Radio & Television University.

    0Introduction

    With the popularization and development of the computer hardware and monitoring equipment, monitoring and analysis based on video are widely used. People counting based on video is an important application in this field. It is widely applied in a public place, and it plays an important role in the public safety, overflow arrangement, resource allocation, transport disposition, market decisions and so on.

    In practical application, the accuracy of people counting is affected by the uncertain factors under unconstrained condition (such as deformation, illumination) and the occlusions between moving human bodies in complex scenes. Vertical camera is used to reduce the disturbance of occlusion in the people counting[1]. In recent years, many approaches are proposed based on video-based techniques in order to solve these problems.

    These approaches[2-5]with machine learning based on feature extraction or pixel extraction are proposed. For example, the head profile, color and textural features are proposed to counting people in the video sequences[4-5]. The accuracy of these methods will drop significantly in complex scenes because of too many people with occlusions between each other.

    These methods[6-8]utilize the foreground segmentation by Gaussian Mixture Model or Frame Difference to count people. Some of methods can not count the people number accurately in complex scenes, because using semicircular or circular model in the basis of the foreground segmentation can not describe the head profile completely[7-8].

    Other methods[9-10]analyze the moving features and distribution of directions according to motion vectors of people in videos to count people. However, the error of the counting result is great in complex scene in which there are many people keeping out each other to mass.

    This paper proposes a novel method of people counting that can well solve the problem about the occlusion of people in complex scenes. First, the sizes of moving foreground masses and the histograms of the directions about optical flow of masses by quantizing are obtained to form the feature of mass. Then, the novel method of objects tracking is designed specially to aim at people counting. In the end, by training a support vector machine (SVM) classifier with the input of the feature of mass, the people counting model is obtained. Our main contribution is proposing a novel feature of mass which can characterize the intrinsic energy and size properties accurately and the novel method of objects tracking is also very efficient.

    The rest of this paper is organized as follows: How to realize the method of people counting based on the analysis of the mass is introduced in Section 1. Section 2 discusses experimental results of the proposed method. The conclusion is given in Section 3.

    1Overview of our method

    Fig.1 is the flow chart of our method. The framework of the method is shown in Fig.1. It consists of training section, detecting section. The training section consists of four parts: 1) get the foreground moving mass in the video of cameras by using Gaussian Mixture Model; 2) calculate the direction of the mass using the optical flow method at first, and then segment the people of different directions in the same mass according to the direction information, and complete the mass segmentation; 3) track the segmented mass, and get mass characteristic information related to the number of people (such as the length and width of the mass, the optical flow intensity histogram, the number of the mass pixels), track and select using the inter-frame coverage calculated according to the mass until out of the monitoring area; 4) train the SVM classifier using the obtained mass information, and get the people counting model in mass finally.

    The first three steps of the training section and detecting section are consistent, and then we put the mass characteristic information into the trained SVM classifier for people counting.

    1.1Get foreground mass region

    First of all, Gaussian Mixture Model is used for getting the moving foreground mass.

    (1)

    (2)

    1.2The extraction of optical flow information in the mass

    According to the mass area of current frame and the mass at the same position of the previous frame, we get the optical flow vector of the current pixel of mass as (u,v), whereuandvrepresent horizontal velocity and vertical velocity respectively in the process of the pixel moving from previous frame to current frame. The process is as follows:

    Firstly, we established objective function according to the assumption of the consistency of the gray level and gradient, and then we got the optical flow vector by calculating the minimum of the objective function. The objective function is

    (3)

    (4)

    where Kρis a Gaussian with standard deviationρ, * denotes convolution. We calculated the minimum of Eq.3 (one of w can make the objective function E(u,v) achieve the minimum), the optical flow vector is the corresponding(u,v) when the objective function is minimal. Eq.3 is calculated by Lagrange method as

    (5)

    Eq.5 is a nonlinear equation, we transfer it to linear equations in order to get a solution. Let us denote byJn mithe component (n,m) of the structure tensor Jρ(3f) in some pixeli. Then a finite difference approximation to the Eq.5 is given by

    (6)

    We got the unknown quantity (ui,vi) using iteration solution of the Gauss-Seidel method. And we solve the unknown quantity using the Gauss-Seidel iterative method based on grid method[11]for fast convergence. Thekiteration result is shown as Eq.7.

