混凝土恒定圍壓下沖擊加載實(shí)驗(yàn)裝置研制
張磊,何 翔,王曉峰,孔德鋒
(總參工程兵科研三所,河南洛陽(yáng)471023)
摘要:研制可實(shí)現(xiàn)混凝土、巖石及土等非均勻材料恒定圍壓下軸向沖擊壓縮加載實(shí)驗(yàn)裝置,研究復(fù)雜應(yīng)力狀態(tài)下高應(yīng)變率力學(xué)性能。該裝置通過圍壓油缸及軸向油缸對(duì)試件施加靜水壓,利用大直徑分離式Hopkinson壓桿(SHPB)進(jìn)行軸向沖擊加載,測(cè)量恒定圍壓下材料動(dòng)態(tài)應(yīng)力-應(yīng)變曲線。該裝置具有沖擊加載前試件處于靜水壓狀態(tài)、軸向沖擊加載過程中試件圍壓保持恒定不變等優(yōu)點(diǎn)。結(jié)果表明,圍壓對(duì)混凝土材料動(dòng)態(tài)力學(xué)性能影響明顯。
關(guān)鍵詞:Hopkinson壓桿;圍壓;沖擊;動(dòng)態(tài)力學(xué)性能;混凝土
中圖分類號(hào):O347.4文獻(xiàn)標(biāo)志碼:A
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51175518)
收稿日期:2014-07-16修改稿收到日期:2014-11-06
Development of an impact loading test device for concrete under constant confining pressure
ZHANGLei,HEXiang,WANGXiao-feng,KONGDe-feng(The Third Engineering Scientific Research Institute, the Headquarters of the General Staff, Luoyang 471023, China)
Abstract:For detecting the mechanical property of high strain rate of concrete, rock, soil and other non-uniform materials under complex stress state, an experiment device to perform axial impact loading with constant confining pressure was exhibited. The hydrostatic pressure state of specimen was created by using the confining and axial oil cylinders. The axial impact loading on specimen was achieved with large diameter split Hopkinson bar (SHPB) and the dynamic stress-strain curves under constant confining pressure were presented. The advantages of the device are the specimen is under hydrostatic pressure state before applying the axial impact load; the confining pressure of specimen keeps constant during the axial impact loading process. The experiment results denote that the confining pressure has an obvious effect on the dynamic mechanical performance of concrete.
Key words:Hopkinson pressure bar; confine pressure; impact; dynamic mechanical property; concrete
