• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種三維四元酸銅配合物的合成、結(jié)構(gòu)及其性質(zhì)

    2016-01-14 03:27:43邵彩云,劉孟巖,練晨
    化學(xué)研究 2015年5期
    關(guān)鍵詞:磁性有機

    一種三維四元酸銅配合物的合成、結(jié)構(gòu)及其性質(zhì)

    邵彩云1,劉孟巖1,練晨1,王力冊1,許珍煥1,郭旭1,龍銀雙1,路云霞2,楊立榮1*

    (1. 河南大學(xué) 化學(xué)化工學(xué)院,河南省多酸化學(xué)重點實驗室,分子與晶體工程研究所,河南 開封 475004;

    2. 河南大學(xué)圖書館,河南 開封 475001)

    摘要:通過水熱法合成了一種具有三維孔狀結(jié)構(gòu)的金屬有機框架物{[Cu(BPTC)0.5·(bpy)]·H2O}∞ (BPTC = 3,3′,4,4′-苯甲酮-四甲酸和 bpy = 4,4′-聯(lián)吡啶). 運用元素分析、紅外光譜、X射線單晶衍射以及X射線粉末衍射等對其進行了結(jié)構(gòu)表征, 利用熱重分析評價了其熱穩(wěn)定性. X射線單晶衍射分析表明標(biāo)題配合物通過一維右手螺旋鏈聯(lián)接成為二維層狀結(jié)構(gòu), 進而經(jīng)由4,4′-聯(lián)吡啶聯(lián)接成為三維孔狀結(jié)構(gòu). 當(dāng)該孔狀結(jié)構(gòu)中包容的水分子被移除后,該金屬有機框架物依然保持三維孔狀結(jié)構(gòu). 此外,實驗還研究了標(biāo)題配合物的磁學(xué)和固態(tài)熒光性質(zhì).

    關(guān)鍵詞:有機-金屬框架物;水熱合成;磁性;熒光性質(zhì)

    Received date: 2015-05-28.

    Foundation item: The Natural Science Foundation of Henan Province (13A15006 and 15NB005).

    Biography: SHAO Caiyun (1969-), female, senior experimentalist, main direction is coordination chemistry.*Corresponding author, E-mail: lirongyang@henu.edu.cn.

    Studies on metal-organic frameworks (MOFs) are of considerable interest due to their fascinating network topologies and potential applications in molecular sieves, sensors, gas storage, ion exchange, size-selective separation, molecular magnetism, photoluminescence and heterogeneous catalysis[1-6]. A large number of MOFs with plentiful structures and unique properties have been designed and synthesized. The construction of MOFs is highly influenced by some certain factors,such as the coordination tendencies of metal ions, the structural characters of organic ligands, the properties of solvent and pH value, and so on[7-12].

    Among various organic ligands, multidentate organic ligands like multicarboxylate acids are often used as the linkers of metal ions to construct diversified MOFs. Certainly, 3,3′,4,4′ -benzophenone-tetracarboxylate was selected as multifunctional organic ligands based on several intriguing characters: i) quadruple carboxylic dentate arms are benefit to forming helical structures; ii) eight potential donor oxygen atoms contribute to construct multi-dimensional frameworks; iii) the noncovalent interactions, such as hydrogen bonds and π…π stacking exist in the benzene rings; iv) the pH values may exert an effect on the deprotonated degree of the ligands. What′s more, auxiliary ligands (for example, 4,4′-bipyridine) may lead to abundant network topology as linkers[13-18].

    Here in, we report the hydrothermal synthesis, characteristics, thermal analysis and the crystal structure of the 3D porous coordination complex of Cu(II) center with H4BPTC and 4,4′-bipyridine ligand, namely, {[Cu(BPTC)0.5·(bpy)]·H2O}∞. The typical coordination mode of H4BPTC is summarized in Fig. 1. Additionally, we investigated the thermal analysis, FT-IR spectroscopy and X-ray powder diffraction of the coordination complex, and found that the 3D porous framework remains intact after the guest water molecules are removed.

    Fig.1 The coordination mode of the BPTC ligand in the complex

    1Experimental

    1.1 Reagent and instrument

    All reagents were analysis grade. Elemental analysis (C, H and N) was performed by a Perkin-Elmer 2400-II CHNS/O analyzer. Infrared (IR) spectrum was recorded on a Bruker VERTEX 70 IR spectrometer in the range of 4 000-400 cm-1(using KBr in pellets). XRD data were recorded on a DX-2700 instrument with Cu Kαradiation (λ= 0.154 056 nm) in the angular range 2θ= 545oat 293 K. Magnetic susceptibility measurements were carried out by using a Quantum Design MPMS-5 magnetometer in the temperature range of 2-300 K. TG analysis was measured on a Perkin-Elmer TGA7 instrument with a heating rate of 10 ℃/min from 25 to 1 000 ℃ in N2flow. The photoluminescence property was performed on a HITACHI F-7000 fluorescence spectrophotometer in the solid state at the room temperature. Single crystals for X-ray structure analysis was performed on Bruker CCD Apex-II diffractometer with Mo Kαradiation (λ= 0.071 073nm) at 296 K. The structure of the complex was solved by direct methods and further refined by full-matrix least-squares refinements onF2using the SHELXL-97 software and an absorption correction was performed by the SADABS program[19].

