• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Receptivity of plane Poiseuille flow to local micro-vibration disturbance on wall

    2015-12-31 09:05:50
    Water Science and Engineering 2015年2期

    * Corresponding author.

    ?

    Receptivity of plane Poiseuille flow to local micro-vibration disturbance on wall

    Wei-dong Cao*,Qi-xiang Hu,Bing Liu

    Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang 212013,PR China

    Received 16 June 2014; accepted 23 February 2015 Available online 26 April 2015

    * Corresponding author.

    Abstract

    The receptivity of plane Poiseuille flow to local single-period micro-vibration disturbances with different phases at the top and bottom walls was investigated through direct numerical simulation of three-dimensional incompressible Navier-Stokes equations.Results show that the disturbance presents a symmetrical distribution in the spanwise direction when the micro-vibration on the wall ends,and the initial disturbance velocities and spatial distribution of the disturbance structure are different at the top and bottom walls.The disturbance's velocity,amplitude,and high- and low-speed streaks increase with time,and the amplitude of streamwise disturbance velocity is larger than those of spanwise and vertical disturbance velocities.However,no significant Tollmien-Schlichting wave was found in the flow field.The number of disturbance vortex cores gradually increases with the disturbance area.High-speed disturbance fluid concentrates near the wall and its normal velocity largely points to the wall,while low-speed disturbance fluid largely deviates from the wall.Furthermore,the streamwise velocity profiles near the top and bottom walls both become plump because of the existence of the disturbances,and the streamwise velocity profiles show a trend of evolving into turbulent velocity profiles.The shear stress near the wall increases significantly.The local micro-vibration disturbance on the wall in plane Poiseuille flow can induce the development of a structure similar to turbulent spots.?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Poiseuille flow; Disturbance; Velocity profile; Vortex; High- and low-speed streaks

    This work was supported by the National Natural Science Foundation of China (Grant No.51179075)and the Natural Science Foundation of Jiangsu Province (Grant No.BK20131256).

    E-mail address: cwd@ujs.edu.cn (Wei-dong Cao).Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.04.006

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Due to the significant influence of laminar-turbulent transition on heat transfer,mass transfer,momentum transfer,and wall friction near the wall,a large number of scholars have focused their research on the laminar-turbulent transition and control of the boundary layer in recent years.The three processes of transition include receptivity,linear disturbance evolution,and nonlinear evolution.Transition is a complex process relating to the Reynolds number,wall temperature,the wall shape,wall roughness,fluid compressibility,the pressure gradient,external noise,and external disturbance.Various flow structures are found under various conditions,especially in channel flow,pipes,and other simple shear flows.Transition at the initial stage is usually characterized by distortions in the local flow field caused by local micro-disturbance,and unstable high- and low-speed strip areas emerging near the wall,leading to complex vortices with gradually increasing vortex intensity downstream.The dynamic characteristics of disturbance are similar to those of coherent structures in fully developed turbulent boundary layers,whereas they are significantly different from the classical transition process,which is characterized by Tollmien-Schlichting waves showing linear growth,nonlinear instability,secondary instability,and,finally,a three-dimensional nonlinear effect.

    Ellingsen and Palm (1975)first put forward a probable growth mechanism in the sense of a non-natural transition.Asmicro-disturbance of spanwise vortices occurs in the shear layer,the streamwise disturbance velocity grows linearly with time,and high- and low-speed streaks appear in non-viscous ideal fluid.Landahl (1980)also obtained a similar conclusion that constantly lifting fluid particles with horizontal momentum in shear flow cause the disturbance of stream velocity,which means that there is a transient growth mechanism where non-viscous growthcoexists withviscous damping.Blackwelder (1983)found that vortex dynamics of reverse streamwise vortices in the turbulent boundary layer and in the laminar-turbulent transition zone of the boundary layer are similar and their scales are also similarly represented by the viscous length.Acarlar and Smith (1987)found that artificial disturbance near the wall of the laminar boundary layer led to lateral vortex line deformation and the disturbance developed into a hairpin vortex.Henningson et al.(1987)investigated the characteristics of vortex structures in Poiseuille flow and the boundary layer through numerical methods by designing an initial local disturbance near the wall.Testing results of the hot-wire anemometer proved that the vortex structures exist as one kind of multi-eddy structure.Haidari and Smith (1994)examined the generation and growth of single hairpin vortices created by controlled surface fluid injection within a laminar boundary layer over a range of the Reynolds number.Rosenfeld et al.(1999)proposed a general model to describe the evolution of local three-dimensional disturbance,which showed that the size of disturbance was much smaller than the characteristic length of the external shear flow.Using this model,the spanwise vortex was pulled to the outer region due to the effect of the disturbance jet,and the disturbance extended in the normal direction,while it was also stretched by the shear flow of the outer region and re-rotated into the inner region; these processes promoted the growth and enlargement of streamwise vortices,which directly caused the increase of the normal velocity as well as the intensity of upper jet-flow (Rosenfeld et al.,1999).Andersson et al.(1999)found that,owing to the effect of viscous dissipation,there was considerable linear growth in three-dimensional disturbance before attenuation.Streamwise vortices can induce instantaneous maximum growth in space in a non-parallel flat plate boundary layer.If the amplitude of streaks reaches a sufficiently large value,secondary instability will occur and induce the primeval breakdown and transition (Andersson et al.,1999).Li (2001)experimentally investigated the generation mechanism of streamwise vortices in the transition region and examined the physical process,caused by the axial vortex instability induced by the interaction of the L-vortex and secondary vortex rings.Svizher and Cohen (2001)used a continuous injection to generate hairpin vortices in subcritical plane Poiseuille flow.Zhang and Tang (2006)simulated the generation and development of turbulent spots with the local streamwise velocity pulse of fluid as the initial disturbance near the wall in channel flow,and analyzed the characteristics of nonlinear evolution of turbulent spots.Lu et al.(2008)researched the evolutionary mechanisms and characteristics of the vortex structure stimulated by the local constant wall velocity pulse during a period of time in the boundary layer with the pressure gradient.Lee and Wu (2008)presented direct comparisons of experimental results of transition in wallbounded flows obtained by flow visualizations,hot-film measurement,and particle-image velocimetry,along with a brief mention of relevant theoretical progresses,based on a critical review of about 120 selected publications.Despite somewhat different initial disturbance conditions used in experiments,the flow structures were found to be practically the same.

