• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Describing failure in geomaterials using second-order work approach

    2015-12-31 09:05:37
    Water Science and Engineering 2015年2期

    * Corresponding author.

    ?

    Describing failure in geomaterials using second-order work approach

    Fran?ois Nicota,*,Felix Darveba

    aInstitut de Recherche en Sciences et Technologies de l'Environnement et de l'Agriculture (IRSTEA),Erosion Torrentielle Neige et Avalanches (ETNA)-Geomechanics Group,Grenoble 38402,France

    bUniversite Joseph Fourier (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS),Laboratoire Sols,Solides,Structures et Risques,Grenoble 38041,France

    Received 13 March 2015; accepted 30 March 2015 Available online 12 May 2015

    * Corresponding author.

    Abstract

    Geomaterials are known to be non-associated materials.Granular soils therefore exhibit a variety of failure modes,with diffuse or localized kinematical patterns.In fact,the notion of failure itself can be confusing with regard to granular soils,because it is not associated with an obvious phenomenology.In this study,we built a proper framework,using the second-order work theory,to describe some failure modes in geomaterials based on energy conservation.The occurrence of failure is defined by an abrupt increase in kinetic energy.The increase in kinetic energy from an equilibrium state,under incremental loading,is shown to be equal to the difference between the external second-order work,involving the external loading parameters,and the internal second-order work,involving the constitutive properties of the material.When a stress limit state is reached,a certain stress component passes through a maximum value and then may decrease.Under such a condition,if a certain additional external loading is applied,the system fails,sharply increasing the strain rate.The internal stress is no longer able to balance the external stress,leading to a dynamic response of the specimen.As an illustration,the theoretical framework was applied to the well-known undrained triaxial test for loose soils.The influence of the loading control mode was clearly highlighted.It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory.When the plastic limit condition is met,the internal second-order work is nil.A class of incremental external loadings causes the kinetic energy to increase dramatically,leading to the sudden collapse of the specimen,as observed in laboratory.?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Failure in geomaterials; Undrained triaxial loading path; Second-order work; Kinetic energy; Plastic limit condition; Control parameter

    E-mail address: francois.nicot@irstea.fr (Fran?ois Nicot).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.05.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The notion of failure can be encountered in many fields,irrespective of the scale considered.This notion is essential in material sciences where the failure can be investigated on the specimen scale (the material point).It is also meaningful in civil engineering with regard to preventing or to predicting the occurrence of failure on a large scale.

    Ifthedefinitionoffailureseemsmeaningfulinsomecases,at least from a phenomenological point of view,this is not always true,particularly,when considering heterogeneous materials.With regard to a granular assembly on a microscopic scale,failure might be related to the contact opening between initially contacting grains.However,the kinematic investigation of granular materials,along any given loading path,reveals that a large fraction of the contacts open without any visible failure patternobservedonthemacroscopicscale.Thus,theusualview of failure as the breakage of a given material body into two piecescannot beappliedtocomplex,dividedmaterialsmadeup ofanassemblyofelementaryparticlesorsub-systemsdescribed as approximately non-breakable.

    For this reason,a mathematical definition of failure has emerged for solid materials.This definition was progressively built upon the plasticity theory,and developed early in the20th century in the field of metallic materials.Failure means that the external stress applied cannot be increased,and that finite strains may develop and progress in a constant stress state.

    For rate-independent materials,before failure occurrence along a given loading path,a unique strain state exists under a given external stress applied to the materials.This mathematical definition,applied to the case of a material point,leads to the following equations:

    where s is the Cauchy stress tensor,D is the strain rate tensor,and N0is the tangent stiffness operator.The constitutive behavior for this material point is defined by the incremental constitutive relationbetween the strain rate and a suitable objective time derivative of the Cauchy stress expressed with two six-component vectors D and s (Darve,1990; Wan et al.,2011),which requires that

    Eq.(2)is the failure criterion,and the equationcorresponds to the associated failure rule.The failure rule gives the strain rate in different directions once failure has occurred.It should be emphasized that the magnitude of the strain rate remains unknown,and only the direction is determined,in accordance with the kernel of the tangent stiffness operator N′.

    Basically,the plastic surface splits the stress space into two parts: the inner part and outer part.The inner part (plastic domain)includes the stress states that can be reached by the materials.The stress states located on the plastic surface are therefore referred to as the stress limit states.The classical theory states that failure occurs in a given stress state which is located on the plastic surface.According to this theory,no failure mode is expected to occur in a mechanical state inside the plastic surface.

    One famous counter-example is the liquefaction of loose sands along axisymmetric isochoric triaxial paths (Castro,1969; Lade,1992; Darve,1990).During this test,the volume of the specimen is kept constant (isochoric conditions),and a constant axial displacement rate is imposed.This experiment shows that the curve giving the changes in the deviatoric stress q,defined as the difference between the axial stress s1and the lateral stress s3,against the mean effective pressure p0passes through a maximum value,as shown in Fig.1.If the test is strain-controlled by an imposed constant axial strain rate,the test can be pursued beyond the deviatoric stress peak until the collapse of the specimen: both the deviatoric stress q and the mean effective pressure p0decrease and tend toward zero.This is the well-known liquefaction phenomenon.Otherwise,when the deviatoric stress peak is reached,if an infinitesimal axial load is added,i.e.,the strain control is replaced with a stress control,then a sudden failure occurs.Clearly,such experimental evidence evokes the notion of failure.According to the classical theory,the fact that the deviatoric stress peak (point P in Fig.1)remains strictly inside the plastic domain means that no failure is supposed to occur at this point.However,the experiment shows that a proper loading control (namely,a stress control)can cause a sudden failure,leading to the collapse of the specimen.

