李寧崔增光張信榮
(1北京大學工學院 北京 100084;2內(nèi)蒙古科技大學能源與環(huán)境學院 包頭 014010)
風機盤管換熱器遺傳算法優(yōu)化設計
李寧1崔增光2張信榮1
(1北京大學工學院 北京 100084;2內(nèi)蒙古科技大學能源與環(huán)境學院 包頭 014010)
本研究采用了基于遺傳算法和耗散理論的傳熱優(yōu)化方法,并進行了風機盤管換熱器的優(yōu)化設計。在對板翅管式結構的風機盤管換熱器進行建模的基礎上,針對兩種不同的應用工況,即供冷用干式風機盤管換熱器和供暖型風機盤管換熱器,進行了結構優(yōu)化設計和分析。優(yōu)化目標選取了換熱器的耗散熱阻,而設計變量分別選取管間距、排間距、換熱管外徑、翅片間距和翅片數(shù)。為評價換熱器的性能,還計算了換熱器的換熱量、空氣側和水側阻力損失、總泵功和換熱器效能。優(yōu)化設計結果顯示,在特定的設計參數(shù)和限制條件下,不僅換熱器的耗散熱阻值降低,其他方面性能也得到了明顯提升。
優(yōu)化設計;遺傳算法;耗散;板翅管式換熱器;風機盤管
風機盤管機組是半集中式空調(diào)系統(tǒng)中不可缺少的重要裝置,是空調(diào)領域中大量應用的末端設備[1]。隨著國民經(jīng)濟的發(fā)展和人民生活水平的提高,風機盤管以其應用中的明顯優(yōu)勢,在全國各地居住建筑和公共建筑中得到了廣泛應用[2]。風機盤管的工作原理為:在風機的強制作用下,使得房間的循環(huán)空氣通過冷水(熱水)盤管后被冷卻(加熱),以保持房間的空氣溫度。
在風機盤管中,換熱器是其空氣處理過程中最重要的部件,換熱器換熱性能的好壞決定著空氣調(diào)節(jié)效果的好壞和風機盤管性能的優(yōu)劣。但目前國內(nèi)風機盤管普遍存在傳熱效率偏低、體積偏大、材料浪費等問題,使得風機盤管換熱器的傳熱性能得不到有效發(fā)揮[1]。而且,隨著節(jié)能要求的不斷提高,對換熱器進行優(yōu)化設計,從而提升換熱器的性能和降低能耗,顯得更加重要[2-3]。但是,換熱器優(yōu)化設計這一研究領域面臨的挑戰(zhàn)很大[3]。為實現(xiàn)換熱器結構參數(shù)的最優(yōu)化,使其滿足性能方面的要求和給定的限制條件,一般需要引入很多的幾何參數(shù)和運行變量。因此,常規(guī)的最優(yōu)化設計方法往往費時費力,甚至無法得出結果[4]。在本文的研究中,考慮到所研究的板翅管式換熱器結構形式的復雜性,選用了遺傳算法來進行優(yōu)化設計計算。因為遺傳算法具有強大而穩(wěn)定的全局搜索能力,而且對于具體研究問題的依賴性較小[5]。
現(xiàn)有文獻中關于應用遺傳算法進行換熱器優(yōu)化的研究有很多,但大部分是針對管殼式和板翅式換熱器的。Amini M等[6]進行了基于遺傳算法的管殼式換熱器優(yōu)化設計,其中的優(yōu)化目標是傳熱量和總造價。在Guo J F等[7]的研究中,經(jīng)修正的熵產(chǎn)數(shù)被設定為優(yōu)化目標,并應用遺傳算法進行了一個管殼式換熱器的優(yōu)化設計。其他運用遺傳算法的管殼式換熱器優(yōu)化設計研究可見文獻[8-11]。Guo D C等[5]設計了一種板翅式換熱器的安全結構,用以防止流體從周邊通路泄漏。其中,遺傳算法用于最優(yōu)化通路布置,以達到最優(yōu)的傳熱性能。Zhao M等[12]針對多股氣流板翅式換熱器中對其性能有重要影響的隔層形式進行了優(yōu)化設計。其他運用遺傳算法的板翅式換熱器優(yōu)化設計包括Mishra M等[13-15],Peng H等[16],Xie G N等[3],Sanaye S[17],Ghosh S等[18],Najafi H等[19]以及Yousefi M等[20]。與以上針對管殼式和板翅式換熱器的研究相比,針對板翅管式換熱器的研究相對較少。如Wu Z G等[21]以傳熱效率和造價為優(yōu)化目標,應用遺傳算法對板翅管式換熱器中的制冷劑循環(huán)通路進行了優(yōu)化。Sepehr S等[22]以傳熱量和壓力損失為優(yōu)化目標,研究了一個扁平管波形翅片的平行流冷凝器的優(yōu)化設計問題。