工程結(jié)構(gòu)中混凝土材料往往處于復(fù)雜應(yīng)力狀態(tài),研究表明,混凝土具有明顯的壓力敏感性,即應(yīng)力狀態(tài)對(duì)力學(xué)性能有明顯影響,二向或三向受壓時(shí)其強(qiáng)度、韌性會(huì)顯著高于單向應(yīng)力狀態(tài)[1]。混凝土力學(xué)性能也具有明顯的應(yīng)變率效應(yīng),在承受地震、撞擊、彈丸侵徹及爆炸載荷等強(qiáng)動(dòng)載作用時(shí)會(huì)產(chǎn)生高速變形,力學(xué)性能與準(zhǔn)靜態(tài)差別較大[2-3]。目前混凝土準(zhǔn)靜態(tài)載荷作用的力學(xué)性能研究較成熟,單軸、常規(guī)三軸及真三軸等不同應(yīng)力狀態(tài)下強(qiáng)度、變形及本構(gòu)關(guān)系研究等均取得豐碩成果[4-5]。限于實(shí)驗(yàn)技術(shù),混凝土材料在高應(yīng)變率復(fù)雜應(yīng)力狀態(tài)下的力學(xué)性能研究較薄弱,已成為遏制發(fā)展瓶頸[6]。
混凝土高應(yīng)變率力學(xué)實(shí)驗(yàn)有分離式Hopkinson壓桿(SHPB)及氣炮平板撞擊兩種。其中SHPB只能進(jìn)行一維應(yīng)力狀態(tài)的沖擊加載,而平板撞擊實(shí)驗(yàn)為一維應(yīng)變狀態(tài),遠(yuǎn)不能滿足材料力學(xué)性能的充分認(rèn)識(shí)。為利用SHPB進(jìn)行三向應(yīng)力沖擊加載實(shí)驗(yàn),已發(fā)明被動(dòng)圍壓SHPB[7]、三軸SHPB[8]及主動(dòng)圍壓SHPB[9]等技術(shù)。其中主動(dòng)圍壓SHPB實(shí)驗(yàn)通過流體(水、油或空氣等)對(duì)試件施加靜態(tài)圍壓,利用SHPB對(duì)試件軸向沖擊加載。由于主動(dòng)圍壓實(shí)驗(yàn)可產(chǎn)生能調(diào)控的圍壓,便于研究材料復(fù)雜應(yīng)力狀態(tài)的力學(xué)性能,故在巖石[10]、水泥砂漿[11]及混凝土[12]動(dòng)力學(xué)性能研究中廣泛應(yīng)用。而主動(dòng)圍壓SHPB實(shí)驗(yàn)設(shè)備存在明顯不足,即①僅對(duì)試件徑向施加靜壓、軸向施加與徑向不同壓力,Ross等[13]均采用此種加載方式。該實(shí)驗(yàn)與準(zhǔn)靜態(tài)常規(guī)三軸實(shí)驗(yàn)中試件應(yīng)力狀態(tài)相差甚遠(yuǎn),較難真實(shí)反應(yīng)常規(guī)三軸應(yīng)力狀態(tài)下材料的沖擊動(dòng)力學(xué)性能。為解決此問題,李夕兵等[14]發(fā)明的動(dòng)靜組合加載巖石力學(xué)實(shí)驗(yàn)裝置,通過軸向油缸對(duì)試件施加軸向預(yù)應(yīng)力,實(shí)現(xiàn)常規(guī)三軸應(yīng)力狀態(tài)下的沖擊加載。該裝置分別采用兩路單獨(dú)液壓系統(tǒng)對(duì)圍壓、軸向油缸增壓,無(wú)法保證預(yù)加靜壓過程中試件所受圍壓與軸壓相等,仍無(wú)法滿足沖擊加載前試件處于靜水壓狀態(tài)。②主動(dòng)圍壓SHPB的圍壓油缸容積較小,沖擊過程中會(huì)產(chǎn)生圍壓波動(dòng)[15],會(huì)對(duì)實(shí)驗(yàn)結(jié)果產(chǎn)生明顯影響[16]。
因此,需對(duì)SHPB主動(dòng)圍壓實(shí)驗(yàn)設(shè)備進(jìn)行改進(jìn),以滿足沖擊加載前使試件處于靜水壓狀態(tài),并在軸向沖擊加載過程中試件所受圍壓能保持恒定,實(shí)現(xiàn)與準(zhǔn)靜態(tài)常規(guī)三軸實(shí)驗(yàn)類似的沖擊加載。
1常規(guī)三軸沖擊加載實(shí)驗(yàn)裝置組成及原理
本文研制的常規(guī)三軸沖擊加載實(shí)驗(yàn)裝置即主動(dòng)圍壓SHPB裝置,可實(shí)現(xiàn)靜水壓狀態(tài)下試件軸向沖擊壓縮加載。實(shí)驗(yàn)裝置示意圖見圖1,包括1.高壓氣炮,2.撞擊桿,3.入射桿夾持裝置(3-1.固定支座,3-2.碟簧,3-3.卡盤),4.入射桿,5.圍壓油缸,6.高壓油管,7.透射桿,8.吸收桿,9.吸收桿夾持裝置(9-1.卡盤,9-2.碟簧),10.軸向油缸,11.緩沖支座,12.均衡油缸,13.高壓溢流閥,14.泵站截止閥,15.電動(dòng)液壓泵,16.手動(dòng)加壓泵,17.軸向油缸截止閥,18.圍壓油缸截止閥。
圖1 常規(guī)三軸沖擊加載實(shí)驗(yàn)裝置示意圖 Fig.1 Scheme of the conventional tri-axial impact loading test device