    Although there has been some progress,through experiments and numerical simulations,improving our understanding of the temporal and spatial evolution characteristics of disturbance in laminar shear flow,further research is needed to investigate the effect and mechanisms of basic flow deformation on the disturbance growth,as well as the receptivity problems induced by initial disturbance differences at the walls in simple shear flow.Currently,wall disturbance is a common method of investigating receptivity problems such as the evolution of disturbance and mean flow profile changes in Poiseuille flow in experiments and numerical calculations.In this study,local single-period micro-vibrations with opposite phases were applied to the top and bottom walls in plane Poiseuille flow.

    2.Numerical methods

    2.1.Governing equations and numerical method

    The governing equations adopted were the incompressible,non-dimensional Navier-Stokes equations,and continuity equation: where Re is the Reynolds number; U is the numerical solution of Poiseuille basic flow,andwhere u0,v0,and w0are the streamwise,vertical,and spanwise velocities,respectively; u is the three-dimensional disturbance velocity vector,andwhere u0,v0,and w0are the streamwise disturbance velocity,vertical disturbance velocity,and spanwise disturbance velocity,respectively; and p0is the three-dimensional disturbance pressure.In this paperhere U∞is twice the maximum velocity of Poiseuille basic flow,h is 0.5 times the width of the two-dimensional channel,and y is the kinematic viscosity.The procedures of direct numerical simulation of Eqs.(1)and (2)were as follows: the third-order mixed explicit-implicit scheme was used for time discretization,the Fourier spectral expansion was used in the spanwise direction,the fifth-order upwind compact finite difference scheme was used for the nonlinear terms,the five-point central non-equidistant difference scheme was used for the Helmholtz equations,the fifthorder symmetrical compact finite difference scheme was used for the viscous terms,and the time step was 0.01.The numerical method is described in detail in Lu et al.(2006).

    2.2.Computation domain and boundary conditions

    Owing to the limitation of the computing capacity,the computational domain wasandin the streamwise,vertical,and spanwise directions,respectively.The numbers of mesh points in the x and z directions were 400 and 32,respectively,with uniform distribution.The number of mesh points in the y direction was 80,with non-uniformly distributed mesh points near the wall deliberately refined.The node coordinate y(j)in the y direction can be expressed as

    3.Results and discussion

    For Poiseuille basic flow,we have u0?u0(y)?0.5(1y)2,v0?0,and w0?0.Thus,the governing equations can be simplified as follows:

    Inflow boundary conditions were x?0,u?0,and vp0/vx?0.Outflow boundary conditions were x?80,the non-reflecting boundary condition,and vp0/vx?0.Boundary conditions at the top wall were y?1,vu/vy?0,and p0?0.Boundary condition at the bottom wall were y?1,vu/vy?0,and p0?0.

    To perform approximate simulations of the wall micro-jet or local forced vibration,initial disturbance was set as a local single-period micro-vibration on the walls at y?1 and y?1.The mesh deformation was not considered in this study.The vertical disturbance velocity at mesh points in the circle region withis supposed to bewhere r is the distance from the mesh point to the point (10,1,0)at the top wall or the point (10,1,0)at the bottom wall,T is the vibration period,t is the time of vibration,T?20,and t < 20.The amplitude of the small disturbance velocity is commonly set to be about one percent of the maximum mean basic flow velocity,and a relatively small amplitude of the disturbance velocity can lead to a relatively long period of evolution of the disturbance.Thus,the amplitude of the disturbance velocity was tested and set at 0.007 5.As the interior between the top and bottom walls is the flow region,the actual disturbance phase at the top wall was opposite to that at the bottom wall in this study.The computational domain is shown in Fig.1,where points (10,1,0)and (10,1,0)are the centre points of initially circular disturbance.

