• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation of bisphenol A using electrochemical assistant Fe(II)-activated peroxydisulfate process

    2015-12-31 09:05:49
    Water Science and Engineering 2015年2期

    * Corresponding author.

    ?

    Degradation of bisphenol A using electrochemical assistant Fe(II)-activated peroxydisulfate process

    Chun-wei Yang*

    College of Environmental Science and Engineering,Jilin Normal University,Siping 136000,PR China

    Received 22 October 2013; accepted 17 December 2014 Available online 15 April 2015

    * Corresponding author.

    Abstract

    Degradation of bisphenol A (BPA)in aqueous solution using sulfate radicals was investigated using the Fe(II)-activated peroxydisulfate (PDS)process,electrochemical process,electrochemical process with 2.5 mmol/L Na2S2O8without Fe(II),and electrochemical assistant Fe(II)-activated PDS process.It was found that the electrochemical assistant Fe(II)-activated PDS process performed best in the degradation of BPA.The variables considered to influence the degradation efficiency of BPA were the initial concentration of Fe2t,the initial concentration of Na2S2O8,and the current density.More than 97% of the BPA removals were achieved within 120 min under the optimum operational condition.The degradation of BPAwas accompanied by the formation of phenol,hydroquinone,and small-molecule compounds such as succinic acid.The electron transfer was the principal step in the oxidation of BPA.

    ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    This work was supported by the Natural Science Foundation of Jilin Province (Grant No.20140101215JC),the Key Program in Science and Technologies of Jilin Province (Grant No.20150204049SF),and the Key Laboratory of Industrial Ecology and Environmental Engineering,the Ministry of Education of China (Grant No.KLIEEE-13-07).

    E-mail address: chunwei_yang@jlnu.edu.cn (Chun-wei Yang).Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.04.002

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Sulfate radicals; Peroxydisulfate; Advanced oxidation; BPA

    1.Introduction

    Bisphenol A (BPA)is a compound widely used in the production of polycarbonate plastics and epoxy resin (Morgan et al.,2014; Mei et al.,2011).It is an endocrine-disrupting chemical (EDC)that affects the endocrine system and produces an adverse effect on aquatic life,animals,and potentially human.There is increasing evidence that EDCs can alter endocrine functions and may disrupt the growth,development,and reproduction of the human body by interfering with the production of the endocrine system.Accordingly,because of the contribution of estrogenic chemicals to the development of hormone-dependent cancers,disorders of the reproductive tract,and other effects,they are often referred to as environmental estrogens (Tyler and Denys,2014; Branco and Lemos,2014).BPA has become a controversial issue because it was detected in different environmental media (aquatic environment,soil,sediment,and air),food,and the human body (Huang et al.,2012; Suzuki et al.,2004).Therefore,the development of a process for BPA degradation has aroused significant interest (Cui et al.,2009; Li et al.,2008).

    The electrochemical process is one of the advanced oxidation processes (AOPs)developed in recent years for wastewater treatment (Lei et al.,2013; Li et al.,2005).Effectiveness of electrochemical oxidation for wastewater treatment depends largely upon the properties of the anodes and the organic substances involved in the process (Jin et al.,2014; Chen et al.,2005).Traditional electrodes,such as graphite,are not effective for wastewater treatment (Souza et al.,2014).Recently,there has been a growing interest in using sulfate radicals to treat organic contaminants (Anipsitakis and Dionysiou,2004; Rastogi et al.,2009).Sulfate radicals could be produced from peroxydisulfate (PDS)or peroxymonosulfate via thermal,photochemical,radiolysis,or redox decomposition (Eqs.(1)through (4))(Zhao et al.,2010).

    where M denotes the transition metal.

    The Fe(II)-activated PDS process has been used in wastewater treatment,especially for in situ chemical oxidation using sulfate radicals (Ahmed et al.,2012; Liang et al.,2004).However,there have existed critical limitations in the application of the Fe(II)-activated PDS process because the reaction requires acid conditions,and the efficiency has been too low.Evidence of the latter is that some of the sulfate radicals produced react with excess Fe2tthereby lowering the concentration of sulfate radicals that are available to degrade contaminants in the system (Eqs.(5)and (6)).

    Therefore,for water treatment,it would be interesting to develop environmentally benign methods with environmental and economic considerations.The electrochemical assistant Fe(II)-activated PDS process has been established,offering a new method of solving problems.In the electrolytic cell,pollutants are destroyed by the action of the Fe(II)-activated PDS process in bulk together with anodic oxidation at the anode surface.Simultaneously the electrochemical reduction of Fe3tto Fe2tat the cathode surface (Eq.(7))enhances Eq.(5).Moreover,the oxidation of regenerated Fe2tto Fe3tmay occur at the same time (Eq.(8))on the anode surface in order to maintain the appropriate Fe2tconcentration.