    Fig.1.Typical undrained triaxial behavior of loose sands.

    As a consequence,the classic theory is not general enough,and a variety of failure modes may finally occur strictly within the plastic surface.Plastic failure,detected by Eq.(2),is a particular failure mode.Other failure modes may be encountered as well before the plastic limit is reached (such as the failure mode occurring at point P in Fig.1).The detection of these failure modes requires a novel framework,which should lead to a different criterion from that given in Eq.(2).

    Before proceeding with a description of the novel framework's construction,we have to propose a clear definition of failure based on phenomenological arguments.The weakness of the classical theory lies in the fact that it is not based on a physical definition of failure,but rather on a mathematical concept of the stress limit state.The approach presented in this paper allows the recovery of the notion of a limit state in a broader way,as a consequence of the theory,but not as a basic definition.

    As far as non-viscous materials are concerned,we conceive that failure is related to a transition from a quasistatic regime toward a dynamic regime,giving rise to a sudden acceleration of the material points: the kinetic energy of the system evolves from a nil value to a strictly positive one.Thus,the failure is not a state,but a transition (bifurcation)from a quasistatic regime with a nil value of kinetic energy toward a dynamic regime with a non-zero value of kinetic energy.The failure occurs in a given mechanical state,which will be described as being potentially unstable: an increase in kinetic energy may take place under the loading conditions (Nicot et al.,2009,2012).

    In conclusion,the following definition around the notion of failure can be proposed: a material point in a given mechanical (stressestrain)state after a given loading history is described as being mechanically unstable as loading conditions lead to a bifurcation from a quasistatic regime toward a dynamic regime.This transition corresponds to a failure mode of the material.

    2.Second-order work theory

    2.1.Formulation on a large scale

    An attempt at definition of failure was made in the previous section,asitrelatedtoatransition(bifurcation)fromaquasistatic regimetowardadynamicregime.Inwhatfollows,weinvestigate the conditions in which the kinetic energy of a non-viscous material system,in equilibrium at a given time,may increase.

    For this purpose,a system made up of a given material,with a volume V0and a surface boundary S0,initially in a configuration C0(reference configuration),is considered.With a loading history,the system is in a strained configuration C,with a volume V and a surface boundary S,in equilibrium under a prescribed external load.Each material point in the volume V0is transformed into a material point in the volume V (Fig.2).All the material points in the volume V0are displaced,along with the deformation of their geometrical properties,including the surface vector,area,and volume.During this transformation,the material is likely to undergo rigid body motion,along with pure strain induced by stretching and spinning deformations.If large amounts of strain take place,both the initial configuration C0and current configuration C cannot be confused.

    We introduce the transformation c relating each material point x of the current configuration C to the corresponding material point X of the initial configurationThe continuity of the material ensures that c is bijective.By means of the transformation,any field ~geXT of the initial position X can be transformed into the field g(x)of the current position,with

    As c is bijective,the Jacobian determinant J of the tangent lineartransformation~F,withisstrictlypositive.~F isafunctionofthepositionX.Thedisplacementfields~ueXTatthe materialpoint in the initialconfiguration and u(x)at the material point in the current configuration are defined by the relationThus,is the Kronecher symbol.

    The kinetic energy of the system of configuration C,in equilibrium at time t,is given by the energy conservation equation expressed in the rate form: where _Ecrepresents the kinetic energy rate of the system.It is convenient to express the integrals in Eq.(3)with respect to the initial configuration by using the transformation c.Recalling thatand using Nanson's formula,which relates the current surface vector ndS to the corresponding surface vector n0dS0in the initial configuration,Eq.(3)is written as follows: which yields,after some transformations (Nicot and Darve,2007),the following:

    S0V0 where P denotes the Piola-Kirchoff stress tensor of the first kind,and

    The advantage of the formulation given in Eq.(5)is that all integrals are written with respect to a fixed domain.Thus,differentiation of Eq.(5)gives,after simplification (Nicot and Darve,2007; Nicot et al.,2007),the following: where s?P,n0denotes the stress distribution applied to the initial (reference)configuration.Furthermore,for any time increment Dt,the second-order Taylor expansion of the kinetic energy reads

    Combining Eqs.(6)and (8),and ignoring the o(Dt)term,finally yieldEq.(9)introduces explicitly the so-called internal secondorder work that is expressed through a semi-Lagrangian formalism as follows (Hill,1958):

    Fig.2.Transformation of a material system and surface vectors of initial and current configurations.

    The terminology of the internal second-order work is justified by the fact that Eq.(10)introduces the internal stress and strain variables P and~F.The first termon the right-hand side of Eq.(9)involves both stresses and displacements acting on the boundary of volume V0.This secondorder boundary term is therefore an external second-order work,and will be denoted hereafter as

    Thus,for the system in an equilibrium configuration at time t,Eq.(9)indicates that the increase in the kinetic energy of the system,over a small time range from t to ttDt,can be obtained by

    In particular,when the internal second-order work is nil,any loading condition,such thatensures thatan outburst in kinetic energy is expected.As an illustration,examples will be given in sections 3 and 4.2.2.Formulation on a small scale

    The particularization of this theoretical framework to the case of homogeneous material specimens is worth mentioning,because it corresponds to the laboratory specimen scale.Parallelepiped-like specimens subjected to a prescribed force or displacement on each side surface,directing both stress and strain fields,are examined.Investigating this elementary scale can be useful in the interpretation of the derived experimental results.Material specimens are considered homogeneous when both strain and stress fields are macro-homogeneous,in the sense given by Hill (1967): the external forces applied to the boundary of the specimen are derived from the average stress tensor,and the displacements of each point on the boundary are derived from the average strain tensor.When such conditions are met,the homogenous specimen is also referred to as a representative element volume (REV).