    1.2 Synthesis of the title complex

    The title complex was synthesized from the reaction mixture of copper acetate (0.25 mmol, 49.9 mg), 3,3′,4,4′-benzophenone-tetracarboxylate (0.25 mmol, 89.6 mg), 4,4′-bipyridine (0.25 mmol, 39.0 mg ) in 10 mL distilled water and was adjusted to pH = 5 with 1 mol/L NaOH solution. The resultant mixture was homogenized under stirring for 30 min at ambient temperature, transferred into 25 mL Teflon-lined stainless steel autoclave under autogenous pressure at 160 ℃ for 4 d, and then cooled to room temperature at a rate of 5 ℃/h. After filtration, the product was washed with distilled water and then dried, and yellowish transparent block crystals suitable for X-ray diffraction analysis were obtained. Anal. Calc. for C19H10CuN2O5(409.83, %): C 55.68, H 2.46, N 6.84; Found(%): C 54.75, H 2.98, N 6.90. Selected IR (cm-1): 3 563(w), 3 420(w), 3 146(w), 2 946 (w), 1 654 (w), 1 629(s), 1 612 (s), 1 528(m), 1 414(s), 1 385(s), 1 368 (s), 1 296 (w), 1 277(m), 1 244 (m) 1 244(m), 1 083(w), 1 071(m), 1 012(w), 912(w), 849(w), 833(m), 803(w), 765(m), 754(w), 726(w), 704(w), 666(w), 643(m), 604(w), 515(m), 441(w), 418(w).

    2Results and Discussion

    2.1 Structural description of the complex

    The crystal data and structure renement detail for the complex are summarized in Table 1. Single crystal X-ray diffraction reveals that the complex crystallizes in the orthorhombic space groupF-ddd. Each Cu(II) atom is coordinated by two oxygen atoms from two BPTC ligands (Cu(1)-O(1) 0.194 3(6) nm, Cu(1)-O(4) 0.195 8(6) nm, respectively) and two nitrogen atoms from two bpy ligands (Cu(1)-N(1) 0.203 8(7) nm and Cu(1)-N(2) 0.203 0(8) nm), as shown in Fig. 2a. Weak interaction occur between the carboxylic oxygen atoms and central Cu(II) ion (Cu(1)-O(2) 0.270 5(7) nm and Cu(1)-O(5) 0.277 7(7) nm) owing to the Jahn-Teller effect. The bond length data (see Table 2) in the present work are consistent with those in previous work covering Cu(II) ions coordination polymers[20-21].

    Table 1 Crystal data and structure refinement parameters for complex

    Table 2 Selected bond lengths and bond angles for complex

    It is noteworthy that each BPTC anion coordinates to four Cu(II) cations to generate a 2D chiral layer alongadirection to form rhombic windows with dimensions of 1.145 1 nm×2.000 9 nm (Fig. 2b). Within the layer, right-handed helical chains formedviacarbonyl groups of BPTC anions with the pitches of 1.145 2 nm are observed. At the same time, bpy pillars connect Cu(II) ions to generate a 1D chain [-bpy-Cu(1)-bpy-Cu(1)-]∞(Fig. 2c). Furthermore, the adjacent Cu-BPTC 2D layers are linked by bpy linkers to form a cavities-containing 3D framework, as illustrated in Fig. 2d, in which the lattice water molecules are encapsulated in the cavities.

    Fig.2 a) Coordination environment of the complex, the asymmetric unit and the related coordination atoms are labeled, lattice water and hydrogen atoms are omitted for clarity; b) the 1D ribbon of [bpy-Cu-bpy-Cu] ∞ in the complex; c) the 2D layer of Cu-BPTC. insert: left- and right-Cu-phthalate helical chain; d) the 3D framework of the complex

    2.2 FT-IR spectroscopy and X-ray powder diffraction

    The title complex are insoluble in common solvents such as CH3COCH3, CH3CH2OH, CH3CN and THF, but slight soluble in DMF. The structure of the complex is identied by satisfactory elemental analysis as well as FT-IR and single crystal X-ray diffraction. The strong vibrations appeared at about 1 606 and 1 395 cm-1in the complex are ascribed to the coordinated carboxylates. The values of Δ[νas-νs] is 211 cm-1, which indicates that the carboxyl groups are coordinated with the metal ionsvia monodentate mode[22-23]. The sharp peaks ofδO-C-Ovibration in plane emerge in the range of 660-760 cm-1. The absence of the characteristic bands ranging from 1 725 to 1 785 cm-1indicates that the H4BPTC ligands are completely deprotonated in the form of BPTC4-anions upon reaction with the metal ions[24-25]. The results are in good agreement with the single-crystal X-ray structural analysis and well match to the literature reports.