    We considered each point in the two-dimensional image as a point on the grid, and then we halved the grid number and increased the grid size into twice in the process of fine-to-coarse. We used the Gauss-Seidel iterative method on the coarse grid to calculate the unknown variable, and then switched to calculate on the fine grid after obtaining the exact value. In the iterative process of the grid method, the conversion of the fine grid into coarse grid used averaging over 2×2 pixels (restriction operator), and the conversion of coarse grid into fine grid used prolongation operator (interpolation method). In the program, we integrate the “V” multi-grid method with nonlinear multi-grid to get the fastest convergence speed without any cost of calculation. If thekdenotes the iteration step, the Gauss-Seidel interactive method can be written as

    (7)

    where,his the size of the grid,N(i) denotes the number of neighbors of pixelithat belong to the image domain.Mis the size of the coarse grid. In order to simplify the programming,Mis equal to 2h.

    Considering each pixel point in moving mass area at the current frame image as a point on the grid, we get the optical flow vector of each pixel in the moving mass area by the iterate conversion of coarse grid into fine grid. Fig.3 is the figure of optical flow vectors in the mass foreground. Optical flow mass vector diagram is shown in Fig.3.

    1.3Method of tracking mass

    People counting usually get the number by setting a counting line in the monitoring area. Method of mass tracking which is different from the conventional tracking method is designed. Fig.4 is the contrast of the mass tracking method in this paper and the conventional tracking method. As shown in Fig.4, the dotted track line denotes the tracking trajectory before segmentation, the solid track denotes the whole tracking trajectory before and after segmentation, and the pecked track tine shows the difference between the tracking trajectories in this paper.

    In traditional tracking object methods, there are two tracking targets respectively when the mass is segmented. One of the new target paths after segmentation started from the segmentation position. However, the start positions of the two targets after the segmentation are consistent in our tracking object method, and they are both the recorded position before segmentation. The advantage is that the two masses all followed the original tracking trajectory, so there are at least two masses in the mass if there is mass separation when across the counting line. In the tracking process, if there is mass merge, such as mass 1, mass 2 and mass 3, we will choose the one which has the longest tracking range (assuming mass 2), and then put mass 1 and mass 3 into the tracking linked list of which has the longest tracking range (mass 2).

    (8)

    OR≥αor(αordenotes the threshold of the overlap, and the overlap rate is effective only when it is greater than this), we take the mass which has the largest overlap rate as the target.

    1.4Analysis of mass by using SVM

    As a supervised learning method, SVM (support vector machines)[12]is widely applied in many fields. It can not only enable to learn in high dimensional spaces, but also obtain high performance with limited training samples. It also can avoid the structure selection and local minimum point problem of the neural network. Therefore, we use the linear SVM to analysis the feature of the mass, and then get the number of people in mass.

    We extract the feature of each mass as the input vector. The variableli denotes the width of the mass andhi denotes the height of the mass. The variableni denotes the number of the mass pixel andHi denotes the mass flow histogram with an eight dimensional vector (The value of the pixel optical flow intensity is normalized to [0,1], and divided into eight bins. Then we record the value of optical flow intensity of each pixel in the mass, and form an eight dimensional data). As a training sample, each mass correspond with a eleven dimension feature vectorsi is given by

    (9)

    where, the three variables (hi,li,ni) have been serious affected by the distance from the camera to objects. The variable α denotes the weight of liand hiof the mass and niof the mass, and is directly proportional to the distance from the camera to objects.

    The relation of corresponding features (hi,li,ni) and the distance from the camera is described by the ratio of the foreground mass size of a single pedestrian in different locations and the largest foreground mass of the pedestrian in the fixed scene. The weight α is obtained as follows:

    (1) The Ajdenotes the foreground size of a single pedestrian for thejareas (1≤j≤n,n denotes the number of areas in the scene) in the fixed scene, and the maximum foreground mass size of a single pedestrianAis equal to max{Aj}.

    (2) The weightαin different areas can be represented as follows

    (10)

    (3) The feature vectorsi in training is finally represented as:

    (11)

    In our method, we utilize SVM to fit the feature vector si(si∈Rd,d=11) and the number of people in the mass yi(yi∈R).

    First of all, linear regression function f(x)=w*s+b is considered to solve the problem of fitting data {xi,yi}, i=1,…,n,and all training data is assumed to use linear function fitting under the precisionεwithout error, that is given by

    (12)

    (13)

    The optimization goal becomes the minimization of the term as follows

    (14)

    (15)

    We get the regression function

    (16)

    At last, the result of counting people is obtained through the functionf(x).