    Strictly speaking,a homogeneous specimen is not a material point,but actually a structural system with boundary conditions.As an illustration regarding granular materials,we can mention the fluctuating motion of grains that may exist even though the boundary conditions are kept constant.On average,over the whole specimen,the mechanical imbalance of grains is nil,but locally it is not nil.However,thanks to the macro-homogeneity,both strain and stress states are fully characterized by forces and displacements measured on the boundary.

    Let a parallelepiped specimen be considered.Each side face i (i?1,2,3)admits a normal vector Nithat coincides with the direction of velocity viof a fixed reference frame.The initial area of face i is denoted by Ai,and the initial length of the corresponding side is denoted by Li,as shown in Fig.3.The subscript 1 refers to the axial direction,whereas the subscripts 2 and 3 refer to the two lateral directions perpendicular to the axial direction (Fig.3).When a static condition is assigned to face i,it is convenient to introduce a resultant external force fiacting on this face,which is set to be normal to the face considered.The uniform external Lagrangian stress vector distributionacting on face i related to fiis also introducedThe displacement of each side face i,along the direction xi,is denoted by Ui.No tangential displacement is assumed to take place.When a kinematic condition is assigned to face i,the resultant external force fi(orthe stress distribution s0i)acting on this side corresponds to the external loading that must be applied to produce the prescribed displacement Ui.

    In these conditions,the displacement ~u of any point (x1,x2,x3)is

    Fig.3.Parallelepiped specimen and definition of axes.

    Then,we have,under homogeneous conditions,Finally,combining Eqs.(11),(14),and (15)leads to

    Eq.(16)indicates that the increase in kinetic energy,from an equilibrium state,is basically related to the imbalance between the external force rate and the internal stress rate.The side face i of the specimen is subjected to the force rateon the external side,and to the force ratedirected by the internal stress,on its internal side.When a mechanical state is reached,in the continuum mechanics sense,imbalances may exist locally,but on average,the equilibrium state is reached; the external force rate equals the internal stress rate,i.e.,on face i.In this case,we verify,according to Eq.(16),that the kinetic energy of the system does not evolve.

    It is essential to distinguish displacements and forces acting on the boundary of the specimen,with strain and stress acting within the specimen.During a quasistatic evolution of the specimen,along successive equilibrium states,the internal stress tensors within the specimen derived from internal forces applied to the sides are balanced with the external forces.This is sound until the specimen fails: if inertial effects take place,and the external stress is not balanced by the internal stress,a heterogeneous strain field may develop within the specimen.

    3.Interpretation of diffuse failure along undrained triaxial loading paths

    A homogeneous,parallelepiped specimen is considered throughout this section (Fig.3).The loading applied to the side face i of this specimen is supposed to occur in the normal direction.Each face i is subjected to a displacement Uialong the normal vector Ni,and the resultant force fiis also oriented along Ni.Neither tangential force nor shear strain is directed on the face.The Piola-Kirchoff stress tensor P is therefore diagonal.The same holds for the tensor_~F,which contains only diagonal terms,i.e.,Thus,it is convenient to replace the componentsandof diagonal tensorsandwith components,respectively,such that?,and

    In the axisymmetric undrained triaxial test,both the axial displacement rate (_U1>0)and the volume of the specimen are keptconstant.Thecurrentvolumerate_V isgivenbytheintegralUsing the relationtogether with the second Green formula,finally yields the following:

    where S0is the surface boundary of the parallelepiped specimen.Axisymmetric conditions with respect to axial direction mean that U2/L2?U3/L3and P2?P3(or f2/A2?f3/A3).Noting that A2?L1L3and A3?L1L2,the relation U2/L2? U3/L3is equivalent to U2A2?U3A3,so that

    Thus,the isochoric condition reads as follows:

    The experimental curve from the undrained triaxial test,as shown in Fig.4,giving the evolution of the internal deviatoric stress (qP?P1P3)versus the axial displacement,passes through a peak for sufficiently loose specimens,where point P shows the peak qP,and point M is in the softening regime.This is reported in abundant literature (Castro,1969; Lade and Pradel,1990; Lade,1992; Biarez and Hicher,1994; Chu et al.,2003).With a strain loading control (_U1>0 and _V?0),the response of the specimen follows a quasistatic evolution,passing through a succession of equilibrium states: Pi?fi/Ai.The curve in Fig.4 can be given in terms of the external deviatoric force qf?f1/A1f3/A3.

    Let us focus on the deviatoric stress peak (point P).At this equilibrium point,the internal stress leads to axial stressbP1and lateral stressbP3on the boundary of the specimen,where the superscript ^ represents the peak value.Now,let us imagine that an additional small amount of deviatoric loading Dqfis applied to the specimen at time t,over a time range Dt: _qf?Dqf=Dt.This loading causes the system to evolve in such a way that _U1>0.Under such a condition,the internal deviatoric stress qPcannot exceed the peak valuePrecisely at the peak,

    As _V?0,then 2A3_U3?A1_U1.Eq.(16)becomes

    which yields,as _qP?0,the following:

    Fig.4.Internal deviatoric stress versus axial displacement obtained from undrained triaxial test.