    Fig.3 The simulated and experimental (25 ℃ and 250 ℃) powder XRD patterns of the complex

    To confirm the purity of the complex and further investigate whether the 3D porous framework would collapse upon removal of the guest water molecules, the original as-synthesized complex and the processed sample were characterized by X-ray powder diffraction (XRD) at the same conditions, the corresponding XRD patterns are shown in Fig. 3. The guest water molecules can be removed by heating at 250 ℃ for 24 h. By comparison, the corresponding positions and intensities of peaks in the as-synthesized patterns of the complex were unchanged when it was heated over 250 ℃, which suggests that the 3D porous framework remains intact after the guest water molecules are removed. This result may also be evidenced by the IR spectra. The corresponding characteristic peaks of the as-synthesized complex do not shift after the guest water molecules are removed by heating to 250 ℃ (see Fig.4).

    Fig.4 IR spectrum of the complex

    2.3 Photoluminescent properties

    The solid-state photoluminescence spectrum of the complex was investigated at room temperature intersecting with incidence at an angle of 45° (see Fig.5). The complex exhibits two strong emission bands centered at 483 and 590 nm upon excitation at 374 nm. From the band position and shape, it is reasonable to speculate that the emissions of the complex is tentatively assigned to the mixture effects of intraligand charge transfer and ligand-to-metal-charge-transfer (LMCT) transitions[26-27].

    Fig.5 Emission and excitation spectrum for the complex at room temperature

    2.4 Thermal analysis

    The thermal analysis of the complex has been measured from room temperature to 1 000 ℃ with a heating rate of 10 ℃·min-1in N2flow (see Fig. 6), which indicates that the complex decomposes in two steps, giving a total weight loss of 81.80%. The first weight loss of 3.11% between room temperature and 247 ℃, which is attributed to the loss of the lattice water (calc. 4.40%). The second stage weight loss (78.69%) of 250-1 000 ℃ conform to the segmental decomposition of 4,4′-bipyridine and 3,3′,4,4′-benzophenone-tetracarboxylate ligands. The remnant of the complex is 19.20%, which suggests that CuO is the final product (calc. 19.40%).

    Fig.6 Thermogravimetric analysis of the complex from 25 to 1 000 ℃

    2.5 Magnetic Properties

    Variable-temperature magnetic susceptibility of the complex is measured in the 2.0-300 K. The variation of the ratio of the magnetic,χM-1andχMTare shown in Fig. 7. The thermal evolution ofχM-1obeys the Curie-Weiss law,χM=C/(T-θ) in the range of 2-300 K with a Weiss constantθ=-12.668 K and a Curie constantC= 0.390 cm3·K·mol-1, respectively. At 300 K, theχMTvalue is 0.069 cm3·mol-1·K (0.744μB), which is lower than the expected value (0.375 cm3·K·mol-1, 1.731μB) for magnetically isolated high-spin Cu(II) (SCu= 1/2,g=2.0). With the temperature decreasing, theχMTvalue changes smoothly to a minimum of 0.011 cm3·K·mol-1at 2 K. The negativeθvalue and theχMTvsTcurve reveal typical antiferromagnetic interactions between the Cu(II) centers. The shortest Cu…Cu distance across the (O2C-C-C-CO2)2bridge (0.523 0(1) nm) is shorter than the bpy bridge (1.115 8(3) nm), suggesting that the observed antiferromagnetic interaction should arise from the magnetic super exchange through the (O2C-C-C-CO2)2bridges.

    Fig.7 Thermal variation of χ M and χ MT for the complex. Insert: Plot of thermal variation of χ M -1

    3Conclusions

    In summary, we report here a novel 3D porous metal-organic framework generated from 3,3′,4,4′-benzophenone-tetracarboxylate in the presence of auxiliary 4,4′-bipyridine ligand, and the 3D framework remains intact after the guest water molecules encapsulated in the cavities are removed. The 2D layer in the complex constitutes of right-handed helical chains. Moreover, the complex presents antiferromagnetic behavior and photoluminescence property, the result suggest that the as-synthesized complex may be potential multifunctional materials in photoluminescence and magnetism.