    As a result,our research focuses on the destruction of BPA,as an EDC,using the electrochemical assistant Fe(II)-activated PDS process in an effort to propose sulfate radicals-based AOPs as an alternative to the most common and established electro-Fe(II)-activated PDS system for the decomposition of EDCs.In this study,the reaction mechanism and the products of BPA degradation were also evaluated.From the environmentally friendly point of view,the electrochemical assistant Fe(II)-activated PDS process for wastewater treatment provides a promising alternative as a novel technology for elimination of contaminants.

    2.Materials and methods

    2.1.Chemicals

    BPA was obtained from the Shanghai Third Chemical Reagent Factory in China.Sodium sulphate (anhydrous,with a purity of 99%),sodium peroxydisulfate (analytical reagent grade,with a purity of 99%),and ferrous sulfate (analytical reagent grade,with a purity of 99%)were purchased from the Shenyang Chemical Reagent Factory in China.All sample solutions were prepared with deionized water from the ion exchange system.

    2.2.Procedures and equipment

    Experiments were performed atroom temperature (20±1) C in a 100 mL beaker supplied with a magnetic stirrer under constant potential conditions using a ATTEN APR-6402 potentiostat/galvanostat (Shenzhen,China).Graphite plates (2.5 cm 4.5 cm 0.5 cm)were used as cathode and anode electrodes with the electrode spacing maintained at 1 cm.The aqueous solutions were agitated continuously with a magnetic stirrer atavelocity of75rpm.The initial concentrations of BPA andwere 35 mg/L and 25 mmol/L,respectively.A series of experiments was conducted to investigate the optimal iron catalyst concentration,current density,and sodium peroxydisulfate concentration.The pH of BPA solutions was not adjusted during the reaction.

    2.3.Analytical methods

    The concentration of BPA was determined using highperformance liquid chromatography (HPLC)incorporating a high-pressure pump (Shimadzu LC-6A)and a UV detector (Waters 481 detector).In the HPLC analysis,a Vydac C18 column (with a size of 1.0 mm 150 mm and a mean particle size of 5 mm)and a mobile phase of methanol/water (with a volume ratio of 3:1)at a steady flow rate of 1 mL/min were used.The injection volume was 2 mL.The retention time of BPA was 4.62 min.Measurements were made in triplicate in each experiment with errors less than 5%.

    3.Results and discussion

    3.1.Preliminary studies on treatment method

    Preliminary experiments were performed to compare the effect of different combinations of treatment methods,including the Fe(II)-activated PDS process,electrochemical process,electrochemical process with 2.5 mmol/Lwithout Fe(II),and electrochemical assistant Fe(II)-activated PDS process,as shown in Fig.1.The initial concentrations of BPA andwere 35 mg/L and 25 mmol/L,respectively.Theseents were carried out at room temperature (20±1) C and neutral pH.In the Fe(II)-activated PDSprocess the concentrations of Fe(II)and PDS were 0.2 and 2.5 mmol/L,respectively.The current density in the electrochemical process and electrochemical assistant Fe(II)-activated PDS process was maintained at 3.6 mA/cm2.In the electrochemical assistant Fe(II)-activated PDS process the concentrations of Fe(II)and PDS were 0.2 and 2.5 mmol/L,respectively.The reaction duration was kept at 30 min.The Fe(II)-activated PDS process,electrochemical process,electrochemical process with 2.5 mmol/L without Fe(II),and electrochemical assistant Fe(II)-activated PDS process had minimum BPA concentrations with a decreasing order of 30.69,24.17,19.54,and 14.27 mg/L,respectively.It was clearly seen that the best and efficient treatment method for the degradation of BPA was the electrochemical assistant Fe(II)-activated PDS process.

    The removal rate of BPA only reaches 12.3% after a 30-min treatment with the Fe(II)-activated PDS process because the Fe(II)-activated PDS process only has high efficiency at a relatively high temperature (50e70 C)and acid condition (with pH values from 2 to 4)(Huang and Huang,2009).Therefore,it is not efficient to treat BPA with the Fe(II)-activated PDS process.The existence of PDS could enhance the efficiency of the electrochemical process because sulfate radicals can be produced through PDS reaction at the cathode electrode surface (Eq.(3)).BPA could also be removed by the anode during the electrochemical reaction.The concentration of BPA decreased to 19.54 mg/L after a 30-min treatment with the electrochemical process with 2.5 mmol/Lwithout Fe(II).By contrast,the concentration of BPA reached 14.27 mg/L with the electrochemical assistant Fe(II)-activated PDS process due to the coupling of electrochemical and Fe(II)-activated PDS processes.Therefore,the electrochemical assistant Fe(II)-activated PDS process is feasible and practical in the treatment of BPA.Further investigations of process factors should be considered.3.2.Influence of initial concentration of Fe2ton BPA removal rate

    Fig.1.Variation of BPA concentration with time with different processes.