1.1液壓系統(tǒng)
由于圍壓油缸容積遠(yuǎn)大于軸向油缸,若利用加壓泵及三通接頭直接為圍壓、軸向油缸泵油增壓,泵油時(shí)軸向油缸增壓遠(yuǎn)大于圍壓油缸,與靜態(tài)常規(guī)三軸實(shí)驗(yàn)試件處于靜水壓狀態(tài)顯著不同。為使預(yù)加靜水壓過程圍壓油缸內(nèi)壓力與軸向油缸時(shí)刻保持相等,在液壓系統(tǒng)中串聯(lián)一大容量均衡油缸,高壓油由手動(dòng)加壓泵傳輸至均衡油缸,再由均衡油缸同步增壓給圍壓油缸、軸向油缸,以減緩升壓速度,降低泵油中圍壓油缸與軸向油缸壓力差。而大容量均衡油缸可起蓄能器作用,減少油壓脈動(dòng),縮短液壓系統(tǒng)中壓力平衡時(shí)間[17]。
為平衡軸向油缸的水平推力并對(duì)試件產(chǎn)生軸向靜壓,在入射桿左端布設(shè)入射桿夾持裝置,通過卡盤、碟簧與固定支座相連,見圖2。由于軸向油缸活塞桿直徑、吸收桿、透射桿及試件直徑均100 mm,試件所受軸向壓力與軸向油缸內(nèi)壓力相同,均等于試件圍壓。使實(shí)驗(yàn)前試件處于給定壓力的靜水壓狀態(tài),撞擊桿軸向撞擊入射桿產(chǎn)生入射應(yīng)力波對(duì)試件沖擊加載。軸向沖擊加載時(shí)軸向油缸會(huì)因承受較大沖擊載荷損壞。設(shè)計(jì)中可用措施保護(hù)軸向油缸,即①在軸向油缸的高壓油管中設(shè)置高速溢流閥,當(dāng)軸向沖擊荷載以應(yīng)力波形式傳播到軸向油缸活塞桿時(shí),軸向油缸內(nèi)壓力增加可通過溢流閥快速卸載;②吸收桿靠近軸向油缸端設(shè)有透射桿夾持裝置,其卡盤與軸向油缸缸體間預(yù)留少許間隙吸收桿向右運(yùn)動(dòng)時(shí)卡盤會(huì)與缸體接觸,沖擊載荷通過缸體傳遞給緩沖支座,見圖3。
圖2 入射桿夾持裝置Fig.2Clampdeviceofincidentbar圖3 透射桿夾持裝置Fig.3Clampdeviceoftransmittedbar
1.2圍壓油缸
常規(guī)三軸沖擊加載實(shí)驗(yàn)要求軸向沖擊中圍壓保持不變,而引起圍壓增加的主要原因?yàn)樵嚰w積變化[18]。因此圍壓油缸容積應(yīng)足夠大以減小沖擊過程圍壓增加。圍壓油缸設(shè)計(jì)有效容積V0為100倍試件初始體積,設(shè)試件為線彈性響應(yīng),沖擊加載中因試件體積變化引起的圍壓增加Δp與試件軸向應(yīng)力σ1關(guān)系為
(1)
式中:E,ν分別為試件材料楊氏模量、泊松比;AL為試件初始體積,V0為加載前液壓油容積;K為液壓油體積模量。各參數(shù)值為:E=40 GPa,ν=0.25,V0/AL=100,K=1.8 GPa,得Δp/σ1=2.27×10-4,由此可認(rèn)為沖擊加載過程中圍壓保持恒定。
圍壓裝置最高工作壓力為30 MPa。為能對(duì)試件施加圍壓并防止液壓油滲入試件與波導(dǎo)桿接觸面,設(shè)計(jì)長(zhǎng)度大于試件的耐油橡膠套,兩端套在波導(dǎo)桿端部,試件安裝于橡膠套中部。通過可精確調(diào)節(jié)的6組定位螺桿及高強(qiáng)鋼定位套環(huán)調(diào)節(jié)、固定試件位置,定位套環(huán)壁有多個(gè)螺孔,圍壓缸內(nèi)液壓油通過螺孔滲入對(duì)耐油橡膠套施加徑向壓力。圍壓油缸內(nèi)部實(shí)物見圖4,定位螺桿、金屬定位套及橡膠套已安裝定位。圍壓缸內(nèi)部構(gòu)造見圖5,其中2為圍壓缸體,3為定位螺桿,4為金屬定位套,5為耐油橡膠套。
圖4 圍壓油缸照片F(xiàn)ig.4Photoofconfinepressureoilcylinder圖5 圍壓油缸構(gòu)造圖Fig.5Structuraldrawingofconfinepressureoilcylinder
2實(shí)驗(yàn)過程
恒定圍壓SHPB實(shí)驗(yàn)主要過程為:①調(diào)節(jié)定位螺釘使試件定位支撐套與波導(dǎo)桿同軸;②裝配試件,擠緊入射桿、試件及透射桿,安裝并密封圍壓油缸端蓋;③打開電動(dòng)泵站、軸向油缸及圍壓缸截止閥,打開電動(dòng)泵站電機(jī)給整個(gè)油路泵油至圍壓缸排氣孔出油為止。關(guān)閉電機(jī)、泵站截止閥,調(diào)整溢流閥壓力閾值為設(shè)定的圍壓值或略高;④通過手動(dòng)加壓泵給均衡油缸增壓,利用均衡油缸同步給圍壓缸、軸向油缸增壓至所需圍壓。⑤打開氣炮控制閥進(jìn)行沖擊實(shí)驗(yàn)并采集實(shí)驗(yàn)數(shù)據(jù)。