    CCDC-995728 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    References:

    [1] ZHAO X B, XIAO B, FLETCHER A J, et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks [J]. Science, 2004, 306(5698): 1012-1015.

    [2] YAGHI O M, O′KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423(6941): 705-714.

    [3] LEE J Y, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts [J]. Chem Soc Rev, 2009, 38(5): 1450-1459.

    [4] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors [J]. Chem Rev, 2011, 112(2): 1105-1125.

    [5] MULFORT K L, HUPP J T. Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding [J]. J Am Chem Soc, 2007, 129(31): 9604-9605.

    [6] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309(5743): 2040-2042.

    [7] YANG G P, WANG Y Y, MA L F, et al. Hydrothermal syntheses and characterizations of three coordination polymers based on mixed organic ligands [J]. Eur J Inorg Chem, 2007, 2007(24): 3892-3898.

    [9] LI S L, LAN Y Q, MA J C, et al. Metal-organic frameworks based on different benzimidazole derivatives: effect of length and substituent groups of the ligands on the structures [J]. Cryst Growth Des, 2010, 10(3): 1161-1170.

    [10] SU C Y, GOFORTH A M, SMITH M D, et al. Exceptionally stable, hollow tubular metal-organic architectures: synthesis, characterization, and solid-state transformation study [J]. J Am Chem Soc, 2004, 126(11): 3576-3586.

    [11] BIRADHA K, HONGO Y, FUJITA M. Crystal-to-crystal sliding of 2D coordination layers triggered by guest exchange [J]. Angew Chem Int Ed, 2002, 41(18): 3395-3398.

    [12] LEONG W L, VITTAL J J. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications [J]. Chem Rev, 2010, 111(2): 688-764.

    [13] YANG L R, ZHANG H M, YOU Q, et al. Coordination polymers based on 3,3′,4,4′-benzophenone-tetracarboxylate and N-containing pillars: syntheses, structure, characterization and properties [J]. CrystEngComm, 2013, 15(37): 7505-7514.

    [14] ZHANG J, LI Z J, KANG Y, et al. Hydrothermal syntheses, crystal structures, and properties of a novel class of 3,3′,4,4′-benzophenone-tetracarboxylate (BPTC) polymers [J]. Inorg Chem, 2004, 43(25): 8085-8091.

    [15] LI S L, LAN Y Q, MA J F, et al. Structures and luminescent properties of seven coordination polymers of zinc (II) and cadmium (II) with 3, 3′, 4, 4′-benzophenone tetracarboxylate anion and bis (imidazole) [J]. Cryst Growth Des, 2008, 8(2): 675-684.

    [16] WANG H, WANG Y Y, YANG G P, et al. A series of intriguing metal-organic frameworks with 3, 3′, 4, 4′-benzophenonetetracarboxylic acid: structural adjustment and pH-dependence [J]. CrystEngComm, 2008, 10(11): 1583-1594.

    [17] XIAO D R, WANG E B, AN H Y, et al. A bridge between pillared-layer and helical structures: a series of three-dimensional pillared coordination polymers with multiform helical chains [J]. Chem Eur J, 2006, 12(25): 6528-6541.

    [18] ZHANG Y N, WANG H, LIU J Q, et al. Novel silver (I) compounds assembled from hybrid ligands based on linear or T-shaped coordination environment [J]. Inorg Chem Commun, 2009, 12(7): 611-614.

    [19] SHELDRICK G M. SHELXL-97 program for crystal structure solution and refinement [CP]. G?ttingen: University of G?ttingen, 1997.

    [20] LOGANATHAN R, RAMAKRISHNAN S, SURESH E, et al. Mixed ligandμ-phenoxo-bridged dinuclear copper (II) complexes with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity [J]. Dalton Trans, 2014, 43(16): 6177-6194.

    [21] QU Z K, YU K, ZHAO Z F, et al. An organic-inorganic hybrid semiconductor material based on Lindqvist polyoxomolybdate and a tetra-nuclear copper complex containing two different ligands [J]. Dalton Trans, 2014, 43(18): 6744-6751.

    [22] TANCREZ N, FEUVRIE C, LEDOUX I, et al. Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of f electrons to the quadratic hyperpolarizability1 [J]. J Am Chem Soc, 2005, 127(39): 13474-13475.

    [23] LI X F, HAN Z B, CHENG X N, et al. Studies on the radii dependent lanthanide self-assembly coordination behaviors of a flexible dicarboxylate ligand [J]. Inorg Chem Commun, 2006, 9(11): 1091-1095.

    [24] LIU M S, YU Q Y, CAI Y P, et al. One-, two-, and three-dimensional lanthanide complexes constructed from pyridine-2, 6-dicarboxylic acid and oxalic acid ligands [J]. Cryst Growth Des, 2008, 8(11): 4083-4091.