    The disturbance amplitude is defined as

    qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    The disturbance amplitude and the maximum absolute values of three-dimensional disturbance velocities are shown in Fig.2.

    It can be seen from Fig.2 that when t < 10,the disturbance amplitude A gradually increases to 0.02 and approaches the value ofWhen 10 < t < 20,the disturbance amplitude A remains at 0.02.As the disturbance in Poiseuille flow evolves and develops constantly,the disturbance amplitude A shows a linear growth trend whendemonstrates a same growth trend,whilestill remain at a lower level.However,when the disturbance amplitude is greater than 0.06 and 40 < t < 90,the disturbance amplitude A shows a nonlinear growth trend and even reaches the maximum value of Poiseuille basic flowalso increase rapidly,to over 0.1,particularly when t > 80,presents an accelerating growth trend.It can be prehat such a large disturbance velocity will cause strong shear layers and complex vortices,and the velocity profiles of original Poiseuille basic flow will be greatly modified.

    Fig.1.Computation domain.

    Simulation results show that the absolute values of streamwise and vertical disturbance velocities on the plane z?0 are at their maximum.Fig.3 shows the distribution of the streamwise and vertical disturbance velocities on the plane z?0.When t?20,there is an obvious clockwise vortex core in the disturbance flow field at the point (x?14.2,y?0),which is defined as the original vortex core hereafter,on the left and right sides of the original vortex core,there is arelatively obvious vortex core,and the main range of the disturbance is 10 < x < 18.When t?40,the original vortex core moves to the point (x?18.4,y?0),two vortex cores occur on the right side of the original one,while there is still only one vortex core on its left side,and the main range of the disturbance is 14 < x < 26.When t?60,the original vortex core moves to the point (x?22.6,y?0),three vortex cores are generated on the right side of the original one,while there is still only one vortex core on its left side,and the main range of disturbance is 17 < x < 33.When t?90,the original vortex core moves to the point (x?29.4,y?0),five vortex cores are generated on the right side of the original one,and two are generated on its left side,and the main range of disturbance is 22 < x < 45.The disturbance vortex core's moving velocity is about 0.45 times the maximum velocity of Poiseuille basic flow.Singer (1996)concluded that the streamwise velocity of turbulent spots at the initial stage in the boundary layer was 0.5 times the maximum velocity of basic flow.When 20 < t < 60,the expansion speed of the main disturbance area is about 0.4 times the maximum velocity of Poiseuille basic flow,almost equal to the streamwise expansion speed of turbulent spots in the plane Couette flow simulated by Lundbladh and Johansson (1991).When 60 < t < 90,the disturbance is in the rapidly growing stage,and the mean expansion speed of the main disturbance area seems to show an accelerating trend,reaching 0.46 times the maximum velocity of Poiseuille basic flow.

    Fig.2.Disturbance amplitude and maximum absolute values of threedimensional disturbance velocities.

    As can be seen from Fig.3(a),the induced disturbance flow field is generally anti-symmetrical in the y direction at t?20.However,there are exceptions,e.g.,the amplitude of disturbance velocity at the point (x?12.8,y?0.64)is different from that at the point (x?12.8,y?0.64),as shown in the block diagram in Fig.3(a).

    Fig.3.Streamwise and vertical disturbance velocities for plane z?0 at different times.

    High-speed fluid (u0> 0)and low-speed fluid (u0< 0)are largely concentrated in the region near y?1 or y?1 as the disturbance moves downstream with time.Most high-speed fluid sweeps downwards along the wall,while low-speed fluid deviates from the wall upwards.These characteristics are similar to the bursting characteristics of coherent structures in classical turbulence examined by Kline et al.(1967).The disturbance flow field becomes complex at t?60 and 90: it isno longer anti-symmetrical in the y direction,high-intensity vortices are distributed densely,and high- and low-speed streaks are distributed in a staggered manner.At t?90,a large amount of high-speed fluid (u0> 0)is concentrated near the walls at y?±1.This situation rapidly changes the shear stress.

    Disturbance vortices play a vital role in energy generation and transportation as well as the formation of the laminarturbulent transition.Fig.4 shows the iso-surfaces with the disturbance vortex amplitude greater than 1.There are different scales of disturbance vortices in the flow field,mainly distributed in the region near the plane y?1 or y?1,and symmetrically distributed with respect to the plane z?0.However,the area size,shape,and amplitude of disturbance vortices near the planes y?1 and y?1 are different,due to different levels of receptivity of the flow field to different initial disturbances.The distributions of vortices at t?60 are focused on the top and bottom walls and the vortex area at the bottom wall is greater than that at the top wall.When t?90,large vortices have reached the central area.The vertical velocity is relatively large at y?0,as shown in Fig.3,but the vortices' amplitude is not large (Fig.4).Micro-complex flow structure is mainly concentrated near the wall,and the nearwall region is the most active area,where the flow instability,transition,and turbulence occur.