    In order to evaluate the effect of the initial concentration of Fe2ton the degradation of BPA,six discrete values between 0.1 and 1.8 mmol/L were used with the electrochemicalassistant Fe(II)-activated PDS process.Other operating parameters apart from the initial concentration of Fe2twere kept the same (the BPA and concentrations and the current density were 35 mg/L,2.5 mmol/L,and 3.6 mA/cm2,respectively).It was observed that the BPA removal rate increased with the initial concentration of Fe2t,especially below 1.0 mmol/L (Fig.2),and the influence of the initial concentration of Fe2twas less pronounced when it reached 1.0 mmol/L.When the Fe2tconcentration was greater than 1.0 mmol/L the remaining Fe2tcould react with sulfate radicals (Eq.(6)).Finally,the BPA removal rate remained steady even when the initial concentration of Fe2tincreased.Taking into account the practical application of this process,the optimal initial concentration of Fe2tin the following experiments was set as 1.0 mmol/L.

    3.3.Influence of initial concentration ofon BPA removal rate

    The initial concentration ofhas a significant effect on the degradation of BPA with the electrochemical assistant Fe(II)-activated PDS process.The effect of the initial concentration ofwas essentially investigated and the results are shown in Fig.3.The initial concentration ofvaried from 0.5 to 4.5 mmol/L while other experimental parameters remained constant (the BPA and Fe2tconcentrations were 35 mg/L and 1.0 mmol/L,respectively,and the current density was 3.6 mA/cm2).It was clearly seen that the increase of the initial concentration of from 0.5 to 2.5 mmol/L improved the BPA removal rate from 46.1% to 61.36% after 30 min of treatment,as high concentration can accelerate the generation of sulfate radicals and decomposition of organic pollutants.However,when the initial concentration ofincreased from 2.5 to 4.5 mmol/L,the removal rate of BPA remained almost steady,from 61.36% to 62.45%.The results show that the optimal initial concentration ofwas 2.5 mmol/L for the degradation of BPA using the electrochemical assistant Fe(II)-activated PDS process.

    3.4.Influence of current density on BPA removal rate

    Fig.2.Effects of initial concentration of Fe2ton BPA removal rate.

    Experiments were conducted to determine the effect of current density on the removal of BPA using the electrochemical assistant Fe(II)-activated PDS process while other experimental parameters were kept constant (the BPA,Fe2t,and concentrations were 35 mg/L,1.0 mmol/L,and 2.5 mmol/L,respectively).The values of current density applied were 0.9,1.8,3.6,5.4,7.2,and 9.0 mA/cm2.As shown in Fig.4,the removal rate increased from 31.97% to 61.36% with the increase of current density from 0.9 to 3.6 mA/cm2within 30 min.However,when the current density was greater than 3.6 mA/cm2,the BPA removal rate decreased to 50.31% for current densities from 3.6 to 9.0 mA/cm2.This may be explained by the fact that high current density may lead to a decrease of the concentrations of sulfate radicals and Fe2t,and then influence the removal rate of BPA.Furthermore,the results revealed that there was an optimum current density (3.6 mA/cm2)in treating the BPA solution.

    Fig.3.Effects of initial concentration of Na2S2O8on BPA removal rate.

    3.5.Kinetics studies of BPA removal

    It is necessary to study the kinetics of BPA removal under optimal conditions.The degradation process of BPA was observed when the BPA,Fe2t,and concentrations were 35 mg/L,1.0 mmol/L,and 2.5 mmol/L,respectively,and the current density was 3.6 mA/cm2at ambient temperature and neutral pH.The results are shown in Fig.5.The optimal BPA removal rate reached 97.67% within 120 min of treatment.The electrochemical assistant Fe(II)-activated PDS process is operative in the degradation of BPA.

    The kinetics of the BPA removal process followed the firstorder reaction of the BPA concentration.Fig.6 presents the calculation of the pseudo first-order rate constant k,for BPA degradation with the electrochemical assistant Fe(II)-activated PDS process within the 120-min treatment.The first-order kinetics of the removal rate are expressed in Eq.(9).The degradation process of BPA follows Eq.(10).

    Fig.4.Effects of current density on BPA removal rate.

    Fig.5.Variations of BPA concentration and removal rate with reaction time.

    where C is the concentration of BPA at reaction time t,and C0is the initial concentration of BPA.

    3.6.Reaction products from oxidation of BPA

    The reaction products from the oxidation of BPA using the electrochemical assistant Fe(II)-activated PDS process were identified by means of HPLC.Fig.7 shows the BPA degradation process in separate reaction time.

    The results indicated that after the 120-min reaction the BPA concentration was very low,but hydroquinone,phenol,and succinic acid were found using the standard addition method.The concentration of BPA decreased with the reaction time but the peak height of intermediate products remained steady.Previous reports (Cui et al.,2009; Li et al.,2008)have shown the degradation pathways of BPA.Hydroquinone was one of the key intermediate products through isopropylidene bridge cleavage.Then succinic acid could be discovered through aromatic ring cleavage.The degradation pathway of hydroquinone was determined because hydroquinone and succinic acid were detected throughout the reaction with the electrochemical assistant Fe(II)-activated PDS process.