    [25] AGHABOZORG H, MOGHIMI A, MANTEGHI F, et al. A nine-coordinated ZrIVcomplex and a self-assembling system obtained from a proton transfer compound containing 2, 6- pyridinedicarboxylate and 2, 6-pyridinediammonium; synthesis and X-ray crystal structure [J]. Z Anorg Allg Chem, 2005, 631(5): 909-913.

    [26] LAN Y Q, LI S L, WANG X L, et al. Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from CuII, CuI, II to CuI via changing organic amine [J]. Inorg Chem, 2008, 47(18): 8179-8187.

    [27] NIU J, ZHANG S, CHEN H, et al. 1-D, 2-D, and 3-D organic-inorganic hybrids assembled from Keggin-type polyoxometalates and 3d-4f heterometals [J]. Cryst Growth Des, 2011, 11(9): 3769-3777.

    [責(zé)任編輯:任鐵鋼]

    猜你喜歡
    磁性有機
    有機旱作,倚“特”而立 向“高”而行
    純凈天然有機 為您獻上一杯道地藥茶
    有機推斷題中“已知信息”的正確打開方式
    九十九分就是不及格——有機農(nóng)業(yè),“機”在何處?
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    自制磁性螺絲刀
    磁性離子交換樹脂的制備及其對Cr3+的吸附
    有機心不如無機心
    山東青年(2016年2期)2016-02-28 14:25:31
    如何養(yǎng)一條有機魚
    一種新型磁性指紋刷的構(gòu)思
    日韩大尺度精品在线看网址| 黄色女人牲交| 久久中文字幕一级| 精品无人区乱码1区二区| 国产成人av激情在线播放| www日本在线高清视频| 久久久久久九九精品二区国产 | 精品国产一区二区三区四区第35| 哪里可以看免费的av片| tocl精华| 免费观看精品视频网站| 国产一区二区三区视频了| 久久99热这里只有精品18| 日本免费a在线| 国产精品美女特级片免费视频播放器 | 成人永久免费在线观看视频| 12—13女人毛片做爰片一| 久久99热这里只有精品18| 亚洲av成人av| 性色av乱码一区二区三区2| 这个男人来自地球电影免费观看| tocl精华| 免费一级毛片在线播放高清视频| 熟女电影av网| 久久中文看片网| 久久精品91无色码中文字幕| 最好的美女福利视频网| 天堂√8在线中文| 丝袜人妻中文字幕| 亚洲精品国产一区二区精华液| 久久伊人香网站| 日日干狠狠操夜夜爽| 久久午夜综合久久蜜桃| 夜夜躁狠狠躁天天躁| 在线十欧美十亚洲十日本专区| 久久国产亚洲av麻豆专区| 国产亚洲精品综合一区在线观看 | 97超级碰碰碰精品色视频在线观看| a级毛片在线看网站| 男女视频在线观看网站免费 | 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看日本一区| 色播在线永久视频| 人人妻,人人澡人人爽秒播| 久久香蕉国产精品| 日韩有码中文字幕| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美激情综合另类| 久久久久免费精品人妻一区二区 | www.www免费av| 色尼玛亚洲综合影院| 亚洲av五月六月丁香网| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 欧美成人免费av一区二区三区| 亚洲av中文字字幕乱码综合 | 午夜老司机福利片| 成人永久免费在线观看视频| 国产成人系列免费观看| 久久久久久久精品吃奶| 国产久久久一区二区三区| 国产精品国产高清国产av| 欧美av亚洲av综合av国产av| 亚洲精品中文字幕一二三四区| 国内精品久久久久久久电影| 欧美乱码精品一区二区三区| 久久欧美精品欧美久久欧美| 一夜夜www| 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 制服诱惑二区| 免费在线观看日本一区| 少妇粗大呻吟视频| 嫩草影院精品99| 免费在线观看成人毛片| 在线观看舔阴道视频| 亚洲真实伦在线观看| 久久久精品欧美日韩精品| 国内精品久久久久久久电影| 国产精品国产高清国产av| av欧美777| 亚洲五月天丁香| 老司机福利观看| 最新美女视频免费是黄的| 可以在线观看的亚洲视频| 免费无遮挡裸体视频| 高潮久久久久久久久久久不卡| 国产成人精品久久二区二区91| 88av欧美| 久久天躁狠狠躁夜夜2o2o| 成人18禁在线播放| 久久国产精品影院| 国产精品免费一区二区三区在线| 一区二区三区精品91| 国内久久婷婷六月综合欲色啪| 一本大道久久a久久精品| 免费看a级黄色片| 日本免费a在线| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 视频区欧美日本亚洲| 