在以上文獻調(diào)研和分析的基礎上,本文將應用基于遺傳算法和耗散理論的優(yōu)化設計方法,對風機盤管中的換熱器(板翅管式)進行優(yōu)化設計。首先,在應用遺傳算法進行換熱器優(yōu)化設計的相關研究中,與管殼式和板翅式換熱器相比,針對板翅管式換熱器的研究相對較少。因此,對板翅管式換熱器的優(yōu)化設計還需要繼續(xù)開展深入的研究。其次,雖然在現(xiàn)有文獻中已經(jīng)存在基于遺傳算法和耗散理論的優(yōu)化設計方法,但是尚缺少在板翅管式換熱器中的具體應用研究。最后,不同的工程應用中,在不同的環(huán)境參數(shù)和限制條件下,將產(chǎn)生不同的結果。因此,針對風機盤管換熱器的特定應用形式需要進一步的研究。
本優(yōu)化算法應用了遺傳算法作為優(yōu)化搜索工具,同時使用換熱器的耗散熱阻作為遺傳算法的適應度函數(shù),來衡量遺傳進化的優(yōu)劣程度。下面分別對遺傳算法和耗散理論進行介紹。
1.1 遺傳算法
遺傳算法是一種全局搜索方法,是模擬生物遺傳進化過程的一種方法。遺傳算法首先建立種群,并在種群的基礎上進行優(yōu)勝劣汰,使得種群向有利的方向進化發(fā)展。在進化的每一個世代,通過根據(jù)適應度選擇個體的方法來產(chǎn)生新的后代[23]。
遺傳算法的計算原理和過程如圖1所示。在遺傳算法中,初始世代的產(chǎn)生一般是隨機進行的,但是可設定設計參數(shù)的選擇范圍。適應度函數(shù)是提前設定好的,用于評價種群中每個個體的適應性程度。父代的選擇是根據(jù)個體的適應度的值,適應度較高的個體被選中從而遺傳到下一代的幾率也較高,同時可啟用懲罰機制降低不符合限制條件的個體被選中的機會。在產(chǎn)生子代的過程中,應用了交叉和變異操作。新的世代不斷的產(chǎn)生并繁衍后代,直到終止條件滿足。在本研究中,選擇換熱器的耗散熱阻作為遺傳算法的適應度函數(shù)。因此,最佳個體就對應于最佳的設計參數(shù),也就是使得換熱器耗散熱阻達到最小的設計參數(shù)值。本研究中選擇的種群大小為20,最大遺傳代數(shù)設定為200。
圖1 遺傳算法操作原理與過程Fig.1 Flow chart of the genetic algorithm principles
1.2 耗散理論
的概念是由傳熱過程與電導過程的類比而得到的[24],它能夠表征物體熱量傳遞的能力,其定義式如下:
在熱量傳遞的過程中,將發(fā)生傳遞和耗散。因此,耗散發(fā)生在熱量傳遞的過程中,是傳熱過程的不可逆性的量度[24-25]。換熱器的耗散可由(2)式進行計算[26-27]。
Guo Z Y等[24,28]給出耗散熱阻的定義為換熱器的耗散與傳熱量平法的比值:
Guo Z Y等[24]對耗散熱阻極值原理進行了分析和驗證。耗散熱阻極值原理是指在耗散熱阻達到最小時,傳熱最優(yōu),即在給定溫差條件下熱流最大以及在給定熱流條件下溫差最小。經(jīng)研究得出,
耗散熱阻可以表征換熱器傳熱過程的不可逆性[28]。而且,耗散熱阻極值原理已經(jīng)在換熱器優(yōu)化設計中得到了廣泛應用[26,29-31]。
本文的設計優(yōu)化問題為:給定兩側流體的進出口溫度(ta1、ta2、tw1、tw2)和流量(ma、mw),對換熱器的結構參數(shù)(如管間距、翅片間距等)進行優(yōu)化設計,通過改變換熱器的換熱系數(shù)(U)和換熱面積(A)等參數(shù),使得換熱器的換熱量最大。由上式(3)可得,當ta1、ta2、tw1、tw2和ma、mw均為定值時,換熱器的耗散E也為定值,Q值最大時對應的是耗散熱阻RE的最小值。因此,工程設計中以強化換熱量為目的,與最小化耗散熱阻是一致的。此外,由于耗散熱阻表征了換熱器傳熱過程的不可逆性,當耗散熱阻最小時,使得換熱器的不可逆性最小。因此本研究采用了耗散熱阻作為換熱器優(yōu)化設計目標,即作為遺傳算法中的適應度函數(shù)。
綜上所述:本文研究的目的是實現(xiàn)風機盤管換熱器的優(yōu)化設計,即尋找最優(yōu)的設計參數(shù)組合,使得優(yōu)化目標達到最優(yōu)值。若將每個設計參數(shù)的不同取值看作不同的遺傳基因,則各個設計參數(shù)的不同組合相當于不同的染色體遺傳信息,代表著不同個體的特征,而不同個體的集合則構成種群。在不同設計參數(shù)組合下所求得的優(yōu)化目標函數(shù)的值,即為遺傳算法中評價不同個體適應性的適應度函數(shù)。因此可以使用遺傳算法這一全局搜索算法來實現(xiàn)換熱器的優(yōu)化設計。其中,評價個體為由管間距、排間距、管外徑、翅片間距、翅片數(shù)這5個結構參數(shù)所組成的設計參數(shù)組合。遺傳算法的適應度函數(shù)取換熱器的耗散熱阻,并通過編寫適應度函數(shù)程序來實現(xiàn)。遺傳算法初始種群的產(chǎn)生采用在設定的取值范圍內(nèi)隨機生成的方法。選擇操作選用隨機均勻分布算法,交叉操作選用離散重組算法,變異操作選用高斯變異算法。