    2Experimental results

    In this section, we verify the validity and availability of the people counting method in this paper. The proposed framework is evaluated on one public datasets Crowd-PETS09[13], and the other videos are collected from the internet and our shooting. The experiments are performed inCon a 2.3 GHz Pentium with a 2 G memory. We realize this program using VC and OPENCV programming for the test of many different type videos including scenes with occlusion (including the same and different directions). The frame rate is 33 fps·s-1, and the resolution is 720*576 in the set of videos.

    2.1Discussion of feature selection

    In this section, the experimental result shows the influence about the feature of the mass as the SVM input to the result of people counting.

    As shown in Fig.5, the videos are obtained according to the different views of camera. The first line of a figure in Fig.5 records the mass and optical flow distribution in the same and different directions. Similarly, the second line a figure or b figure records the mass and optical flow distribution in the same direction from the different views of camera.

    When the moving directions are different, the people of different directions are in the same large mass as shown in the first line of a figure, which is a binary image. As shown in the first line (left) the optical flow in a figure is used to get internal movement direction in the mass, the mass segmentation is completed through the direction difference, and the large mass is segmented into two masses. The second line of a figure and all of b figure show the condition of the same direction, and the mass do not need to be segmented in this condition. Because there are two conditions in same direction: 1) many people with long distance, there are many masses; 2) many people with closer distance, although it is a mass in this condition, but we can put the mass characteristic information into the trained people counting model based on SVM in this paper directly, so we can still get an accurate number of people. As shown in Fig.5, there is direct relation with the mass area and the distances between the foreground mass and the camera. In general, the large foreground mass contains more people than the little one in the same distance. The change in the size of the mass is relation with the distance of the foreground mass and the camera is shown in a figure and b figure. We also can see in Fig.5 that the strength of the optical flow information from different distances also directly reflects the number of people, because the speed of people is similar in the scenes in the same distance. The energy of optical flow about mass can reflect the people number in mass indirectly.

    2.2The evaluation of experiments

    The experiment analyzes the confusion matrix[14]to evaluate the method performance. TP is the correct number of the system. FN represents the number that is not counted and FP represents the number that is wrong counting. The confusion matrix is used to estimate the precision and recalled as follows

    (17)

    (18)

    The measureFwhich called the weight harmonic mean is a way to combine PR and RE for obtaining a general quality measure

    F=2PR·RE/(PR+RE).

    (19)

    Fig.5 is the influence of the optical flow distribution to the segmentation. In experiment, our method and a classic people counting method[10]are tested with multiple videos, some of which are presented in Fig.5. Tab.1 is the result of people counting (the result of our method/the result of the paper [10]). As shown in Tab.1, the accuracy in 1-4th videos is 100% when the interference is not serious in our method, but the method[10]counts the wrong number of people with optical flow because it neglects the size of mass. In 5-6th videos, the results of experiment dropped by using our method and the method[10]because there lies severe disruption in scenes (such as people keep walking around, the mass overlap each other is too much, and the illuminance and the shadow are stronger). These factors cause some error in optional flow foreground extraction and interference with the mass area information which causes the deterioration of method precision.

    3Conclusion

    The novel method for people counting is proposed in complex scenarios. We integrate the optional flow intensity information of moving people and the size of the mass area to form the feature of mass, and a novel method of tracking object is proposed. We put the feature into the SVM for people counting analysis.

    The results show that, the energy and shape information of mass are adequately considered in the method, so the accuracy is close to 100%.The method still has some error detection and leak detection in complex scenarios. In the later study, we will consider joining foreground analysis strategies without shadow to the method for mass information, in order to improve the detection rate.

    References:

    [1]Antic B, Letic D, Culibrk D, et al. K-means based segmentation for real-time zenithal people counting[C]//International Conference on Image Processing (ICIP),2009:2565-2568.

    [2]Chan A B, Liang Z S J, Vasconcelos N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,IEEE,2008:1-7.

    [3]Rabaud V, Belongie S. Counting crowded moving objects[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,IEEE,2006:705-711.

    [4]Zeng C B, Ma H D. Robust thead-shoulder detection by PCA-based multilevel HOG-LBP detector for people counting[C]//20th International Conference on Pattern Recognition, Istanbul, 2010:2069-2072.