日韩一卡2卡3卡4卡2021年| 午夜久久久久精精品| 国产精品野战在线观看| 国产99久久九九免费精品| 国产激情偷乱视频一区二区| 欧美久久黑人一区二区| 一本综合久久免费| 一区福利在线观看| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 男女午夜视频在线观看| 1024视频免费在线观看| 麻豆一二三区av精品| 男人舔奶头视频| 中文字幕另类日韩欧美亚洲嫩草| 国产单亲对白刺激| 一边摸一边做爽爽视频免费| 精品久久久久久久毛片微露脸| x7x7x7水蜜桃| 国产精品99久久99久久久不卡| 草草在线视频免费看| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合 | 一本久久中文字幕| 50天的宝宝边吃奶边哭怎么回事| 999久久久精品免费观看国产| 神马国产精品三级电影在线观看 | 成人永久免费在线观看视频| 看黄色毛片网站| 亚洲中文日韩欧美视频| 神马国产精品三级电影在线观看 | 国产视频内射| 亚洲欧美精品综合一区二区三区| 亚洲国产欧洲综合997久久, | 日韩成人在线观看一区二区三区| a级毛片a级免费在线| 精品久久蜜臀av无| 国产成人av教育| 啪啪无遮挡十八禁网站| 久久久精品欧美日韩精品| 精品久久久久久久毛片微露脸| 99精品久久久久人妻精品| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 国产片内射在线| 国产午夜福利久久久久久| 久久久久久大精品| 国产精品 欧美亚洲| 亚洲精品在线美女| 黄频高清免费视频| 欧美最黄视频在线播放免费| 久久久国产欧美日韩av| 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 欧美黑人精品巨大| 男人操女人黄网站| 国产精品乱码一区二三区的特点| 国产不卡一卡二| 久久久久九九精品影院| 中文字幕av电影在线播放| 91成人精品电影| 一个人观看的视频www高清免费观看 | 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 在线观看舔阴道视频| 亚洲片人在线观看| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看| 丁香六月欧美| 少妇被粗大的猛进出69影院| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 天堂动漫精品| 亚洲男人的天堂狠狠| 精品国产超薄肉色丝袜足j| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 18禁美女被吸乳视频| 久久午夜综合久久蜜桃| 国产又爽黄色视频| 三级毛片av免费| 成年版毛片免费区| 国产一区二区三区在线臀色熟女| 正在播放国产对白刺激| 精品久久久久久,| 亚洲五月婷婷丁香| 岛国在线观看网站| 99在线人妻在线中文字幕| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| 人成视频在线观看免费观看| 国产成人精品久久二区二区免费| 两个人免费观看高清视频| 国产av又大| 免费在线观看视频国产中文字幕亚洲| avwww免费| 最近在线观看免费完整版| 一本综合久久免费| 亚洲第一青青草原| 精品午夜福利视频在线观看一区| 又紧又爽又黄一区二区| 亚洲无线在线观看| 日韩欧美在线二视频| 999久久久国产精品视频| 日韩av在线大香蕉| 国产伦在线观看视频一区| 国产精品免费一区二区三区在线| 国产成人欧美在线观看| 日韩免费av在线播放| 亚洲aⅴ乱码一区二区在线播放 | 麻豆久久精品国产亚洲av| 国产伦人伦偷精品视频| 国产1区2区3区精品| av欧美777| 国产极品粉嫩免费观看在线| 午夜激情av网站| 亚洲无线在线观看| 欧美一级a爱片免费观看看 | 欧美zozozo另类| 久久青草综合色| av在线播放免费不卡| 在线观看日韩欧美| 亚洲熟女毛片儿| 黄色视频,在线免费观看| www.熟女人妻精品国产| 国产成人系列免费观看| 国产av又大| 岛国在线观看网站| 久久中文字幕人妻熟女| 欧美最黄视频在线播放免费| 久久中文看片网| 欧美中文日本在线观看视频| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| www.熟女人妻精品国产| 99re在线观看精品视频| 可以在线观看的亚洲视频| 久热爱精品视频在线9| 亚洲人成77777在线视频| 国产亚洲欧美精品永久| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 美女高潮喷水抽搐中文字幕| 久久伊人香网站| 精品人妻1区二区| 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 久久精品aⅴ一区二区三区四区| 亚洲成人久久爱视频| 婷婷精品国产亚洲av| a级毛片a级免费在线| www.