    Fig.5 shows the distribution of streamwise disturbance velocity on the planes y?0.1 and y?0.1.Due to the periodic boundary conditions in the spanwise direction,the streamwise disturbance velocity distribution is symmetrical with respect to z?0.The streamwise disturbance velocity generally shows a certain fluctuation in the flow direction,and the area with positive streamwise disturbance velocity is larger than the area with negative streamwise disturbance velocity.The disturbance velocity amplitude changes greatly and there are many local deformations.The streamwise disturbance velocity at x?29 is a trough on the plane y?0.1,and the distances between peaks are not equal.These facts indicate that Tollmien-Schlichting wave characteristics are nonexistent here,which is consistent with the direct numerical simulation results from Singer (1996).

    Fig.4.Iso-surfaces with disturbance vortex amplitude greater than 1.0.

    Fig.5.Streamwise disturbance velocity on different planes.

    The solid lines in Fig.6 represent the velocity profile of the original Poiseuille basic flow.The dashed lines and dotted lines represent the velocity profiles of the Poiseuille basic flow added by the local mean value of the streamwise disturbance velocity.As can be seen from Fig.6,when t?60,the three velocity profiles are similar to one another,and in fact there is almost no difference between them; when t?90,the difference between the three velocity profiles can be easily discerned.On the one hand,because of the presence of disturbance velocity,the shear stress closest to the wall significantly increases.On the other hand,under the conditions of different initial disturbances at the top and bottom walls in Poiseuille basic flow,the wall mean velocity profiles all become plump after a period of evolution.Although the disturbance is only in its initial stage,the streamwise velocity profile has a tendency to evolve into the turbulent mean velocity profile.Furthermore,the velocity profile for 25 < x < 40 is plumper than the other two velocity profiles and the average shear stress near the top and bottom walls for 25 < x < 40 is greater than that in Poiseuille basic flow.

    4.Conclusions

    The receptivity of plane Poiseuille flow to local singleperiod micro-vibrations with different phases at the top and bottom walls was investigated with direct numerical simulation.The main conclusions are as follows:

    Fig.6.Profiles of streamwise velocity at different times.

    (1)Although small-amplitude disturbance waves in Poiseuille flow at Re?5 000 are attenuated based on linear stability theory,the disturbance growth mechanism described in this paper is similar to the bursting characteristics of coherent structures in classical turbulence.

    (2)High- and low-speed streaks,vortices,propagation velocity and other characteristics of the disturbance structures are similar to the characteristics of turbulent spots and coherent structures in the turbulent boundary layer.

    (3)The flow field of plane Poiseuille flow induced by local single-period micro-vibrations with different phases at the top and bottom walls makes the streamwise velocity profiles plump at the top and bottom walls.The streamwise velocity profiles even show a trend of evolving into a turbulent mean velocity profile.

    References

    Acarlar,M.S.,Smith,C.R.,1987.A study of hairpin vortices in a laminar boundary layer,Part 1: Hairpin vortices generated by a hemisphere protuberance.J.Fluid Mech.175(1),1e41.http://dx.doi.org/10.1017/S0022112087000272.

    Andersson,P.,Berggren,M.,Henningson,D.S.,1999.Optimal disturbances and bypass transition in boundary layers.Phys.Fluids 11(1),134e151.

    Blackwelder,R.F.,1983.Analogies between transitional and turbulent boundary layers.Phys.Fluids 26(8),2807e2815.http://dx.doi.org/10.1063/1.864047.

    Ellingsen,T.,Palm,E.,1975.Stability of linear flow.Phys.Fluids 18(1),487e502.http://dx.doi.org/10.1063/1.861156.

    Haidari,A.H.,Smith,C.R.,1994.The generation and regeneration of single hairpin vortices.J.Fluid Mech.277(1),135e162.http://dx.doi.org/10.1017/S0022112094002715.

    Henningson,D.,Spalart,P.,Kim,J.,1987.Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow.Phys.Fluids 30(10),2914e2918.http://dx.doi.org/10.1063/1.866067.

    Kline,S.L.,Reynolds,W.C.,Schraub,F.A.,Runstadler,P.W.,1967.The structure of turbulent boundary layers.J.Fluid Mech.30(4),741e773.http://dx.doi.org/10.1017/S0022112067001740.

    Landahl,M.T.,1980.A note on an algebraic instability of inviscid parallel shear flows.J.Fluid Mech.98(2),243e251.http://dx.doi.org/10.1017/S0022112080000122.

    Lee,C.B.,Wu,J.Z.,2008.Transition in wall-bounded flows.Appl.Mech.Rev.61(3),030802.http://dx.doi.org/10.1115/1.2909605.

    Li,C.B.,2001.On the formation of the streamwise vortex in a transitional boundary layer.Acta Phys.Sin.50(1),182e190 (in Chinese).

    Lu,C.G.,Cao,W.D.,Qian,J.H.,2006.A study on numerical method of Navier-stokes equations and nonlinear evolution of the coherent structure in a laminar boundary layer.J.Hydrodynamics (Ser.B)18(3),372e377.http://dx.doi.org/10.1016/S1001-6058(06)60019-X.