    Fig.6.Degradation kinetics of BPA.

    Nevertheless,the results also indicated that the concentrations of intermediate products hydroquinone and phenol were very low.Therefore,during the oxidation of BPA,electron transfer was assumed to be the key step of the sulfate radical attack.A sulfate radical mediated attack on BPA leads to the formation of organic radicals via electron transfer from the organic compounds to the sulfate radicals.The degradation of BPA through a hydroxylation reaction of hydroxyl radicals did not prevail in this process.The results regarding reaction intermediates indicated that succinic acid was the primary intermediate from BPA degradation and the electron transfer was the principal step in the oxidation of BPA.

    Fig.7.HPLC chromatograms of BPA in water at different reaction time.

    4.Conclusions

    The electrochemical assistant Fe(II)-activated PDS process was proven to be feasible and effective in the treatment of BPA solution.The influence of some operational parameters on the degradation of BPA was discussed.This promising and ecofriendly oxidation system is likely a useful contribution to the field of AOPs.The main conclusions are as follows:

    (1)The removal rate of BPAwas strongly dependent on the initial concentration of Fe2t,the initial concentration ofand the current density.

    (2)Investigation of the mechanism of the degradation of BPA with the electrochemical assistant Fe(II)-activated PDS process suggested that this process obeyed the first-order kinetics.

    (3)The formation of intermediates,such as hydroquinone and succinic acid,showed that electron transfer was the foremost step in the oxidation of BPA.

    References

    Ahmed,M.M.,Barbati,S.,Doumenq,P.,Chiron,S.,2012.Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination.Chem.Eng.J.197,440e447.http://dx.doi.org/10.1016/j.cej.2012.05.040.

    Anipsitakis,G.P.,Dionysiou,D.D.,2004.Radical generation by the interaction of transition metals with common oxidants.Environ.Sci.Technol.38(13),3705e3712.http://dx.doi.org/10.1021/es035121o.

    Branco,A.T.,Lemos,B.,2014.Interaction between bisphenol A and dietary sugar affects global gene transcription in Drosophila melanogaster.Genomics Data 2,308e311.http://dx.doi.org/10.1016/j.gdata.2014.09.005.

    Chen,X.M.,Gao,F.R.,Chen,G.H.,2005.Comparison of Ti/BDD and Ti/electrodes for pollutant oxidation.J.Appl.Electrochem.35(2),185e191.http://dx.doi.org/10.1007/s10800-004-6068-0.

    Cui,Y.H.,Li,X.Y.,Chen,G.H.,2009.Electrochemical degradation of bisphenol A on different anodes.Water Res.43(7),1968e1976.http://dx.doi.org/10.1016/j.watres.2009.01.026.

    Huang,Y.F.,Huang,Y.H.,2009.Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel)two-stage oxidation process.J.Hazard.Mater.162(2e3),1211e1216.http://dx.doi.org/10.1016/j.jhazmat.2008.06.008.

    Huang,Y.Q.,Wong,C.K.C.,Zheng,J.S.,Bouwman,H.,Barra,R.,Wahlstr€om,B.,Neretin,L.,Wonh,M.H.,2012.Bisphenol A (BPA)in China: a review of sources,environmental levels,and potential human health impacts.Environ.Int.42,91e99.http://dx.doi.org/10.1016/j.envint.2011.04.010.

    Jin,P.P.,Chang,R.,Liu,D.Q.,Zhao,K.,Zhang,L.X.,Ouyang,Y.J.,2014.Phenol degradation in an electrochemical system with TiO2/activated carbon fiber as electrode.J.Environ.Chem.Eng.2(2),1040e1047.http://dx.doi.org/10.1016/j.jece.2014.03.023.

    Lei,Y.M.,Liu,H.,Shen,Z.M.,Wang,W.,2013.Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.J.Hazard.Mater.261,570e576.http://dx.doi.org/10.1016/j.jhazmat.2013.08.010.

    Li,C.,Li,X.Z.,Graham,N.,Gao,N.Y.,2008.The aqueous degradation of bisphenol A and steroid estrogens by ferrate.Water Res.42(1e2),109e120.http://dx.doi.org/10.1016/j.watres.2007.07.023.

    Li,X.Y.,Cui,Y.H.,Feng,Y.J.,Xie,Z.M.,Gu,J.D.,2005.Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.Water Res.39(10),1972e1981.http://dx.doi.org/10.1016/j.watres.2005.02.021.

    Liang,C.,Bruell,C.J.,Marley,M.C.,Sperry,K.L.,2004.Persulfate oxidation for in situ remediation of TCE,II: Activated by chelated ferrous ion.Chemosphere 55(9),1225e1233.http://dx.doi.org/10.1016/j.chemosphere.2004.01.030.