3實(shí)驗(yàn)結(jié)果
利用研制的常規(guī)三軸沖擊加載實(shí)驗(yàn)裝置進(jìn)行C60混凝土材料在圍壓5 MPa、15 MPa及20 MPa下沖擊實(shí)驗(yàn)。為減小波的彌散及入射桿上安裝卡盤對(duì)桿中應(yīng)力波形影響,采用波形整形器。
(2)
式中:E,C0,A0為波導(dǎo)桿楊氏模量、彈性波速及橫截面積;AS,ls為試件橫截面積、長(zhǎng)度;εi(t),εt(t)為波導(dǎo)桿入射應(yīng)變波及透射應(yīng)變波。
圖6 壓桿應(yīng)力波形 Fig.6 Stress wave profiles in pressure bars
C60混凝土在20 m/s撞擊速度、不同圍壓下應(yīng)力-應(yīng)變曲線見圖7,其中圍壓0 MPa即單軸SHPB實(shí)驗(yàn)。結(jié)果表明,圍壓對(duì)混凝土應(yīng)力-應(yīng)變曲線影響明顯。單軸時(shí)材料破壞特征為典型脆性破壞,峰值應(yīng)力前塑性變形較小,之后材料內(nèi)部裂紋快速失穩(wěn)擴(kuò)展貫通導(dǎo)致試件破碎,具有明顯的應(yīng)變軟化現(xiàn)象。而圍壓沖擊實(shí)驗(yàn)中,圍壓能限制試件裂紋擴(kuò)展,使材料進(jìn)入屈服后具有一定強(qiáng)化特征,材料強(qiáng)度、韌性均較單軸提高明顯。
圍壓15 MPa時(shí)圍壓油缸內(nèi)油壓時(shí)程曲線見圖8,在整個(gè)沖擊加載過程中,圍壓波動(dòng)幅度小于0.01 MPa,能滿足沖擊加載的圍壓恒定要求。
為顯示圍壓對(duì)混凝土強(qiáng)度影響,定義圍壓增長(zhǎng)因子CIF(Confinement Increase Factor)為
圖7 不同圍壓下應(yīng)力-應(yīng)變曲線Fig.7Strainpulsesofpressurebar圖8 圍壓波形Fig.8Confinepressurepulse圖9 CIF擬合結(jié)果與實(shí)驗(yàn)結(jié)果Fig.9CIFpredictionandexperimentresult
CIF=σ1/fcd
(3)
式中:σ1為圍壓下抗壓強(qiáng)度;fcd為相同應(yīng)變率下單軸壓縮時(shí)材料抗壓強(qiáng)度。
實(shí)驗(yàn)結(jié)果表明,CIF與無(wú)量綱圍壓σ3/fcd之間能近似滿足線性關(guān)系,因此采用線性函數(shù)對(duì)不同應(yīng)變率下CIF進(jìn)行擬合,即
CIF=1+a(σ3/fcd)
(4)
式中:a為擬合系數(shù),反應(yīng)圍壓大小對(duì)材料軸向抗壓強(qiáng)度的增加程度,且隨應(yīng)變率增高而降低。
式(4)預(yù)測(cè)結(jié)果與實(shí)驗(yàn)值對(duì)比見圖9,可見兩者能較好吻合。
4結(jié)論
介紹常規(guī)三軸沖擊加載實(shí)驗(yàn)裝置研制過程,利用該裝置進(jìn)行不同圍壓下混凝土材料動(dòng)力學(xué)性能實(shí)驗(yàn)研究,結(jié)論如下:
(1)利用大容量均衡油缸為圍壓油缸及均衡油缸同步增壓,能滿足沖擊加載前試件處于靜水壓狀態(tài);大容量油缸能消除沖擊過程中圍壓波動(dòng)。實(shí)驗(yàn)中圍壓基本恒定,滿足常規(guī)三軸實(shí)驗(yàn)條件,能獲得恒定圍壓下軸向應(yīng)力-應(yīng)變關(guān)系。
(2)混凝土動(dòng)力學(xué)性能受圍壓影響明顯,圍壓增高,材料強(qiáng)度、韌性明顯增加。所建動(dòng)態(tài)CIF經(jīng)驗(yàn)公式的擬合系數(shù)a隨應(yīng)變率增高而降低,即圍壓對(duì)混凝土軸向抗壓強(qiáng)度的增加效應(yīng)隨應(yīng)變率增加而降低。
參考文獻(xiàn)
[1]ChenW F, Saleeb A F. Constitutive equations for engineering materials, elasticity and modeling(Vol.1)[M]. New Jersey:John Wiley & Sons Inc. 1982.