    [5]Zhang Z, Gunes H, Piccardi M. Head detection for video surveillance based on categorical hair and skin colour models[C]//2009 IEEE International Conference on Image Processing(ICIP),Cairo, 2009:1137-1140.

    [6]Kim J W, Choi K S, Park W S, et al. Robust real-time people tracking system for security[J]. IBS Journal, 2002,2(3):184-190.

    [7]Jaijing K, Kaewtrakulpong P, Siddhichai S. Object detection and modeling algorithm for automatic visual people counting system[C]//6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Pattaya, honburi, 2009:1062-1065.

    [8]Gardel A, Bravo I, Jimenez P, et al. Real time head detection for embedded vision modules[C]//IEEE International Symposium on Intelligent Signal Processing, IEEE, 2007:1-6.

    [9]Cong Y,Gong H F, Zhu S C, et al. Flow mosaicking: real-time pedestrian counting without scene-specific learning[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Miami,USA, 2009:1093-1100.

    [10]Benabbas Y, Ihaddadene N, Yahiaoui T,et al. Spatio-temporal optical flow analysis for people counting [C]//7th IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, 2010:212-217.

    [11]Andres B,Joachim W, Christian F, et al. Real-time optic flow computation with variational methods[J].Computer Science,2003,2756:222-229.

    [12]Vapnik V. Statistical learning theory[M]. New York:Springer,1995.

    [13]Chan A B, Vasconcelos N. Counting people with low-level features and Bayesian regression[J]. Image Processing, IEEE Transactions, 2012,21(4):2160-2177.

    [14]Barandiaran J, Murguia B, Fernando B. Real-time people counting using multiple lines[C]//9th International Workshop on Image Analysis for Multimedia Interactive Services, Klagenfurt, Austria,2008:159-162.

    (責(zé)任編輯鄭小虎)