    At time t,the system is at rest,with Ec(t)?0.Thus,Ec(ttDt)is strictly positive.At the peak of qP,under the effect of an additional deviatoric loading Dqf,the specimen's kinetic energy increases from zero to a strictly positive value DqfA1_U1Dt=2 over the time interval [t,ttDt].The failure mechanism of the specimen is initiated at the same time that the internal second-order work vanishes.In fact,the internal deviatoric stress qPwithin the specimen no longer balances the external deviatoric force qf: qfincreases fromto t Dqf,whereas qPfollows a constitutive path and decreases from the peak valuealong the descending branch.The unbalanced stress causes the dynamic response of the specimen,characterized by a strictly positive value of Ec(ttDt)in Eq.(21).This is exactly what is observed experimentally (Castro,1969; Lade and Pradel,1990; Lade,1992; Chu et al.,2003; Darve et al.,2004)and numerically when using a discrete element method (Sibille et al.,2008; Darve et al.,2007).

    4.Plastic limit state and second-order work theory

    The plastic surface corresponds to a set of limit states within the stress space.Whatever loading path is considered,the stress state cannot overpass the plastic surface.Let us consider a drained triaxial loading path.A constant axial displacement rate _U1is prescribed,along with a constant lateral force (f2?f3).For dense specimens,the curve from drained triaxial test,as shown in Fig.5,giving the evolution of f1(or P1?f1/A1)versus U1,passes through a peak,and then tends toward a plateau.Using this loading mode,the response of the specimen follows a quasistatic evolution.Thus,the external forces applied to each face are balanced by the internal stresses: fi?PiAi.Using this loading mode,the axial response of the specimen can be analyzed either in terms of the external force f1or in terms of the internal stress P1.Before the peak,along the ascending branch,the internal second-order work can be expressed as and is therefore strictly positive.

    Fig.5.Axial stress versus axial displacement obtained from drained triaxial test.

    Let us focus on the axial stress peak (point P).At this point,an external axial forcebf1is applied to the specimen,while the lateral force (f2?f3)is kept constant.Now,let us imagine that an additionalsmall amount of axial loading Df1is applied to the

    specimen at time t,over a time range Dt:_ f1?Df1=Dt.This loading causes the system to evolve,in a way such that _U1>0.Under such a condition,the internal axial stress P1cannot exceed the peak valuebP1?bf1=A1.Precisely at the peak,_P1?0.As a consequence,Eq.(16)yields the following:

    Finally,

    At time t,the system is at rest,with Ec(t)?0.Thus,Ec(ttDt)is strictly positive.The specimen's kinetic energy increases from zero to a positive value Df1_U1Dt=2 over the time interval [t,ttDt].The internal axial stress P1within the specimen no longer balances the external axial force f1: with the increase of f1,P1follows a constitutive path and decreases frombP1along the descending branch.The unbalanced axial stress is responsible for the dynamic response of the specimen,characterized by a strictly positive value of Ec(ttDt)in Eq.(23).

    Moreover,the failure mechanism of the specimen is initiated when the plastic limit state is reached,withthe internal second-order work is therefore nil.

    Thus,the plastic limit theory appears to be a special situation of a more general second-order work theory.Failure can occur when the plastic limit condition is met.This situation is properly described by the second-order work theory (Darve et al.,2004; Nicot et al.,2009).However,this theory states that failure modes also exist and can be encountered before the plastic limit is reached.The test along the undrained triaxial loading path illustrates this situation perfectly well.Recalling that

    5.Closing remarks

    This paper has investigated the issue of failure in rateindependent materials.Basically,the occurrence of failure is defined by an abrupt increase in kinetic energy.Starting from this physical evidence,the approach developed in this paper is based on energy conservation,leading to a basic equation that introduces both external and internal second-order works.The increase in kinetic energy from an equilibrium state,under incremental loading,is shown to be equal to the difference between the external second-order work,involving the external loading parameters,and the internal second-order work,involving the constitutive properties of the material.The purpose of this study was to investigate how the externalsecond-order work can be greater than the internal secondorder work,leading to an increase in kinetic energy.The mechanical reason for this involves a distinction between the internal stress within the material and forces or stresses applied to the boundary of the system.When a stress limit state is reached,a certain stress component passes through a maximum value and then may decrease.This feature corresponds to a vanishing or a negative value of the internal second-order work.At this point,or along the descending branch,if a certain additional external loading is applied,the system fails,sharply increasing the strain rates.The internal stress no longer balances the external stress,leading to a dynamic response of the specimen.

    This theoretical framework was applied to the well-known undrained triaxial test for loose soils.Although the sudden collapse observed after the deviatoric stress peak remains unclarified by the classic theory for the plastic limit state,the second-order work theory is able to describe such an event perfectly.In addition,the plastic limit theory appears to be a particular case of this more general second-order work theory.When the plastic limit condition is met,the internal secondorder work is nil.Thus,a class of incremental external loadings exists that causes the kinetic energy to increase dramatically.

    Acknowledgements

    The authors would like to express their sincere thanks to the French Research Network MeGe (Multiscale and Multiphysics Couplings in Geo-environmental Mechanics GDR CNRS 3176/2340,2008e2015)for having supported this work.