熟女人妻精品国产| 午夜福利欧美成人| 首页视频小说图片口味搜索| 此物有八面人人有两片| 久久久国产成人免费| 欧美精品亚洲一区二区| 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| 欧美成人一区二区免费高清观看 | 夜夜爽天天搞| av超薄肉色丝袜交足视频| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区| 一本大道久久a久久精品| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 一个人免费在线观看的高清视频| 午夜激情福利司机影院| 亚洲国产日韩欧美精品在线观看 | 久热爱精品视频在线9| 黄片小视频在线播放| 欧美人与性动交α欧美精品济南到| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美久久黑人一区二区| 不卡一级毛片| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 90打野战视频偷拍视频| 一级毛片女人18水好多| 欧美黄色片欧美黄色片| 91大片在线观看| 一区福利在线观看| 中出人妻视频一区二区| 在线视频色国产色| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| tocl精华| 身体一侧抽搐| 青草久久国产| 黑人巨大精品欧美一区二区mp4| 天天添夜夜摸| 麻豆一二三区av精品| 亚洲成av片中文字幕在线观看| 成熟少妇高潮喷水视频| 国产一区在线观看成人免费| 亚洲免费av在线视频| 午夜福利高清视频| 在线观看日韩欧美| 欧美三级亚洲精品| 一本久久中文字幕| 在线观看66精品国产| 日日干狠狠操夜夜爽| 久久精品国产综合久久久| 长腿黑丝高跟| 久久久久久久久免费视频了| 亚洲精品色激情综合| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲| 国产97色在线日韩免费| 亚洲真实伦在线观看| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 中国美女看黄片| 色老头精品视频在线观看| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 免费电影在线观看免费观看| 91大片在线观看| 久久99热这里只有精品18| 一卡2卡三卡四卡精品乱码亚洲| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 久久婷婷成人综合色麻豆| 午夜免费激情av| 777久久人妻少妇嫩草av网站| 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 国产精品精品国产色婷婷| 国产高清videossex| 在线观看一区二区三区| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 十分钟在线观看高清视频www| 午夜视频精品福利| 日本一区二区免费在线视频| 波多野结衣高清无吗| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| 国产视频内射| 亚洲国产精品999在线| 日韩一卡2卡3卡4卡2021年| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区精品| 悠悠久久av| 香蕉国产在线看| 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 黄片大片在线免费观看| 国产午夜福利久久久久久| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 一区二区三区精品91| 午夜两性在线视频| 在线观看免费日韩欧美大片| 久久婷婷成人综合色麻豆| 1024手机看黄色片| 少妇粗大呻吟视频| 99久久国产精品久久久| av天堂在线播放| 久久久精品国产亚洲av高清涩受| 亚洲 国产 在线| 欧美色视频一区免费| 黄色 视频免费看| 后天国语完整版免费观看| 老汉色∧v一级毛片| 最近在线观看免费完整版| 成人av一区二区三区在线看| 女警被强在线播放| 91字幕亚洲| 99久久国产精品久久久| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 黄色丝袜av网址大全| 国产私拍福利视频在线观看| 啦啦啦观看免费观看视频高清| 国产精品免费一区二区三区在线| 日韩欧美国产在线观看| 亚洲精品美女久久久久99蜜臀| 国产人伦9x9x在线观看| 十八禁网站免费在线| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 国产精品电影一区二区三区| 视频区欧美日本亚洲| 国产亚洲精品av在线| 日韩欧美免费精品| 成年版毛片免费区| 嫁个100分男人电影在线观看| 麻豆成人av在线观看| 国产精品久久视频播放| 国产一级毛片七仙女欲春2 | 男人舔奶头视频| 日韩一卡2卡3卡4卡2021年| 人人妻人人澡欧美一区二区| 欧美一级毛片孕妇| 婷婷六月久久综合丁香| 欧美大码av| 亚洲成av片中文字幕在线观看| 日本一本二区三区精品| 亚洲中文av在线| 人人妻人人看人人澡| 亚洲狠狠婷婷综合久久图片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区在线av高清观看| 日本一本二区三区精品| 美女高潮到喷水免费观看| 精品久久久久久久人妻蜜臀av| 久久精品影院6| 亚洲 欧美一区二区三区| 琪琪午夜伦伦电影理论片6080| 亚洲av中文字字幕乱码综合 | 757午夜福利合集在线观看| 国产成人精品无人区| 亚洲色图av天堂| a在线观看视频网站| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 女人高潮潮喷娇喘18禁视频| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 