    Mei,S.R.,Wu,D.,Jiang,M.,Lu,B.,Lim,J.,Zhou,Y.K.,Lee,Y.,2011.Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis.Microchem.J.98(1),150e155.http://dx.doi.org/10.1016/j.microc.2011.01.003.

    Morgan,A.M.,El-Ballal,S.E.,El-Bialy,B.E.,El-Borai,N.B.,2014.Studies on the potential protective effect of cinnamon against bisphenol A- and octylphenol-induced oxidative stress in male albino rats.Toxicol.Reports 1,92e101.http://dx.doi.org/10.1016/j.toxrep.2014.04.003.

    Rastogi,A.,Al-Abed,S.R.,Dionysiou,D.D.,2009.Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems.Appl.Catal.B: Environ.85(3e4),171e179.http://dx.doi.org/10.1016/j.apcatb.2008.07.010.

    Souza,F.L.,Teodoro,T.Q.,Vasconcelos,V.M.,Lima Gomes,P.C.,Ferreira,N.G.,Baldan,M.R.,Haiduke,R.L.,Lanza,M.R.,2014.Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.Chemosphere117,596e603.http://dx.doi.org/10.1016/j.chemosphere.2014.09.051.

    Suzuki,T.,Nakagawa,Y.,Takano,I.,Yaguchi,K.,Yasuda,K.,2004.Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity.Environ.Sci.Technol.38(8),2389e2396.http://dx.doi.org/10.1021/es030576z.

    Tyler,P.,Denys,D.,2014.Presence and bioavailability of bisphenol A in the uterus of rats and mice following single and repeated dietary administration at low doses.Reprod.Toxicol.49,145e154.http://dx.doi.org/10.1016/j.reprotox.2014.08.005.

    Zhao,J.Y.,Zhang,Y.B.,Quan,X.,Chen,S.,2010.Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature.Sep.Purif.Technol.71(3),302e307.http://dx.doi.org/10.1016/j.seppur.2009.12.010.