    References

    Biarez,J.,Hicher,P.Y.,1994.Elementary Mechanics of Soil Behaviour,Saturated Remoulded Soils.A.A.Balkema,Rotterdam.

    Castro,G.,1969.Liquefaction of sands.In: Harvard Soil Mechanics Series,81.Harvard University Press,Cambridge.

    Chu,J.,Leroueil,S.,Leong,W.K.,2003.Unstable behavior of sand and its implication for slope instability.Can.Geotech.J.40(5),873e885.

    Darve,F.,1990.The expression of rheological laws in incremental form and the main classes of constitutive equations.In: Darve,F.,ed.,Geomaterials Constitutive Equations and Modelling.Elsevier,Amsterdam,pp.123e148.

    Darve,F.,Servant,G.,Laouafa,F.,Khoa,H.D.V.,2004.Failure in geomaterials,continuous and discrete analyses.Comput.Fail.Mech.Geomater.193(27e29),3057e3085.http://dx.doi.org/10.1016/j.cma.2003.11.011.

    Darve,F.,Sibille,L.,Daouadji,A.,Nicot,F.,2007.Bifurcations in granular media: macro- and micro-mechanics approaches.Comptes Rendus Mecanique 335(9e10),496e515.http://dx.doi.org/10.1016/j.crme.2007.08.005.

    Hill,R.,1958.A general theory of uniqueness and stability in elastic-plastic solids.J.Mech.Phys.Solids 6(3),236e249.http://dx.doi.org/10.1016/0022-5096(58)90029-2.

    Hill,R.,1967.The essential structure of constitutive laws for metal composites and polycrystals.J.Mech.Phys.Solids 15(2),79e95.http://dx.doi.org/10.1016/0022-5096(67)90018-X.

    Lade,P.V.,Pradel,D.,1990.Instability and flow of granular materials,I: Experimental observations.J.Eng.Mech.116(11),2532e2550.

    Lade,P.V.,1992.Static instability and liquefaction of loose fine sandy slopes.J.Geotech.Eng.118(1),51e71.http://dx.doi.org/10.1061/(ASCE)0733-9410(1992)118:1(51).

    Nicot,F.,Darve,F.,2007.A micro-mechanical investigation of bifurcation in granular materials.Int.J.Solids Struct.44(20),6630e6652.http://dx.doi.org/10.1016/j.ijsolstr.2007.03.002.

    Nicot,F.,Darve,F.,Khoa,H.D.V.,2007.Bifurcation and second-order work in geomaterials.Int.J.Numer.Anal.Methods Geomech.31(8),1007e1032.http://dx.doi.org/10.1002/nag.573.

    Nicot,F.,Sibille,L.,Darve,F.,2009.Bifurcation in granular materials: an attempt at a unified framework.Int.J.Solids Struct.46(22e23),3938e3947.http://dx.doi.org/10.1016/j.ijsolstr.2009.07.008.

    Nicot,F.,Sibille,L.,Darve,F.,2012.Failure in rate-independent granular materials as a bifurcation toward a dynamic regime.Int.J.Plasticity 29,136e154.http://dx.doi.org/10.1016/j.ijplas.2011.08.002.

    Sibille,L.,Donze,F.,Nicot,F.,Chareyre,B.,Darve,F.,2008.Bifurcation detection and catastrophic failure.Acta Geotecnica 3(1),14e24.

    Wan,R.G.,Pinheiro,M.,Guo,P.J.,2011.Elastoplastic modelling of diffuse instability response of geomaterials.Int.J.Numer.Anal.Methods Geomech.35(2),140e160.http://dx.doi.org/10.1002/nag.921.