国内精品久久久久精免费| 欧美日韩中文字幕国产精品一区二区三区| 成人精品一区二区免费| 亚洲精品美女久久av网站| 精品久久久久久成人av| 国产又色又爽无遮挡免费看| 九色国产91popny在线| 亚洲成av片中文字幕在线观看| 俺也久久电影网| 一区二区三区激情视频| 久久婷婷人人爽人人干人人爱| 大型av网站在线播放| 午夜久久久久精精品| 亚洲片人在线观看| 国产97色在线日韩免费| 人人妻人人澡人人看| 亚洲国产高清在线一区二区三 | av超薄肉色丝袜交足视频| 一级毛片精品| 午夜福利欧美成人| 亚洲五月婷婷丁香| 麻豆一二三区av精品| 啦啦啦免费观看视频1| 久久性视频一级片| 国产激情偷乱视频一区二区| 在线观看一区二区三区| 在线看三级毛片| 黑人巨大精品欧美一区二区mp4| 久久久精品欧美日韩精品| 一区二区三区精品91| 中文在线观看免费www的网站 | 亚洲avbb在线观看| 正在播放国产对白刺激| 97碰自拍视频| 99在线人妻在线中文字幕| 香蕉国产在线看| 中文在线观看免费www的网站 | 国产区一区二久久| 中文资源天堂在线| 日本五十路高清| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| 日韩大尺度精品在线看网址| 999久久久精品免费观看国产| 国产精品久久久人人做人人爽| 叶爱在线成人免费视频播放| aaaaa片日本免费| 一本综合久久免费| 美女大奶头视频| 日本a在线网址| 欧美日韩亚洲国产一区二区在线观看| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 欧美性猛交╳xxx乱大交人| 久久这里只有精品19| 色播在线永久视频| 91成人精品电影| 久久精品国产亚洲av高清一级| 久久久国产成人精品二区| 在线十欧美十亚洲十日本专区| 久久久久久久午夜电影| 最新美女视频免费是黄的| 亚洲第一青青草原| 最近最新中文字幕大全电影3 | 欧美成人一区二区免费高清观看 | 午夜免费成人在线视频| 欧美激情高清一区二区三区| 少妇的丰满在线观看| 日本熟妇午夜| 久久婷婷人人爽人人干人人爱| 亚洲一码二码三码区别大吗| 老司机午夜十八禁免费视频| 国产熟女xx| 亚洲国产看品久久| 中国美女看黄片| 高潮久久久久久久久久久不卡| 精品国产亚洲在线| АⅤ资源中文在线天堂| 在线观看日韩欧美| 久久久久免费精品人妻一区二区 | 亚洲专区国产一区二区| 深夜精品福利| 黄色片一级片一级黄色片| 又黄又粗又硬又大视频| 日本 av在线| 精品欧美国产一区二区三| 亚洲av成人一区二区三| 搡老岳熟女国产| 中国美女看黄片| 国产激情欧美一区二区| 午夜福利18| av超薄肉色丝袜交足视频| 我的亚洲天堂| av天堂在线播放| 亚洲精华国产精华精| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 久久人妻福利社区极品人妻图片| www国产在线视频色| 午夜两性在线视频| 露出奶头的视频| 日本三级黄在线观看| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| www.精华液| 国产精品综合久久久久久久免费| 国产精品精品国产色婷婷| 高清在线国产一区| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 精品国产乱子伦一区二区三区| 97碰自拍视频| 中亚洲国语对白在线视频| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆 | 欧美色视频一区免费| 亚洲天堂国产精品一区在线| 大型黄色视频在线免费观看| 色播亚洲综合网| 波多野结衣巨乳人妻| 亚洲国产看品久久| 别揉我奶头~嗯~啊~动态视频| 女人爽到高潮嗷嗷叫在线视频| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 搡老熟女国产l中国老女人| 1024香蕉在线观看| 精品一区二区三区四区五区乱码| 亚洲最大成人中文| 日韩三级视频一区二区三区| 精品久久久久久成人av| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o| 国产熟女xx| 99在线人妻在线中文字幕| 在线观看66精品国产| 久久久精品欧美日韩精品| 九色国产91popny在线| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 久久久国产成人精品二区| 午夜视频精品福利| 18美女黄网站色大片免费观看| 亚洲av中文字字幕乱码综合 | 国产熟女午夜一区二区三区| 少妇熟女aⅴ在线视频| 成人亚洲精品一区在线观看| 久久国产精品人妻蜜桃| 亚洲国产精品999在线| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 后天国语完整版免费观看| 少妇粗大呻吟视频| 久久久精品国产亚洲av高清涩受| 国产成人欧美| 禁无遮挡网站| 妹子高潮喷水视频| 国产色视频综合| 不卡一级毛片| 麻豆成人午夜福利视频| ponron亚洲| 午夜激情福利司机影院| 村上凉子中文字幕在线| 精品久久蜜臀av无| 国产野战对白在线观看| 午夜老司机福利片| 老熟妇仑乱视频hdxx| tocl精华| 精品国产亚洲在线| 99riav亚洲国产免费| 国产乱人伦免费视频| 一夜夜www| 国产成+人综合+亚洲专区| 国产一区二区三区在线臀色熟女| 九色国产91popny在线| 一进一出好大好爽视频|