    18禁裸乳无遮挡动漫免费视频| 首页视频小说图片口味搜索| 热re99久久国产66热| 午夜两性在线视频| 精品乱码久久久久久99久播| 国产黄频视频在线观看| 亚洲av电影在线观看一区二区三区| 中文字幕精品免费在线观看视频| 亚洲国产毛片av蜜桃av| 国产精品自产拍在线观看55亚洲 | 国产伦人伦偷精品视频| 一本—道久久a久久精品蜜桃钙片| 久久国产亚洲av麻豆专区| 亚洲五月色婷婷综合| 巨乳人妻的诱惑在线观看| 黄色视频,在线免费观看| 久久香蕉激情| 午夜福利视频精品| 久久人人97超碰香蕉20202| 午夜免费观看性视频| 性色av乱码一区二区三区2| 国产麻豆69| 久久久久久久精品精品| 不卡一级毛片| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 国产精品一区二区在线不卡| 动漫黄色视频在线观看| 高清视频免费观看一区二区| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 悠悠久久av| 欧美黄色片欧美黄色片| 国产黄色免费在线视频| 人人澡人人妻人| 9热在线视频观看99| 日韩 欧美 亚洲 中文字幕| 91av网站免费观看| 久久久国产一区二区| 热99国产精品久久久久久7| 97在线人人人人妻| 99国产综合亚洲精品| 久久这里只有精品19| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 久久精品人人爽人人爽视色| 亚洲av男天堂| 岛国在线观看网站| 两个人免费观看高清视频| 久久99一区二区三区| 久久久久视频综合| 久久精品国产综合久久久| 自线自在国产av| 国产精品九九99| 最黄视频免费看| 国产av国产精品国产| 超碰97精品在线观看| 亚洲第一青青草原| 日韩有码中文字幕| 色播在线永久视频| 18禁国产床啪视频网站| 午夜福利免费观看在线| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 91老司机精品| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 蜜桃国产av成人99| 午夜福利免费观看在线| 可以免费在线观看a视频的电影网站| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 精品人妻熟女毛片av久久网站| 一级片免费观看大全| 国产激情久久老熟女| a 毛片基地| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 999久久久国产精品视频| 岛国毛片在线播放| 首页视频小说图片口味搜索| 亚洲精品第二区| 久久国产精品男人的天堂亚洲| 日本a在线网址| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 日韩电影二区| 这个男人来自地球电影免费观看| 久久午夜综合久久蜜桃| 99热全是精品| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 亚洲成人手机| 国产精品香港三级国产av潘金莲| 十八禁人妻一区二区| 精品第一国产精品| www.自偷自拍.com| 满18在线观看网站| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 国产伦人伦偷精品视频| 久久影院123| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 69精品国产乱码久久久| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 狠狠狠狠99中文字幕| 午夜激情久久久久久久| 热re99久久精品国产66热6| 亚洲av美国av| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 另类亚洲欧美激情| 精品国产一区二区久久| 精品国产国语对白av| 国产成人系列免费观看| 99国产精品一区二区蜜桃av | 美女主播在线视频| 亚洲专区字幕在线| 久久久精品免费免费高清| 丝袜人妻中文字幕| 91精品伊人久久大香线蕉| 精品亚洲乱码少妇综合久久| av网站免费在线观看视频| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 大型av网站在线播放| 免费av中文字幕在线| 精品国产超薄肉色丝袜足j| 女性生殖器流出的白浆| 午夜激情久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久毛片微露脸 | 婷婷色av中文字幕| 久久中文字幕一级| 美女扒开内裤让男人捅视频| 悠悠久久av| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9 | 亚洲avbb在线观看| 一二三四在线观看免费中文在| 欧美午夜高清在线| 夜夜夜夜夜久久久久| 色老头精品视频在线观看| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 蜜桃在线观看..| 国产熟女午夜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | av一本久久久久| 婷婷色av中文字幕| 日韩欧美免费精品| 91大片在线观看| 老司机靠b影院| 一个人免费在线观看的高清视频 | 极品少妇高潮喷水抽搐| 久久九九热精品免费| 精品国产乱子伦一区二区三区 | 欧美另类一区| 欧美激情久久久久久爽电影 | 久久精品国产亚洲av高清一级| 一级毛片电影观看| 久久久久久人人人人人| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 日本91视频免费播放| 免费看十八禁软件| 午夜福利影视在线免费观看| 99精品欧美一区二区三区四区| 视频区图区小说| 国产精品熟女久久久久浪| 宅男免费午夜| 日韩中文字幕视频在线看片| 欧美 日韩 精品 国产| 俄罗斯特黄特色一大片| av天堂久久9| 伊人久久大香线蕉亚洲五| 亚洲七黄色美女视频| av天堂久久9| 乱人伦中国视频| 天堂中文最新版在线下载| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 丝袜喷水一区| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 蜜桃在线观看..