    猜你喜歡
    目標(biāo)跟蹤支持向量機(jī)
    多視角目標(biāo)檢測(cè)與跟蹤技術(shù)的研究與實(shí)現(xiàn)
    基于改進(jìn)支持向量機(jī)的船舶縱搖預(yù)報(bào)模型
    基于SVM的煙草銷售量預(yù)測(cè)
    動(dòng)態(tài)場(chǎng)景中的視覺目標(biāo)識(shí)別方法分析
    論提高裝備故障預(yù)測(cè)準(zhǔn)確度的方法途徑
    基于改進(jìn)連續(xù)自適應(yīng)均值漂移的視頻目標(biāo)跟蹤算法
    基于重采樣粒子濾波的目標(biāo)跟蹤算法研究
    航空兵器(2016年5期)2016-12-10 17:12:24
    基于熵技術(shù)的公共事業(yè)費(fèi)最優(yōu)組合預(yù)測(cè)
    基于支持向量機(jī)的金融數(shù)據(jù)分析研究
    空管自動(dòng)化系統(tǒng)中航跡濾波算法的應(yīng)用與改進(jìn)
    科技視界(2016年5期)2016-02-22 12:25:31
    色综合站精品国产| 69av精品久久久久久| 国产熟女午夜一区二区三区| 久久狼人影院| 侵犯人妻中文字幕一二三四区| 交换朋友夫妻互换小说| 精品人妻在线不人妻| 纯流量卡能插随身wifi吗| 亚洲色图av天堂| 国产成人精品久久二区二区免费| 亚洲欧美一区二区三区黑人| 18禁观看日本| 一级毛片高清免费大全| 视频区欧美日本亚洲| 国产成人精品久久二区二区免费| 热99re8久久精品国产| 亚洲av熟女| 村上凉子中文字幕在线| 亚洲欧美激情在线| 国产亚洲精品一区二区www| 夜夜躁狠狠躁天天躁| 欧美久久黑人一区二区| 夫妻午夜视频| 男男h啪啪无遮挡| 变态另类成人亚洲欧美熟女 | 夜夜夜夜夜久久久久| www.www免费av| 在线av久久热| 国产精品电影一区二区三区| 欧美日韩av久久| 亚洲 欧美 日韩 在线 免费| av电影中文网址| 韩国av一区二区三区四区| 激情在线观看视频在线高清| 18禁观看日本| 国产亚洲精品第一综合不卡| 日韩成人在线观看一区二区三区| 在线观看舔阴道视频| 91麻豆av在线| 国产成人精品久久二区二区免费| 老汉色∧v一级毛片| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 国产成人欧美| 麻豆久久精品国产亚洲av | 不卡一级毛片| 精品国产国语对白av| 国产亚洲欧美98| 午夜福利在线观看吧| 天天躁狠狠躁夜夜躁狠狠躁| 757午夜福利合集在线观看| 国产精品一区二区在线不卡| 久久青草综合色| 热re99久久国产66热| 丝袜美足系列| 一本大道久久a久久精品| 国产伦一二天堂av在线观看| 欧美激情久久久久久爽电影 | 亚洲国产欧美一区二区综合| 亚洲欧美一区二区三区黑人| 日本a在线网址| 亚洲精品中文字幕一二三四区| 免费人成视频x8x8入口观看| 69av精品久久久久久| 久久精品91无色码中文字幕| 欧美日韩乱码在线| 欧美日韩亚洲综合一区二区三区_| 亚洲成人国产一区在线观看| 欧美乱码精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 中出人妻视频一区二区| 亚洲狠狠婷婷综合久久图片| 老熟妇仑乱视频hdxx| 伦理电影免费视频| 人妻久久中文字幕网| 成人国语在线视频| 香蕉国产在线看| 亚洲性夜色夜夜综合| 欧美黑人欧美精品刺激| 午夜福利一区二区在线看| 午夜福利一区二区在线看| 久久精品国产清高在天天线| 宅男免费午夜| 国产黄a三级三级三级人| 久久久国产精品麻豆| 国产精品二区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区不卡视频| 久久精品国产99精品国产亚洲性色 | 色综合站精品国产| 久久久久久人人人人人| 亚洲 国产 在线| 日本免费一区二区三区高清不卡 | 一级a爱视频在线免费观看| 国产精品综合久久久久久久免费 | 精品一区二区三区视频在线观看免费 | 久久久国产一区二区| 国产精品香港三级国产av潘金莲| 一级a爱视频在线免费观看| 超碰97精品在线观看| 精品午夜福利视频在线观看一区| 亚洲视频免费观看视频| 国产xxxxx性猛交| 国产真人三级小视频在线观看| 久久精品aⅴ一区二区三区四区| 欧美黄色片欧美黄色片| 欧美黑人精品巨大| 在线观看免费视频网站a站| 久久香蕉国产精品| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 久久影院123| 看黄色毛片网站| 看黄色毛片网站| 国产亚洲精品久久久久久毛片| 国产不卡一卡二| 精品久久久久久久毛片微露脸| 欧美日韩视频精品一区| 丰满人妻熟妇乱又伦精品不卡| 欧美国产精品va在线观看不卡| 一a级毛片在线观看| 久久香蕉国产精品| 久久午夜亚洲精品久久| 免费av中文字幕在线| 高清欧美精品videossex| 