    免费大片18禁| 国产日韩欧美亚洲二区| 97超碰精品成人国产| 一级毛片黄色毛片免费观看视频| 日韩制服骚丝袜av| av国产精品久久久久影院| 久久久久网色| 久久精品熟女亚洲av麻豆精品| 欧美日韩综合久久久久久| 香蕉国产在线看| 日韩av免费高清视频| 久久午夜福利片| 晚上一个人看的免费电影| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 免费不卡的大黄色大毛片视频在线观看| 久久99热这里只频精品6学生| 少妇人妻精品综合一区二区| 精品一品国产午夜福利视频| 久久久久久久久久久久大奶| √禁漫天堂资源中文www| 国语对白做爰xxxⅹ性视频网站| 中文字幕制服av| 亚洲成av片中文字幕在线观看 | 成年女人在线观看亚洲视频| 99国产综合亚洲精品| 国产有黄有色有爽视频| 久久久久精品久久久久真实原创| 久久精品久久精品一区二区三区| 99热这里只有是精品在线观看| 午夜视频国产福利| 只有这里有精品99| 久久ye,这里只有精品| a 毛片基地| 国产xxxxx性猛交| 日本免费在线观看一区| 国产成人91sexporn| 少妇猛男粗大的猛烈进出视频| 亚洲精品456在线播放app| 熟女av电影| 亚洲精品久久久久久婷婷小说| 夫妻午夜视频| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 久久99精品国语久久久| 人人妻人人添人人爽欧美一区卜| 三上悠亚av全集在线观看| 黄色一级大片看看| 日本wwww免费看| 卡戴珊不雅视频在线播放| 在线亚洲精品国产二区图片欧美| 国产精品一区二区在线观看99| 免费播放大片免费观看视频在线观看| 精品久久久精品久久久| 夜夜爽夜夜爽视频| 免费观看在线日韩| 18禁裸乳无遮挡动漫免费视频| 美女内射精品一级片tv| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 色吧在线观看| 欧美日韩av久久| 日韩一区二区视频免费看| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 欧美国产精品va在线观看不卡| 国产色爽女视频免费观看| 香蕉丝袜av| 成人国产av品久久久| 亚洲精品色激情综合| 性色avwww在线观看| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频 | 男女边吃奶边做爰视频| 久久久久网色| 伦精品一区二区三区| 国产黄频视频在线观看| 卡戴珊不雅视频在线播放| 国产爽快片一区二区三区| 午夜福利,免费看| 亚洲精品自拍成人| 久久精品久久精品一区二区三区| 老女人水多毛片| 你懂的网址亚洲精品在线观看| 精品久久蜜臀av无| 99热6这里只有精品| 久久久欧美国产精品| 全区人妻精品视频| 国产色婷婷99| 黄色毛片三级朝国网站| 一边亲一边摸免费视频| 久久这里有精品视频免费| 三上悠亚av全集在线观看| 国产在线一区二区三区精| 精品亚洲乱码少妇综合久久| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说| 国产精品人妻久久久影院| 国产国拍精品亚洲av在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产成人精品婷婷| 久久综合国产亚洲精品| 免费av中文字幕在线| xxxhd国产人妻xxx| 亚洲精品日本国产第一区| 一二三四在线观看免费中文在 | 亚洲国产av新网站| 国产精品不卡视频一区二区| 亚洲成av片中文字幕在线观看 | 免费看av在线观看网站| 亚洲精品中文字幕在线视频| 久久99热6这里只有精品| 18禁观看日本| 蜜桃在线观看..| 免费观看在线日韩| 亚洲综合色惰| 国产成人a∨麻豆精品| 亚洲人与动物交配视频| 高清毛片免费看| 精品少妇黑人巨大在线播放| 久久久久久久久久久久大奶| 各种免费的搞黄视频| 久久久久久久精品精品| 国产 精品1| 少妇人妻精品综合一区二区| 久热久热在线精品观看| 少妇被粗大的猛进出69影院 | 亚洲一区二区三区欧美精品| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 九色亚洲精品在线播放| 丝瓜视频免费看黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av黄色大香蕉| 亚洲国产日韩一区二区| 久久久久视频综合| 婷婷色av中文字幕| 国产福利在线免费观看视频| 日本爱情动作片www.在线观看| 免费黄网站久久成人精品| 99视频精品全部免费 在线| 亚洲av福利一区| 亚洲欧美日韩另类电影网站| 亚洲经典国产精华液单| 激情五月婷婷亚洲| 99久久人妻综合| 满18在线观看网站| 熟女人妻精品中文字幕| 国产成人精品福利久久| 五月玫瑰六月丁香| 亚洲精品中文字幕在线视频| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜| 日韩视频在线欧美| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 国产av一区二区精品久久| 中文欧美无线码| 在线观看免费高清a一片| av在线老鸭窝| 日韩中字成人| 九色亚洲精品在线播放| 欧美日韩综合久久久久久| 色哟哟·www| 婷婷色av中文字幕| 精品福利永久在线观看| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕 | 欧美人与善性xxx| 日日撸夜夜添| 热re99久久精品国产66热6| 免费av不卡在线播放| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 高清黄色对白视频在线免费看| 在线观看美女被高潮喷水网站| 乱人伦中国视频| 男的添女的下面高潮视频| 久久久久久久精品精品| 午夜视频国产福利| 18禁裸乳无遮挡动漫免费视频| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 久久影院123| 乱人伦中国视频| 男女啪啪激烈高潮av片| 亚洲色图综合在线观看| 国产成人午夜福利电影在线观看| 中国三级夫妇交换| 欧美日韩亚洲高清精品| 久久免费观看电影| 日日摸夜夜添夜夜爱| 精品国产一区二区三区四区第35| 亚洲欧美成人综合另类久久久| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 