    Lu,C.G.,Cao,W.D.,Zhang,Y.M.,Peng,J.T.,2008.Large eddies induced by local impulse at wall of boundary layer with pressure gradients.Prog.Nat.Sci.18(7),873e878.http://dx.doi.org/10.1016/j.pnsc.2008.02.007.

    Lundbladh,A.,Johansson,A.V.,1991.Direct simulation of turbulent spots in plane Couette flow.J.Fluid Mech.229(1),499e516.http://dx.doi.org/10.1017/S0022112091003130.

    Rosenfeld,M.,Cohen,J.,Levinski,V.,1999.The effect of rotation on the growth of hairpin vortices in shear flows.In: the First International Symposium on Turbulence and Shear Flow Phenomena.Begell House Inc.,New York.

    Singer,B.A.,1996.Characteristics of a young turbulent spot.Phys.Fluids 37(2),509e521.http://dx.doi.org/10.1063/1.868804.

    Svizher,A.,Cohen,J.,2001.The evolution of hairpin vortices in subcritical air channel flow.In: 54th annual meeting of the division of fluid dynamics.American Physical Society,San Diego.

    Zhang,L.,Tang,D.B.,2006.Nonlinear evolution of turbulent spots in the near-wall shear flow.Sci.China (Ser.G)36(1),103e112.http://dx.doi.org/10.1007/s11433-006-0158-4.