亚洲伊人色综图| 国产一区二区三区综合在线观看| 丝袜人妻中文字幕| 国产亚洲欧美精品永久| 亚洲自偷自拍图片 自拍| 91字幕亚洲| 国产成年人精品一区二区 | 久久国产精品人妻蜜桃| 老熟妇乱子伦视频在线观看| 亚洲成人精品中文字幕电影 | 大码成人一级视频| 人人澡人人妻人| 国产亚洲精品综合一区在线观看 | 亚洲三区欧美一区| 麻豆成人av在线观看| 日日夜夜操网爽| 国产99久久九九免费精品| 久久人人爽av亚洲精品天堂| 亚洲avbb在线观看| 18禁黄网站禁片午夜丰满| 成人亚洲精品一区在线观看| 成在线人永久免费视频| 国产一区二区三区综合在线观看| 久久精品人人爽人人爽视色| 丝袜美腿诱惑在线| 国产精品久久久人人做人人爽| 精品乱码久久久久久99久播| 亚洲av成人av| 免费高清在线观看日韩| 国产亚洲精品久久久久5区| 久9热在线精品视频| av福利片在线| 久久人人爽av亚洲精品天堂| 黑人猛操日本美女一级片| 亚洲avbb在线观看| 亚洲avbb在线观看| 国产一区二区三区在线臀色熟女 | 视频区欧美日本亚洲| 国产蜜桃级精品一区二区三区| 婷婷六月久久综合丁香| 波多野结衣高清无吗| 身体一侧抽搐| 好男人电影高清在线观看| av中文乱码字幕在线| 久久亚洲精品不卡| 成人免费观看视频高清| 高清黄色对白视频在线免费看| 一二三四社区在线视频社区8| 亚洲伊人色综图| 麻豆成人av在线观看| 热re99久久国产66热| 欧美中文日本在线观看视频| 又大又爽又粗| 大型av网站在线播放| 成人黄色视频免费在线看| 日韩av在线大香蕉| 丝袜美腿诱惑在线| 日韩大码丰满熟妇| 后天国语完整版免费观看| 国产精品秋霞免费鲁丝片| 亚洲avbb在线观看| 一本大道久久a久久精品| 不卡av一区二区三区| 欧美 亚洲 国产 日韩一| 国产精品久久久久成人av| 亚洲欧美日韩另类电影网站| 日日摸夜夜添夜夜添小说| 亚洲av成人一区二区三| 夫妻午夜视频| 亚洲avbb在线观看| 国产精品电影一区二区三区| 国产精品乱码一区二三区的特点 | 亚洲欧美精品综合久久99| 夜夜夜夜夜久久久久| 久久热在线av| 欧美日韩瑟瑟在线播放| ponron亚洲| 国产成年人精品一区二区 | 午夜成年电影在线免费观看| 在线播放国产精品三级| 中文字幕色久视频| 亚洲一卡2卡3卡4卡5卡精品中文| 中文欧美无线码| 成人手机av| 一区二区三区精品91| 中文欧美无线码| 日本vs欧美在线观看视频| 国产成人欧美在线观看| 99久久精品国产亚洲精品| 国产97色在线日韩免费| 高清在线国产一区| 色精品久久人妻99蜜桃| 久久午夜综合久久蜜桃| e午夜精品久久久久久久| 久久热在线av| 欧美 亚洲 国产 日韩一| 亚洲精品国产区一区二| 国产欧美日韩一区二区三区在线| 久久精品aⅴ一区二区三区四区| 国产成人精品在线电影| 超色免费av| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人| 国产精品99久久99久久久不卡| 亚洲欧美日韩另类电影网站| 日韩 欧美 亚洲 中文字幕| 午夜a级毛片| 日本精品一区二区三区蜜桃| 黄色视频,在线免费观看| 91av网站免费观看| 69av精品久久久久久| 日韩人妻精品一区2区三区| 欧美在线一区亚洲| 午夜福利在线观看吧| 女警被强在线播放| 人人澡人人妻人| 亚洲专区字幕在线| 一二三四在线观看免费中文在| 国产一区二区三区视频了| 午夜影院日韩av| 五月开心婷婷网| 国产精品成人在线| 黑人猛操日本美女一级片| 亚洲专区国产一区二区| 日韩欧美国产一区二区入口| 亚洲视频免费观看视频| 久久久久久久午夜电影 | 国产精品永久免费网站| 午夜日韩欧美国产| 中文亚洲av片在线观看爽| 999久久久国产精品视频| 波多野结衣av一区二区av| 老汉色av国产亚洲站长工具| 亚洲精品国产精品久久久不卡| 国内毛片毛片毛片毛片毛片| 精品一区二区三区四区五区乱码| 丰满迷人的少妇在线观看| 国产99久久九九免费精品| 啦啦啦在线免费观看视频4| 亚洲熟女毛片儿| av欧美777| 亚洲七黄色美女视频| 女人精品久久久久毛片| 免费一级毛片在线播放高清视频 | 国产精品亚洲一级av第二区| 最好的美女福利视频网| 久久香蕉国产精品| 成在线人永久免费视频| 一区在线观看完整版| x7x7x7水蜜桃| 看片在线看免费视频| 婷婷精品国产亚洲av在线| 日韩欧美一区视频在线观看| 亚洲成av片中文字幕在线观看| 久久精品人人爽人人爽视色| 成人亚洲精品一区在线观看| 别揉我奶头~嗯~啊~动态视频| 人妻久久中文字幕网| 黑人操中国人逼视频| 婷婷精品国产亚洲av在线| 美女高潮到喷水免费观看| 一级片免费观看大全| 制服人妻中文乱码| 亚洲欧美精品综合一区二区三区| 国产在线观看jvid| 叶爱在线成人免费视频播放| 国产精品美女特级片免费视频播放器 | 国产精品爽爽va在线观看网站 | 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 麻豆av在线久日| 