亚洲一级一片aⅴ在线观看| 欧美成人午夜精品| 免费观看在线日韩| 毛片一级片免费看久久久久| 深夜精品福利| 国产精品国产三级国产av玫瑰| 99热全是精品| 日本黄大片高清| 天堂8中文在线网| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 熟女人妻精品中文字幕| 免费观看在线日韩| 大片免费播放器 马上看| 少妇的逼水好多| 久久精品国产自在天天线| www日本在线高清视频| 欧美+日韩+精品| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| 天天操日日干夜夜撸| xxxhd国产人妻xxx| 97超碰精品成人国产| 国产成人免费观看mmmm| 飞空精品影院首页| 国产极品天堂在线| 亚洲欧美中文字幕日韩二区| 成人免费观看视频高清| 人人澡人人妻人| tube8黄色片| 91aial.com中文字幕在线观看| 亚洲欧美清纯卡通| 亚洲中文av在线| 精品久久国产蜜桃| 午夜福利视频在线观看免费| 少妇被粗大猛烈的视频| 国产精品国产三级国产专区5o| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线观看播放| 极品人妻少妇av视频| a级毛色黄片| 欧美xxⅹ黑人| 咕卡用的链子| 五月开心婷婷网| 夫妻午夜视频| 精品一区二区三卡| 成人国产av品久久久| 黄色配什么色好看| 又粗又硬又长又爽又黄的视频| 久久久久久人人人人人| 中文天堂在线官网| av国产久精品久网站免费入址| kizo精华| 男女国产视频网站| h视频一区二区三区| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 亚洲成色77777| 国产精品女同一区二区软件| 精品人妻在线不人妻| 日韩制服骚丝袜av| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 99久久综合免费| 人妻一区二区av| 一本色道久久久久久精品综合| 婷婷成人精品国产| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 国产白丝娇喘喷水9色精品| 青春草亚洲视频在线观看| 夜夜爽夜夜爽视频| 日韩三级伦理在线观看| 自线自在国产av| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 久久99一区二区三区| 美女福利国产在线| 久久久久精品人妻al黑| 国产日韩一区二区三区精品不卡| 人妻 亚洲 视频| 国产一区二区在线观看av| 欧美3d第一页| 久久99蜜桃精品久久| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看 | av网站免费在线观看视频| 午夜老司机福利剧场| 免费看光身美女| 狂野欧美激情性xxxx在线观看| 国产一区有黄有色的免费视频| 视频区图区小说| 欧美3d第一页| 日本av免费视频播放| 免费黄色在线免费观看| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 国产女主播在线喷水免费视频网站| 大片免费播放器 马上看| 免费看光身美女| 国产日韩一区二区三区精品不卡| 宅男免费午夜| av一本久久久久| 亚洲国产看品久久| 精品午夜福利在线看| 亚洲欧美日韩另类电影网站| 久久久久久久久久久免费av| 日韩中文字幕视频在线看片| 黑人欧美特级aaaaaa片| 国产精品嫩草影院av在线观看| 日韩一区二区三区影片| 日本91视频免费播放| 国产av精品麻豆| 亚洲av福利一区| 久久久久国产精品人妻一区二区| 两个人免费观看高清视频| 日本av免费视频播放| 国产1区2区3区精品| 日韩制服丝袜自拍偷拍| 亚洲久久久国产精品| 亚洲av成人精品一二三区| 美女福利国产在线| 国产精品久久久av美女十八| 亚洲欧美精品自产自拍| 免费av中文字幕在线| 亚洲精品国产av蜜桃| 日本免费在线观看一区| 成人漫画全彩无遮挡| videos熟女内射| 国产欧美日韩综合在线一区二区| 成年av动漫网址| 如日韩欧美国产精品一区二区三区| 韩国av在线不卡| 欧美精品人与动牲交sv欧美| 亚洲人与动物交配视频| 这个男人来自地球电影免费观看 | 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| 久久97久久精品| 免费看光身美女| 色视频在线一区二区三区| 国产精品不卡视频一区二区| 欧美性感艳星| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 99国产精品免费福利视频| 制服人妻中文乱码| 国产不卡av网站在线观看| 亚洲欧洲日产国产| 两个人免费观看高清视频| 国产精品免费大片| 亚洲丝袜综合中文字幕| 久久久久久人妻| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频 | 水蜜桃什么品种好| 国产黄色免费在线视频| 国产精品一二三区在线看| 国产极品天堂在线| 亚洲av综合色区一区| 超色免费av| 亚洲欧美日韩另类电影网站| 久久99蜜桃精品久久| 久久精品久久久久久久性| freevideosex欧美| 超碰97精品在线观看| 国产一区二区三区av在线| 另类精品久久| 99热国产这里只有精品6| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 高清毛片免费看| 亚洲国产av影院在线观看| 欧美成人午夜免费资源| 色吧在线观看| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久 | av一本久久久久| 日韩精品免费视频一区二区三区 | 十八禁高潮呻吟视频| 亚洲国产精品专区欧美| 乱码一卡2卡4卡精品| 99热网站在线观看| 亚洲国产毛片av蜜桃av| 黑人高潮一二区| 国产成人精品一,二区| 午夜激情久久久久久久| 国产精品国产av在线观看| 丰满乱子伦码专区| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 99国产精品免费福利视频| 亚洲色图综合在线观看| 欧美日韩综合久久久久久| 人妻人人澡人人爽人人| 国产熟女欧美一区二区| 高清欧美精品videossex| 满18在线观看网站| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 欧美成人精品欧美一级黄| 18在线观看网站| 