| 国产国语露脸激情在线看| 欧美乱码精品一区二区三区| 一本一本久久a久久精品综合妖精| 老司机午夜十八禁免费视频| 99热全是精品| 国产成人精品久久二区二区91| xxxhd国产人妻xxx| 国产免费av片在线观看野外av| bbb黄色大片| 亚洲国产精品成人久久小说| 久久国产精品大桥未久av| √禁漫天堂资源中文www| 久久久久久久大尺度免费视频| 大陆偷拍与自拍| 久久久精品94久久精品| 亚洲成人免费av在线播放| 又大又爽又粗| 曰老女人黄片| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 精品人妻在线不人妻| 国产成人一区二区三区免费视频网站| 亚洲中文字幕日韩| 国产成人精品无人区| 精品国内亚洲2022精品成人 | 成年人午夜在线观看视频| 国产日韩欧美亚洲二区| 大香蕉久久网| 一区在线观看完整版| 国产亚洲欧美精品永久| 97精品久久久久久久久久精品| h视频一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲欧洲日产国产| 亚洲成人免费电影在线观看| 国产欧美亚洲国产| 中文字幕人妻熟女乱码| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 亚洲精品粉嫩美女一区| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人欧美特级aaaaaa片| 嫩草影视91久久| 国产三级黄色录像| 亚洲av男天堂| 亚洲午夜精品一区,二区,三区| 国产又爽黄色视频| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| 亚洲 国产 在线| 在线精品无人区一区二区三| 精品国产一区二区久久| 免费日韩欧美在线观看| 欧美午夜高清在线| 91国产中文字幕| 制服人妻中文乱码| 国产成人欧美| 成在线人永久免费视频| 亚洲精品国产一区二区精华液| www日本在线高清视频| 国产精品二区激情视频| 美女扒开内裤让男人捅视频| 亚洲国产毛片av蜜桃av| 国产麻豆69| 在线观看www视频免费| 大陆偷拍与自拍| 国产成人av激情在线播放| 免费少妇av软件| 国产av又大| 在线十欧美十亚洲十日本专区| 精品少妇黑人巨大在线播放| 国产精品 欧美亚洲| 嫩草影视91久久| 在线观看免费日韩欧美大片| av不卡在线播放| 岛国毛片在线播放| 淫妇啪啪啪对白视频 | 国产国语露脸激情在线看| 久久人人爽人人片av| 免费观看av网站的网址| 啦啦啦在线免费观看视频4| h视频一区二区三区| 99热网站在线观看| 亚洲专区中文字幕在线| 免费高清在线观看视频在线观看| 国产精品久久久久久精品电影小说| 亚洲av日韩精品久久久久久密| 亚洲精品国产色婷婷电影| tube8黄色片| 日韩有码中文字幕| 欧美 日韩 精品 国产| 亚洲精品日韩在线中文字幕| a 毛片基地| 国产有黄有色有爽视频| 精品少妇内射三级| 在线天堂中文资源库| 国产高清videossex| 久久久国产欧美日韩av| 两人在一起打扑克的视频| 久久久久久久大尺度免费视频| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 国产伦人伦偷精品视频| 亚洲欧美清纯卡通| 老司机影院毛片| 黄色a级毛片大全视频| 人妻 亚洲 视频| 两人在一起打扑克的视频| 欧美 日韩 精品 国产| a在线观看视频网站| www日本在线高清视频| 天天添夜夜摸| 在线观看免费高清a一片| 人妻一区二区av| 欧美中文综合在线视频| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 久久人人97超碰香蕉20202| 亚洲美女黄色视频免费看| 97人妻天天添夜夜摸| 性色av乱码一区二区三区2| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 夫妻午夜视频| 久热这里只有精品99| 老司机午夜福利在线观看视频 | 久久精品熟女亚洲av麻豆精品| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 国产av又大| 亚洲欧美激情在线| 国产成人影院久久av| a级毛片黄视频| 天堂中文最新版在线下载| 99九九在线精品视频| 亚洲中文av在线| 国产成人av激情在线播放| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 日韩视频在线欧美| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 一本—道久久a久久精品蜜桃钙片| 99久久人妻综合| 欧美日韩一级在线毛片| 狠狠精品人妻久久久久久综合| 制服诱惑二区| 成人av一区二区三区在线看 | 99国产极品粉嫩在线观看| 国产熟女午夜一区二区三区| 国产高清视频在线播放一区 | 亚洲少妇的诱惑av| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 视频区图区小说| 国产欧美日韩一区二区三区在线| 女警被强在线播放| 成年av动漫网址| 麻豆国产av国片精品| 黄网站色视频无遮挡免费观看| 中国美女看黄片| 777久久人妻少妇嫩草av网站| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 久久99一区二区三区| 热99国产精品久久久久久7| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| 久久综合国产亚洲精品| 91精品三级在线观看| 天堂8中文在线网| 91麻豆精品激情在线观看国产 | 亚洲国产日韩一区二区| 日日摸夜夜添夜夜添小说| 十八禁网站网址无遮挡| 久久国产亚洲av麻豆专区| 国产一区二区激情短视频 | 成年美女黄网站色视频大全免费| 超碰成人久久| 狠狠狠狠99中文字幕| 天天添夜夜摸| 一本综合久久免费| 国产伦人伦偷精品视频| 久久久久网色| 久久精品国产亚洲av高清一级| 亚洲欧美日韩高清在线视频 | 亚洲人成电影观看| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 久久久久国产精品人妻一区二区| 日韩大码丰满熟妇| 国产亚洲一区二区精品| 大香蕉久久成人网| 国产一级毛片在线| 一区二区av电影网| av在线app专区| 国产成人免费观看mmmm| 日韩 欧美 亚洲 中文字幕| www.