    色综合欧美亚洲国产小说| 黄频高清免费视频| 欧美在线黄色| 人人妻,人人澡人人爽秒播| 成人黄色视频免费在线看| 神马国产精品三级电影在线观看 | avwww免费| 亚洲在线自拍视频| 久久久久久亚洲精品国产蜜桃av| 国产精品久久视频播放| videosex国产| 亚洲精品美女久久av网站| 一a级毛片在线观看| 91成人精品电影| 妹子高潮喷水视频| 午夜激情av网站| 一本大道久久a久久精品| av网站在线播放免费| 老鸭窝网址在线观看| 999久久久精品免费观看国产| 久久伊人香网站| 免费在线观看完整版高清| 亚洲精品成人av观看孕妇| 国产精品一区二区免费欧美| 国产精品美女特级片免费视频播放器 | 夜夜看夜夜爽夜夜摸 | 亚洲精品国产一区二区精华液| 成人黄色视频免费在线看| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 免费在线观看黄色视频的| 国产精品偷伦视频观看了| 久久天躁狠狠躁夜夜2o2o| 满18在线观看网站| 俄罗斯特黄特色一大片| 日韩视频一区二区在线观看| 99re在线观看精品视频| 在线观看免费视频日本深夜| av天堂久久9| 午夜亚洲福利在线播放| 国产三级黄色录像| 丁香欧美五月| 一区二区三区激情视频| 热re99久久精品国产66热6| 亚洲人成网站在线播放欧美日韩| 亚洲色图av天堂| 深夜精品福利| 女性被躁到高潮视频| 91九色精品人成在线观看| 日日摸夜夜添夜夜添小说| 黄色毛片三级朝国网站| 亚洲精品av麻豆狂野| 国产99久久九九免费精品| 人妻丰满熟妇av一区二区三区| 怎么达到女性高潮| 青草久久国产| 日韩av在线大香蕉| 午夜免费成人在线视频| 亚洲av成人一区二区三| 国产成人av激情在线播放| 久久香蕉激情| 亚洲熟妇熟女久久| 男女做爰动态图高潮gif福利片 | 成年人黄色毛片网站| 午夜精品久久久久久毛片777| 后天国语完整版免费观看| 久久久久九九精品影院| av福利片在线| 精品久久久久久电影网| av片东京热男人的天堂| 亚洲第一欧美日韩一区二区三区| 老司机福利观看| 三级毛片av免费| 99国产综合亚洲精品| 大型黄色视频在线免费观看| 无限看片的www在线观看| 亚洲人成电影观看| 欧美激情 高清一区二区三区| 久久欧美精品欧美久久欧美| 黄网站色视频无遮挡免费观看| 欧美国产精品va在线观看不卡| 亚洲精品av麻豆狂野| 国产欧美日韩综合在线一区二区| 国产成人精品久久二区二区91| 最好的美女福利视频网| 亚洲色图综合在线观看| 久久久国产成人精品二区 | 国产成+人综合+亚洲专区| 欧美乱色亚洲激情| 亚洲午夜精品一区,二区,三区| 老司机在亚洲福利影院| 亚洲人成网站在线播放欧美日韩| 12—13女人毛片做爰片一| 国产精品免费视频内射| 麻豆一二三区av精品| 亚洲精品国产一区二区精华液| 国产精品久久电影中文字幕| 亚洲精品国产色婷婷电影| 夜夜躁狠狠躁天天躁| 国产在线精品亚洲第一网站| 最新美女视频免费是黄的| 多毛熟女@视频| 欧美大码av| av国产精品久久久久影院| 免费观看精品视频网站| 麻豆一二三区av精品| 亚洲午夜理论影院| 日韩免费高清中文字幕av| a级毛片黄视频| 一级a爱视频在线免费观看| 亚洲欧美日韩高清在线视频| e午夜精品久久久久久久| 亚洲欧美一区二区三区黑人| 精品一品国产午夜福利视频| 国产高清视频在线播放一区| 好看av亚洲va欧美ⅴa在| 欧美一级毛片孕妇| 老司机午夜十八禁免费视频| 久久性视频一级片| 中国美女看黄片| 亚洲国产欧美一区二区综合| 亚洲人成电影观看| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| 热99re8久久精品国产| 少妇的丰满在线观看| 高清在线国产一区| 国产精品一区二区在线不卡| 18禁美女被吸乳视频| 老汉色av国产亚洲站长工具| 日韩精品免费视频一区二区三区| 日本五十路高清| 亚洲熟女毛片儿| 欧美精品亚洲一区二区| 老司机深夜福利视频在线观看| 香蕉久久夜色| 高清在线国产一区| 午夜91福利影院| 亚洲国产欧美一区二区综合| 欧美日韩视频精品一区| 大码成人一级视频| 免费在线观看日本一区| 丝袜美足系列| 久久久久久免费高清国产稀缺| 精品卡一卡二卡四卡免费| 美女福利国产在线| 日本免费a在线| 男人操女人黄网站| 亚洲精品国产色婷婷电影| 好看av亚洲va欧美ⅴa在| 国产精品综合久久久久久久免费 | 亚洲av成人一区二区三| 亚洲国产欧美日韩在线播放| 午夜免费观看网址| 夜夜爽天天搞| 性欧美人与动物交配| 精品高清国产在线一区| 久久婷婷成人综合色麻豆| 日韩欧美一区二区三区在线观看| 欧美成人性av电影在线观看| 操美女的视频在线观看| 一级毛片高清免费大全| 亚洲成人久久性| 99热只有精品国产| 亚洲成av片中文字幕在线观看| 69av精品久久久久久| 欧美黄色淫秽网站| 国产成人免费无遮挡视频| 亚洲专区国产一区二区| 99re在线观看精品视频| 99国产综合亚洲精品| 无人区码免费观看不卡| 怎么达到女性高潮| 亚洲精品在线美女| 欧美老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影| 久久这里只有精品19| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 美女午夜性视频免费| 亚洲性夜色夜夜综合| 久99久视频精品免费| 亚洲 欧美一区二区三区| 老司机靠b影院| 一级片'在线观看视频| 国产成人欧美在线观看| 老司机午夜十八禁免费视频| 久久久久国产一级毛片高清牌| 淫妇啪啪啪对白视频| 可以在线观看毛片的网站| 91精品国产国语对白视频| 免费一级毛片在线播放高清视频 | 久久久久国产一级毛片高清牌| www.熟女人妻精品国产| 久久国产亚洲av麻豆专区| 9191精品国产免费久久| 国产一区二区三区视频了| 97碰自拍视频| 久久精品国产清高在天天线| 性色av乱码一区二区三区2| 欧美日韩视频精品一区| √禁漫天堂资源中文www| 亚洲中文日韩欧美视频| 激情视频va一区二区三区| 欧美在线黄色| 丝袜美腿诱惑在线| av福利片在线| 成人18禁在线播放| 男男h啪啪无遮挡| 好看av亚洲va欧美ⅴa在| 久久久久久免费高清国产稀缺| 国产又爽黄色视频| 国产三级黄色录像| 丝袜人妻中文字幕| 日本vs欧美在线观看视频| 两个人看的免费小视频| 日韩国内少妇激情av| 国产一区二区三区视频了| av在线播放免费不卡| 久久久水蜜桃国产精品网| 美女高潮喷水抽搐中文字幕| 久久精品国产亚洲av高清一级| 日本a在线网址| 欧美日韩福利视频一区二区| 91大片在线观看| 国产亚洲精品综合一区在线观看 | 熟女少妇亚洲综合色aaa.