[2]Malvern L E, Jenkins D A, Tang T X, et al. Dynamic compressive testing of concrete[C]//CA ross and PY thompson, proceedings of 2nd symposium on the interaction of non-nuclear munitions with structures[A]. Florida: US Department of Defense,1985:194-199.
[3]梁磊,顧強(qiáng)康,原璐.AFRP約束混凝土多次沖擊試驗(yàn)研究[J].振動(dòng)與沖擊,2013,32(5):90-95.
LIANG Lei, GU Qiang-kang, YUAN Lu. Experimental research on AFRP confined concrete under repeated impact [J].Journal of Vibration and Shock,2013,32(5):90-95.
[4]Mansur M A, Chin M S, Wee T H. Stress-strain relationship of high-strength fiber concrete in compression [J]. Journal of Materials, 1999, 11(1): 21-29.
[5]武建華,于海洋,李強(qiáng),等. 定圍壓比作用下混凝土軸向受壓性能試驗(yàn)研究[J]. 實(shí)驗(yàn)力學(xué),2007, 22(2):142-148.
WU Jian-hua,YU Hai-xiang,LI Qiang, et al. Experimental study on axial property for concrete with constant surrounding pressure ratio[J]. Journal of Experimental Mechnaic,2007, 22(2):142-148.
[6]Yu Mao-hong. Advances in strength theories for materials under complex stress state in the 20thcentury [J]. Appl. Mech., 2002, 55(3):169-218.
[7]Gong J C, Malvern L E. Passively confined tests of axial dynamical compressive strength of concrete [J]. Experimental Mechanics, 1990, 30(3):55-59.
[8]Albertini C, Cadoni E, Labibes K. Study of the mechanical properties of plain concrete under dynamic loading [J]. Experimental Mechanics, 1999, 39(2): 137-141.
[9]Christensen R J, Swanson S R, Brown W S. Split-Hopkinson-bar tests on rock under confining pressure [J]. Experimental Mechanics, 1972, 12(11): 508-513.
[10]呂曉聰,許金余,葛洪海.圍壓對(duì)砂巖動(dòng)態(tài)沖擊力學(xué)性能的影響[J].巖石力學(xué)與工程學(xué)報(bào), 2010, 29(1):193-201.
Lü Xiao-cong, XU Jin-yu, GE Hong-hai. Effects of confining pressure on mechanical behaviors of sandstone under dynamic impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1):193-201.
[11]薛志剛,胡時(shí)勝.水泥砂漿在圍壓下的動(dòng)態(tài)力學(xué)性能[J].工程力學(xué),2008,25(12):184-188.
XUE Zhi-gang,HU Shi-sheng.Dynamic behavior of cement mortar under confining pressure [J].Engineering Mechanics, 2008,25(12):184-188.
[12]Schmidt M J. High pressure and high strain rate behavior of cementations materials experiments and elastic/visco-plastic modeling [D]. Florida: University of Florida, 2003.
[13]Ross C A,Schmidt M J. The interaction of kinetic energy penetration with geomaterials and concrete[R]. AFRL-SR-BL-TR-99-0033,Florida: University of Florida, 1999.
[14]李夕兵,周子龍,鄧義芳,等. 動(dòng)靜組合加載巖石力學(xué)實(shí)驗(yàn)方法與裝置[P]. 中國(guó),200510032031,2006-02-08.
[15]Malvern L E, Jenkins D A. Dynamic testing of laterally confined concrete[R]. AD-A242 317, Florida: Engineering Research Division, 1989.
[16]Gerard G, Bailly P. Behavior of quasi-brittle material at high strain rate, experiment and modeling [J]. Eur. J. Mech. A/ Solids, 1998, 17(3): 403-420.
[17]王佳,傅連東,袁昌耀,等.蓄能器在AGC液壓系統(tǒng)中吸收液壓沖擊的研究[J]. 液壓與氣動(dòng),2009(6):17-19.
WANG Jia,F(xiàn)U Lian-dong, YUAN Chang-yao, et al. Research on hydraulic accumulator absorbing pressure pulsation in the AGC hydraulic system[J].Chinese Hydraulics and Pneumatics, 2009(6):17-19.
[18]Chen W, Lu F. A Technique for dynamic proportional multiaxial compression on soft materials [J]. Experimental Mechanics, 2000, 40(2):226-230.
第一作者胡均平男,教授,博士生導(dǎo)師,1964年7月生