亚洲色图综合在线观看| 日韩成人在线观看一区二区三区| 午夜福利在线观看吧| 黄色怎么调成土黄色| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 成在线人永久免费视频| 高清黄色对白视频在线免费看| 女警被强在线播放| 日日摸夜夜添夜夜添小说| 在线十欧美十亚洲十日本专区| 咕卡用的链子| 色婷婷久久久亚洲欧美| 国产视频一区二区在线看| av欧美777| 99国产综合亚洲精品| 国产成人系列免费观看| 丰满的人妻完整版| 国产精品日韩av在线免费观看 | 国产麻豆69| 亚洲五月色婷婷综合| 国产一区二区三区在线臀色熟女 | 少妇粗大呻吟视频| 国产三级黄色录像| 热99re8久久精品国产| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 黄色视频,在线免费观看| 欧美中文综合在线视频| 在线十欧美十亚洲十日本专区| 午夜影院日韩av| 男女下面插进去视频免费观看| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频 | 最近最新中文字幕大全电影3 | 在线观看66精品国产| 老汉色∧v一级毛片| 88av欧美| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 欧美精品啪啪一区二区三区| av中文乱码字幕在线| 亚洲人成77777在线视频| 最新在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 婷婷六月久久综合丁香| 亚洲五月婷婷丁香| 99久久99久久久精品蜜桃| 最好的美女福利视频网| 免费女性裸体啪啪无遮挡网站| 老司机午夜十八禁免费视频| 99久久99久久久精品蜜桃| 久久人人精品亚洲av| 久久精品人人爽人人爽视色| 日本wwww免费看| 国产亚洲精品一区二区www| 一本综合久久免费| 色婷婷久久久亚洲欧美| 国产精品综合久久久久久久免费 | 丝袜美足系列| 国产精品影院久久| 亚洲性夜色夜夜综合| 久久九九热精品免费| 丰满迷人的少妇在线观看| 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人爽人人添夜夜欢视频| 操出白浆在线播放| 一本综合久久免费| 国产主播在线观看一区二区| 国产精品成人在线| 色播在线永久视频| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片 | 色老头精品视频在线观看| 欧美日韩黄片免| 亚洲专区中文字幕在线| 国产一卡二卡三卡精品| 久久久国产精品麻豆| 免费在线观看黄色视频的| 亚洲午夜理论影院| 91字幕亚洲| 黄色视频,在线免费观看| 51午夜福利影视在线观看| 老司机午夜福利在线观看视频| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 热99re8久久精品国产| 热99国产精品久久久久久7| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 色婷婷久久久亚洲欧美| 午夜免费观看网址| 女警被强在线播放| 色老头精品视频在线观看| 国产黄a三级三级三级人| 色婷婷av一区二区三区视频| 国产亚洲精品久久久久久毛片| 黄频高清免费视频| 最近最新中文字幕大全电影3 | 波多野结衣高清无吗| av在线播放免费不卡| 国产伦人伦偷精品视频| 久久香蕉激情| 淫妇啪啪啪对白视频| 人人妻,人人澡人人爽秒播| 成人亚洲精品一区在线观看| 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 国产精品日韩av在线免费观看 | 91成年电影在线观看| 成人18禁在线播放| 村上凉子中文字幕在线| 久久久久九九精品影院| 一级毛片精品| 在线观看一区二区三区激情| 桃红色精品国产亚洲av| 亚洲欧美一区二区三区久久| av视频免费观看在线观看| 无人区码免费观看不卡| av免费在线观看网站| 日韩 欧美 亚洲 中文字幕| bbb黄色大片| 老司机在亚洲福利影院| 新久久久久国产一级毛片| 在线天堂中文资源库| 18禁黄网站禁片午夜丰满| 我的亚洲天堂| 在线观看免费视频日本深夜| 国产精品国产av在线观看| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 12—13女人毛片做爰片一| 亚洲九九香蕉| 成人18禁在线播放| 精品电影一区二区在线| 亚洲九九香蕉| 精品久久久久久成人av| aaaaa片日本免费| 九色亚洲精品在线播放| 国产精品爽爽va在线观看网站 | 成人国产一区最新在线观看| 久久精品成人免费网站| 久久 成人 亚洲| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 久久 成人 亚洲| 国产成年人精品一区二区 | 天堂俺去俺来也www色官网| 国产一卡二卡三卡精品| 桃色一区二区三区在线观看| 