99热这里只有是精品在线观看| 国产 一区精品| 如何舔出高潮| 亚洲欧洲国产日韩| 丁香六月天网| 久久久久视频综合| 欧美97在线视频| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 婷婷色综合www| 成人毛片60女人毛片免费| 下体分泌物呈黄色| 免费高清在线观看视频在线观看| 亚洲精品456在线播放app| 久久精品久久久久久噜噜老黄| 高清毛片免费看| 国产精品国产三级国产av玫瑰| 少妇精品久久久久久久| 亚洲国产欧美在线一区| 国产不卡av网站在线观看| 观看美女的网站| 女性生殖器流出的白浆| av不卡在线播放| 成人毛片a级毛片在线播放| 一级黄片播放器| 男人操女人黄网站| 国产深夜福利视频在线观看| 久久久久视频综合| 久久毛片免费看一区二区三区| 久久人人爽av亚洲精品天堂| 国产一区二区激情短视频 | 高清毛片免费看| 成人国语在线视频| 精品人妻在线不人妻| 两个人看的免费小视频| 国产精品.久久久| 一区二区三区乱码不卡18| 男女下面插进去视频免费观看 | 日本wwww免费看| 亚洲欧美色中文字幕在线| 九色成人免费人妻av| 久久毛片免费看一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久久久久久久久人人人人人人| 国产精品久久久久久精品电影小说| 汤姆久久久久久久影院中文字幕| 女人被躁到高潮嗷嗷叫费观| 久久久久久伊人网av| 巨乳人妻的诱惑在线观看| 国产亚洲最大av| 国产成人一区二区在线| 精品国产国语对白av| 最近最新中文字幕大全免费视频 | 菩萨蛮人人尽说江南好唐韦庄| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频| 亚洲av免费高清在线观看| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 少妇被粗大猛烈的视频| 久久久久久久亚洲中文字幕| 久久影院123| 亚洲中文av在线| 欧美人与性动交α欧美软件 | 狠狠精品人妻久久久久久综合| 亚洲一级一片aⅴ在线观看| 成人午夜精彩视频在线观看| 日本av手机在线免费观看| 免费av不卡在线播放| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| 自线自在国产av| 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐| 亚洲,一卡二卡三卡| 久久人妻熟女aⅴ| 最近2019中文字幕mv第一页| 99热国产这里只有精品6| 国产精品久久久av美女十八| 国产精品女同一区二区软件| 九九在线视频观看精品| 国产成人aa在线观看| 欧美日韩精品成人综合77777| 日本91视频免费播放| av一本久久久久| 国产一区二区激情短视频 | h视频一区二区三区| 日韩成人av中文字幕在线观看| 99国产综合亚洲精品| 欧美xxxx性猛交bbbb| 看非洲黑人一级黄片| 国产色爽女视频免费观看| 成人影院久久| 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 观看av在线不卡| 国产精品久久久av美女十八| 在线观看美女被高潮喷水网站| 美女脱内裤让男人舔精品视频| 欧美xxxx性猛交bbbb| 最新中文字幕久久久久| 在线观看免费视频网站a站| 免费观看性生交大片5| 香蕉丝袜av| a级毛色黄片| 亚洲综合色惰| 国产精品不卡视频一区二区| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 亚洲图色成人| 欧美少妇被猛烈插入视频| 成人免费观看视频高清| 熟女人妻精品中文字幕| 亚洲欧洲国产日韩| 80岁老熟妇乱子伦牲交| 嫩草影院入口| 国产黄色免费在线视频| av黄色大香蕉| 两个人看的免费小视频| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 桃花免费在线播放| 尾随美女入室| 中文字幕精品免费在线观看视频 | 乱码一卡2卡4卡精品| 搡老乐熟女国产| 久久女婷五月综合色啪小说| 国产黄色视频一区二区在线观看| 少妇被粗大猛烈的视频| 秋霞伦理黄片| 国产成人免费无遮挡视频| 伊人亚洲综合成人网| 女人被躁到高潮嗷嗷叫费观| 有码 亚洲区| 国产白丝娇喘喷水9色精品| 日韩 亚洲 欧美在线| 免费播放大片免费观看视频在线观看| 精品人妻在线不人妻| 国产精品久久久久久av不卡| 一级片免费观看大全| 三上悠亚av全集在线观看| 一级a做视频免费观看| 国产在线免费精品| 日韩 亚洲 欧美在线| 日本wwww免费看| 免费看不卡的av| 最后的刺客免费高清国语| 这个男人来自地球电影免费观看 | 18禁观看日本| 欧美少妇被猛烈插入视频| 久久久久久久久久人人人人人人| 黄网站色视频无遮挡免费观看| av片东京热男人的天堂| 人人妻人人爽人人添夜夜欢视频| 日本欧美国产在线视频| 成人黄色视频免费在线看| 天天影视国产精品| 久久99热这里只频精品6学生| 亚洲精品aⅴ在线观看| 中文字幕亚洲精品专区| 国产亚洲午夜精品一区二区久久| 免费高清在线观看日韩| 激情视频va一区二区三区| 国产精品国产三级国产av玫瑰| 国产探花极品一区二区| 黄色视频在线播放观看不卡| 亚洲美女视频黄频| 熟女av电影| 欧美国产精品va在线观看不卡| 少妇被粗大猛烈的视频| 午夜免费男女啪啪视频观看| 日韩免费高清中文字幕av| 一区在线观看完整版| 秋霞伦理黄片| 最后的刺客免费高清国语| 国产一区二区三区av在线| 精品视频人人做人人爽| 好男人视频免费观看在线| 亚洲精品,欧美精品| 巨乳人妻的诱惑在线观看| 少妇猛男粗大的猛烈进出视频| 丝袜人妻中文字幕| 久久久国产欧美日韩av| 亚洲色图综合在线观看| 视频在线观看一区二区三区| videos熟女内射| 久久99热这里只频精品6学生| 母亲3免费完整高清在线观看 | 精品人妻在线不人妻| 日韩欧美精品免费久久| 波多野结衣一区麻豆| 成人午夜精彩视频在线观看| 最近手机中文字幕大全| 久久精品国产自在天天线| 热99久久久久精品小说推荐| 国产亚洲精品久久久com| 99香蕉大伊视频| 考比视频在线观看| 春色校园在线视频观看| 美女主播在线视频| 80岁老熟妇乱子伦牲交| 夜夜骑夜夜射夜夜干| 26uuu在线亚洲综合色| 午夜免费男女啪啪视频观看| 大香蕉97超碰在线| 亚洲av成人精品一二三区| 亚洲性久久影院| 国产 精品1| 18禁裸乳无遮挡动漫免费视频| 少妇高潮的动态图|