| 国产精品电影一区二区三区| 在线观看66精品国产| 91字幕亚洲| 免费少妇av软件| 亚洲成av片中文字幕在线观看| 狠狠狠狠99中文字幕| 制服诱惑二区| 亚洲人成电影免费在线| 国产区一区二久久| 日韩欧美在线二视频| 天堂影院成人在线观看| xxxhd国产人妻xxx| 午夜91福利影院| 国产精品国产高清国产av| 身体一侧抽搐| 国产精品久久久av美女十八| 精品乱码久久久久久99久播| а√天堂www在线а√下载| 波多野结衣一区麻豆| 美女 人体艺术 gogo| 99香蕉大伊视频| 性欧美人与动物交配| 国产精品一区二区在线不卡| 色老头精品视频在线观看| 妹子高潮喷水视频| 好男人电影高清在线观看| 午夜福利,免费看| 麻豆av在线久日| 校园春色视频在线观看| 美国免费a级毛片| 嫩草影视91久久| 亚洲成人国产一区在线观看| 亚洲av成人av| 一夜夜www| 精品久久久久久电影网| 成人三级做爰电影| 国产激情欧美一区二区| 看黄色毛片网站| 水蜜桃什么品种好| 久久欧美精品欧美久久欧美| 欧美黄色片欧美黄色片| 免费看十八禁软件| 可以免费在线观看a视频的电影网站| 久久国产亚洲av麻豆专区| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| av有码第一页| 一区二区三区精品91| 久久影院123| 亚洲午夜精品一区,二区,三区| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影 | 国产精品野战在线观看 | 久久精品人人爽人人爽视色| 国产精品偷伦视频观看了| 性欧美人与动物交配| 香蕉久久夜色| 美国免费a级毛片| 韩国av一区二区三区四区| 人人澡人人妻人| 看黄色毛片网站| 亚洲中文日韩欧美视频| 窝窝影院91人妻| 久久精品亚洲精品国产色婷小说| netflix在线观看网站| 757午夜福利合集在线观看| 亚洲精品成人av观看孕妇| 纯流量卡能插随身wifi吗| 亚洲视频免费观看视频| 国产精品 国内视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产一级毛片高清牌| 久久 成人 亚洲| 日本黄色视频三级网站网址| 久久人人97超碰香蕉20202| 80岁老熟妇乱子伦牲交| 久久久久久久精品吃奶| 一进一出抽搐动态| 久久久精品国产亚洲av高清涩受| 亚洲情色 制服丝袜| 色播在线永久视频| 老司机在亚洲福利影院| 好男人电影高清在线观看| 91成人精品电影| 亚洲熟妇熟女久久| 高清黄色对白视频在线免费看| 日本一区二区免费在线视频| 久久伊人香网站| 黄色怎么调成土黄色| av免费在线观看网站| 波多野结衣高清无吗| 欧美午夜高清在线| 欧美午夜高清在线| 成人亚洲精品一区在线观看| 日韩大码丰满熟妇| 欧美丝袜亚洲另类 | 男女高潮啪啪啪动态图| 国产成人av激情在线播放| 欧美乱码精品一区二区三区| 午夜视频精品福利| 亚洲成人国产一区在线观看| 久久九九热精品免费| 国产成人av激情在线播放| 悠悠久久av| 国产黄a三级三级三级人| 99在线视频只有这里精品首页| 91大片在线观看| 精品卡一卡二卡四卡免费| 欧美日韩亚洲高清精品| 欧美av亚洲av综合av国产av| 巨乳人妻的诱惑在线观看| 乱人伦中国视频| 中文字幕人妻丝袜一区二区| 1024视频免费在线观看| 老司机午夜福利在线观看视频| 亚洲色图综合在线观看| 久久婷婷成人综合色麻豆| 久久精品影院6| 国产精品偷伦视频观看了| 久久人妻av系列| 在线观看www视频免费| 欧美av亚洲av综合av国产av| 久久中文字幕人妻熟女| 国产97色在线日韩免费| 日韩精品中文字幕看吧| 精品一区二区三卡| 在线观看午夜福利视频| 高清av免费在线| 美女国产高潮福利片在线看| 日韩欧美一区视频在线观看| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 久久午夜亚洲精品久久| 丰满迷人的少妇在线观看| 国产成+人综合+亚洲专区| 日本免费一区二区三区高清不卡 | 少妇 在线观看| 91成人精品电影| 亚洲av日韩精品久久久久久密| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕最新亚洲高清| 亚洲欧美激情在线| 两个人免费观看高清视频| 免费搜索国产男女视频| 成人亚洲精品av一区二区 | 欧美日本中文国产一区发布| 久9热在线精品视频| 亚洲午夜理论影院| 乱人伦中国视频| 男女下面插进去视频免费观看| 亚洲avbb在线观看| 国产视频一区二区在线看| 国产精品二区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 99香蕉大伊视频| 真人做人爱边吃奶动态| 一本大道久久a久久精品| 国产精品亚洲一级av第二区| 免费av毛片视频| 亚洲精品国产精品久久久不卡| 国产熟女午夜一区二区三区| 亚洲精品久久午夜乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 久久久精品国产亚洲av高清涩受| 成人精品一区二区免费| 涩涩av久久男人的天堂| 国产免费现黄频在线看| aaaaa片日本免费| 黑人操中国人逼视频| 免费看a级黄色片| 国产有黄有色有爽视频| 首页视频小说图片口味搜索| 啦啦啦在线免费观看视频4| 欧美性长视频在线观看| 免费在线观看影片大全网站| 亚洲人成77777在线视频| 性少妇av在线| 亚洲av五月六月丁香网| 日本黄色日本黄色录像| 国产区一区二久久| 久久香蕉精品热| 日韩欧美三级三区| 三级毛片av免费| 老司机深夜福利视频在线观看| 久久狼人影院| 国产国语露脸激情在线看| 精品高清国产在线一区| 涩涩av久久男人的天堂| 女生性感内裤真人,穿戴方法视频| 制服诱惑二区| 