手机成人av网站| 18禁国产床啪视频网站| 美女国产高潮福利片在线看| 国产成+人综合+亚洲专区| 五月开心婷婷网| 精品高清国产在线一区| 亚洲熟妇熟女久久| 国产高清videossex| 久久人人97超碰香蕉20202| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 麻豆一二三区av精品| 精品乱码久久久久久99久播| 成人三级做爰电影| 97碰自拍视频| 中文字幕人妻熟女乱码| 国产一区二区三区视频了| 日韩高清综合在线| 国产免费男女视频| 国产精品自产拍在线观看55亚洲| 看免费av毛片| 国产精品二区激情视频| 正在播放国产对白刺激| 午夜a级毛片| 国产97色在线日韩免费| 亚洲 国产 在线| 日韩有码中文字幕| ponron亚洲| 久久香蕉激情| 国产精品98久久久久久宅男小说| 91成年电影在线观看| 成人精品一区二区免费| 国产精品二区激情视频| 久久热在线av| 91麻豆精品激情在线观看国产 | 亚洲成人免费av在线播放| 精品久久蜜臀av无| 久久狼人影院| av天堂久久9| 岛国视频午夜一区免费看| 黄色怎么调成土黄色| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 少妇裸体淫交视频免费看高清 | 午夜91福利影院| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 国产一区二区三区综合在线观看| 久久热在线av| 久热这里只有精品99| 狂野欧美激情性xxxx| 神马国产精品三级电影在线观看 | 国产有黄有色有爽视频| 91九色精品人成在线观看| 宅男免费午夜| 久久久久精品国产欧美久久久| 一区福利在线观看| 亚洲男人的天堂狠狠| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 老司机亚洲免费影院| 日韩视频一区二区在线观看| 久久国产亚洲av麻豆专区| 欧美日韩中文字幕国产精品一区二区三区 | 国产成+人综合+亚洲专区| 91av网站免费观看| 欧美日韩av久久| a在线观看视频网站| 日韩中文字幕欧美一区二区| 电影成人av| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 精品国内亚洲2022精品成人| 琪琪午夜伦伦电影理论片6080| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密| 午夜免费鲁丝| 亚洲av美国av| 搡老乐熟女国产| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 午夜免费观看网址| 国产高清videossex| 免费av毛片视频| 中文字幕最新亚洲高清| 午夜免费观看网址| 最新美女视频免费是黄的| 国产91精品成人一区二区三区| 成人18禁在线播放| 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| av欧美777| 多毛熟女@视频| 午夜免费观看网址| 国产人伦9x9x在线观看| 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区视频在线观看免费 | 国产三级在线视频| 中文字幕人妻熟女乱码| 亚洲一区二区三区色噜噜 | 美女 人体艺术 gogo| 少妇粗大呻吟视频| 女警被强在线播放| 在线播放国产精品三级| 国产精品综合久久久久久久免费 | 在线永久观看黄色视频| 高清av免费在线| av在线播放免费不卡| 高清在线国产一区| 日韩欧美三级三区| 国产成人av激情在线播放| 欧美激情极品国产一区二区三区| 啦啦啦在线免费观看视频4| 国产精品日韩av在线免费观看 | 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 激情在线观看视频在线高清| 亚洲精华国产精华精| 久久久久久免费高清国产稀缺| 久久午夜亚洲精品久久| 天堂俺去俺来也www色官网| 两性夫妻黄色片| 一区二区三区激情视频| 国产欧美日韩一区二区精品| 色哟哟哟哟哟哟| 真人一进一出gif抽搐免费| 一区二区三区激情视频| 国产精品偷伦视频观看了| 在线观看免费视频日本深夜| 国产精品久久视频播放| 黑人巨大精品欧美一区二区mp4| 一级片免费观看大全| 女同久久另类99精品国产91| 日韩人妻精品一区2区三区| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 纯流量卡能插随身wifi吗| 国产成人av教育| 99久久人妻综合| 亚洲成a人片在线一区二区| 自线自在国产av| 婷婷丁香在线五月| 久久精品国产清高在天天线| 日日爽夜夜爽网站| 亚洲人成77777在线视频| 久久久久久久久中文| 国产精品爽爽va在线观看网站 | av视频免费观看在线观看| 怎么达到女性高潮| 亚洲性夜色夜夜综合| 久久久久国产精品人妻aⅴ院| 国产精品 国内视频|