精华液| 日韩欧美一区二区三区在线观看 | 最新的欧美精品一区二区| 一级a爱视频在线免费观看| a级毛片在线看网站| 九色亚洲精品在线播放| 十八禁人妻一区二区| 亚洲精品在线美女| 在线观看免费午夜福利视频| 国产精品影院久久| 色综合欧美亚洲国产小说| 精品一品国产午夜福利视频| 欧美大码av| 亚洲,欧美精品.| 国产精品一区二区免费欧美 | 99国产精品一区二区三区| 满18在线观看网站| 国产视频一区二区在线看| 在线观看免费日韩欧美大片| 在线亚洲精品国产二区图片欧美| 日韩一卡2卡3卡4卡2021年| 丁香六月天网| 欧美中文综合在线视频| 高清视频免费观看一区二区| 美女福利国产在线| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩av久久| 久久久久国内视频| 美女视频免费永久观看网站| 人人妻人人澡人人看| 老熟女久久久| 婷婷丁香在线五月| 久久中文看片网| 黄色怎么调成土黄色| 国产三级黄色录像| 超碰成人久久| 欧美在线一区亚洲| 热re99久久精品国产66热6| av福利片在线| 在线观看人妻少妇| 一区二区av电影网| 国产日韩欧美亚洲二区| 国产成人啪精品午夜网站| 久久久欧美国产精品| 国产一区二区 视频在线| 国产在线视频一区二区| 亚洲欧美一区二区三区久久| 永久免费av网站大全| 97精品久久久久久久久久精品| 中文欧美无线码| 亚洲 国产 在线| e午夜精品久久久久久久| 免费黄频网站在线观看国产| av一本久久久久| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 交换朋友夫妻互换小说| 婷婷成人精品国产| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| 高清在线国产一区| 亚洲精品粉嫩美女一区| 欧美性长视频在线观看| 日韩大码丰满熟妇| 成人国产一区最新在线观看| av又黄又爽大尺度在线免费看| 在线永久观看黄色视频| 一区二区三区四区激情视频| 国产精品av久久久久免费| a级毛片黄视频| 亚洲五月婷婷丁香| 人人妻,人人澡人人爽秒播| 久久久久视频综合| a级片在线免费高清观看视频| 国产高清国产精品国产三级| www.999成人在线观看| 亚洲色图综合在线观看| 国内毛片毛片毛片毛片毛片| 久久国产精品影院| bbb黄色大片| 久久国产精品男人的天堂亚洲| 国产精品一区二区在线不卡| 国产免费现黄频在线看| 一边摸一边抽搐一进一出视频| 久久性视频一级片| 涩涩av久久男人的天堂| 久久久久精品国产欧美久久久 | 多毛熟女@视频| 一二三四社区在线视频社区8| 少妇猛男粗大的猛烈进出视频| 久久人妻熟女aⅴ| 久久人人爽人人片av| 99热国产这里只有精品6| 国产亚洲av片在线观看秒播厂| 亚洲avbb在线观看| 国产一区二区三区综合在线观看| 又黄又粗又硬又大视频| 久久久久国内视频| 久久精品国产a三级三级三级| 色综合欧美亚洲国产小说| 久久av网站| netflix在线观看网站| 天天操日日干夜夜撸| 丰满饥渴人妻一区二区三| 亚洲欧美成人综合另类久久久| 国产成人系列免费观看| 黄片播放在线免费| 俄罗斯特黄特色一大片| 亚洲欧美激情在线| 亚洲av男天堂| 亚洲成人国产一区在线观看| 精品国产国语对白av| 日韩人妻精品一区2区三区| 黄色 视频免费看| 久久久久视频综合| 国产精品二区激情视频| 亚洲自偷自拍图片 自拍| 桃红色精品国产亚洲av| 人人妻,人人澡人人爽秒播| 国产精品 欧美亚洲| 亚洲中文av在线| 老司机亚洲免费影院| 制服诱惑二区| 久久国产精品男人的天堂亚洲| 黄色a级毛片大全视频| 日韩欧美免费精品| 亚洲精品在线美女| 成人国语在线视频| 精品乱码久久久久久99久播| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| 国产野战对白在线观看| 亚洲情色 制服丝袜| 国产有黄有色有爽视频| 在线观看www视频免费| 欧美黄色淫秽网站| 欧美黄色片欧美黄色片| 老司机深夜福利视频在线观看 | 精品人妻一区二区三区麻豆| 搡老乐熟女国产| 久久女婷五月综合色啪小说| 日韩 亚洲 欧美在线| 亚洲欧美成人综合另类久久久| 日韩欧美一区视频在线观看| 亚洲成人手机| 最新的欧美精品一区二区| 亚洲少妇的诱惑av| 9色porny在线观看| 狠狠婷婷综合久久久久久88av| 亚洲精品在线美女| 欧美一级毛片孕妇| 国产欧美日韩精品亚洲av| 国产精品熟女久久久久浪| 久9热在线精品视频| 美女中出高潮动态图| 久久青草综合色| 交换朋友夫妻互换小说| 日韩制服丝袜自拍偷拍| 国产高清videossex| 最近中文字幕2019免费版| 国产亚洲av高清不卡| 色婷婷av一区二区三区视频| 蜜桃在线观看..| av电影中文网址| 成年人黄色毛片网站| 日韩视频在线欧美| 99国产精品99久久久久| 中国美女看黄片| 丁香六月天网| 精品国产乱子伦一区二区三区 | 婷婷成人精品国产| 亚洲精品国产一区二区精华液| 国产精品.久久久| 一级a爱视频在线免费观看| 少妇人妻久久综合中文| 亚洲男人天堂网一区| 欧美精品啪啪一区二区三区 | 国产精品国产三级国产专区5o| 日本vs欧美在线观看视频| 美女高潮喷水抽搐中文字幕| 欧美人与性动交α欧美软件| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费观看性视频| 9191精品国产免费久久| 欧美亚洲 丝袜 人妻 在线| 在线观看人妻少妇| 精品国内亚洲2022精品成人 | 久久久欧美国产精品| 一本综合久久免费| 欧美精品一区二区免费开放| 欧美在线黄色| 真人做人爱边吃奶动态| 最新的欧美精品一区二区| 少妇精品久久久久久久| 国产欧美日韩一区二区三区在线| www.熟女人妻精品国产| 精品国产一区二区三区久久久樱花| 婷婷色av中文字幕| 国产成人啪精品午夜网站| 黄色视频,在线免费观看| 蜜桃国产av成人99| √禁漫天堂资源中文www| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| 国产精品免费大片| 免费高清在线观看日韩| 蜜桃国产av成人99| 免费av中文字幕在线| 91av网站免费观看| 久久久久久人人人人人| 国产精品一区二区在线不卡| 狠狠狠狠99中文字幕| 老熟女久久久| 亚洲欧美日韩高清在线视频 | 国产精品一区二区在线不卡| 亚洲精品中文字幕一二三四区 | 久久人妻福利社区极品人妻图片| 久久久久久免费高清国产稀缺| 亚洲avbb在线观看| 亚洲九九香蕉| 三上悠亚av全集在线观看|