亚洲一区二区三区不卡视频| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 成人影院久久| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 在线观看免费日韩欧美大片| 咕卡用的链子| 成人三级黄色视频| 超色免费av| 久久久久久久久中文| 国产av一区二区精品久久| 在线观看午夜福利视频| 人人妻人人添人人爽欧美一区卜| 国产真人三级小视频在线观看| 久久性视频一级片| 高清欧美精品videossex| 欧美午夜高清在线| 精品国产一区二区久久| 9热在线视频观看99| 一进一出好大好爽视频| 国产精品秋霞免费鲁丝片| 国产视频一区二区在线看| 日韩欧美一区视频在线观看| 亚洲av熟女| 婷婷丁香在线五月| 高清欧美精品videossex| 国产xxxxx性猛交| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 久久国产乱子伦精品免费另类| 中文欧美无线码| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| a级毛片在线看网站| 亚洲精品av麻豆狂野| 国产不卡一卡二| 波多野结衣一区麻豆| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久久久99蜜臀| 亚洲全国av大片| 国产成人精品在线电影| 色婷婷av一区二区三区视频| 日韩精品中文字幕看吧| 免费看a级黄色片| 叶爱在线成人免费视频播放| √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸 | 亚洲人成77777在线视频| www.精华液| 成人国产一区最新在线观看| 一个人观看的视频www高清免费观看 | 亚洲性夜色夜夜综合| 久久影院123| 91成人精品电影| 一区在线观看完整版| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 交换朋友夫妻互换小说| 国产精品一区二区在线不卡| 亚洲欧美激情在线| 国产欧美日韩精品亚洲av| 精品一区二区三区四区五区乱码| 超碰成人久久| 久热这里只有精品99| 99香蕉大伊视频| 一级毛片精品| www.自偷自拍.com| 国产精品久久久久久人妻精品电影| 黄色毛片三级朝国网站| 国产不卡一卡二| 又大又爽又粗| 99国产精品99久久久久| 亚洲激情在线av| 久久久久久亚洲精品国产蜜桃av| 黄色 视频免费看| 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 岛国视频午夜一区免费看| 精品日产1卡2卡| 99久久人妻综合| 一级,二级,三级黄色视频| 咕卡用的链子| 国产一区二区激情短视频| 伦理电影免费视频| 天天影视国产精品| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 欧美日本中文国产一区发布| 亚洲第一欧美日韩一区二区三区| 在线观看免费视频日本深夜| 日韩视频一区二区在线观看| 欧美中文综合在线视频| 99久久人妻综合| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 老汉色∧v一级毛片| 99国产精品一区二区蜜桃av| 一级毛片精品| 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 黄色 视频免费看| www.www免费av| 在线十欧美十亚洲十日本专区| 五月开心婷婷网| 久久国产精品人妻蜜桃| 美女大奶头视频| 18禁黄网站禁片午夜丰满| av免费在线观看网站| 久久久久久久午夜电影 | 欧美激情久久久久久爽电影 | 亚洲久久久国产精品| 在线观看免费午夜福利视频| 亚洲色图av天堂| 香蕉丝袜av| 亚洲国产欧美网| 在线视频色国产色| 久久精品成人免费网站| 午夜91福利影院| 亚洲男人天堂网一区| 母亲3免费完整高清在线观看| 激情在线观看视频在线高清| 18禁美女被吸乳视频| 色综合婷婷激情| 视频区欧美日本亚洲| 50天的宝宝边吃奶边哭怎么回事| 久久亚洲精品不卡| 大码成人一级视频| 国产野战对白在线观看| 99久久国产精品久久久| 老司机靠b影院| av网站免费在线观看视频| 免费在线观看视频国产中文字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 自线自在国产av| 18禁裸乳无遮挡免费网站照片 | 在线观看www视频免费| 色精品久久人妻99蜜桃| www日本在线高清视频| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人| 1024香蕉在线观看| 国内久久婷婷六月综合欲色啪| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 首页视频小说图片口味搜索| 久久欧美精品欧美久久欧美| 精品无人区乱码1区二区| 纯流量卡能插随身wifi吗| 久9热在线精品视频| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 丰满饥渴人妻一区二区三| 十八禁人妻一区二区| 激情视频va一区二区三区| 男人的好看免费观看在线视频 | 黑人巨大精品欧美一区二区mp4| 国产精品自产拍在线观看55亚洲| 人人澡人人妻人| 19禁男女啪啪无遮挡网站| 国产av一区在线观看免费| 日韩成人在线观看一区二区三区| 桃色一区二区三区在线观看| 12—13女人毛片做爰片一| a在线观看视频网站| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影| 咕卡用的链子| 琪琪午夜伦伦电影理论片6080| 久久久久精品国产欧美久久久| 国产精品香港三级国产av潘金莲| 女人被狂操c到高潮| 久久人人精品亚洲av| 亚洲成a人片在线一区二区| av中文乱码字幕在线| 久久草成人影院| 日本欧美视频一区| 国产精品 欧美亚洲| 日韩欧美一区二区三区在线观看| 在线播放国产精品三级| 宅男免费午夜| 两个人看的免费小视频| 免费高清视频大片| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 激情在线观看视频在线高清|