本文以耗散熱阻作為優(yōu)化設計的優(yōu)化目標,即遺傳算法的適應度函數(shù)。因此耗散熱阻的評判與遺傳算法中的規(guī)則的關聯(lián)性在于,耗散熱阻作為評價不同個體適應性優(yōu)劣的適應度函數(shù),并把不同個體的適應度函數(shù)值作為遺傳算法的選擇操作中的依據(jù),即適應度高的個體被選擇而遺傳到下一代的幾率較高,適應度低的個體被選擇遺傳的下一代的幾率則較低。遺傳算法的交叉和變異操作規(guī)則的設定與耗散熱阻的評判無關,只與遺傳算法本身的計算方法和效率相關。
為了應用以上基于遺傳算法和耗散理論的傳熱優(yōu)化方法,首先需要建立可用于遺傳算法適應度目標函數(shù)計算的數(shù)學模型。本節(jié)在建立風機盤管換熱器數(shù)學模型的基礎上,進行了兩個不同算例的優(yōu)化計算和結果分析。這兩個算例分別為供冷干式風機盤管換熱器和供暖型風機盤管換熱器。
2.1 風機盤管換熱器模型的建立
本文研究的風機盤管換熱器形式為板翅管式換熱器,工作示意圖如圖2所示,換熱管內(nèi)是冷卻或加熱用的水,空氣在管外翅片間流動被冷卻或加熱,空氣和水分別由風機和水泵驅(qū)動流動。研究針對干式冷卻和加熱供暖的情況,因此空氣側不存在相變。
圖2 風機盤管換熱器示意圖Fig.2 Schematic of the fan coil unit heat exchanger
下面建立一個可用于干式風機盤管換熱器的數(shù)學模型,板翅管式換熱器的通用示意圖如圖3所示,圖中以兩排管,每排6根管,兩管程為例。為適應基于遺傳算法和耗散的優(yōu)化設計算法的需要,模型的建立包括傳熱的計算和阻力損失的計算。
圖3 板翅管式換熱器結構示意圖Fig.3 Plate fin and tube heat exchanger
傳熱量的計算可由下式得到:
總的傳熱系數(shù)可由下式進行計算[32]:
其中,空氣側換熱系數(shù)ha可由下式求得[33-34]:
式中:P3到P6為關聯(lián)參數(shù),可見文獻[33],板翅管式換熱器的表面效率ηo的計算公式如下[34]:
式中翅片效率為:
水側傳熱系數(shù)可由下式計算[35]:
換熱器的傳熱溫差ΔT可由下式求得:
式中:ΔTln為逆流時對數(shù)平均溫差,℃;溫差修正系數(shù)F可查圖得到[36]。
空氣側的阻力損失可由下式進行估算,且相關參數(shù)F1到F3可見文獻[33-35,37]:
水側的阻力損失可由直管部分阻力損失、彎管部分阻力損失和管頭部分阻力損失三部分組成[38]:
以上各式中涉及的不同面積可分別通過下式(17)~式(21)計算得到:
式中:H為換熱器的長度,m;W為換熱器的寬度,m;L為換熱器的高度,m。為進一步表示換熱器優(yōu)化前后的性能變化,本文還分別計算了換熱器的總泵功Wp和換熱器能效ε[32-33]:
式中:η為總的水泵效率;NTU為傳熱單元數(shù)。
2.2 風機盤管換熱器的優(yōu)化設計計算與分析
本文選取了兩個算例,即在不同設計工況下工作的兩種干式風機盤管,來分別進行其換熱器的優(yōu)化設計。這兩個算例分別為供冷干式風機盤管換熱器和供暖型風機盤管換熱器,兩種工況下的已知參數(shù)如表1所示。表中參數(shù)的選定參考了JB/T11524—2013干式風機盤管機組等相關標準和文獻[39-44],均為干式風機盤管運行中的典型工況參數(shù)。優(yōu)化設計選定的設計參數(shù)包括:管間距、排間距、管子外徑、翅片間距和翅片數(shù),其優(yōu)化設計中的限定范圍如表2所示。
本研究中的優(yōu)化設計需滿足以下三個方面的約束條件:
1)設計參數(shù)取值約束:見表2中所列出的設計參數(shù)的取值范圍。
2)幾何約束條件:
(1)管外徑大于2倍的壁厚,即do>2δt;
(2)管間距大于管子外徑,即dt>dc;
(3)排間距大于管子外徑,即dl>dc;
(4)翅片間距大于翅片厚度,即df>δf。
3)物理約束條件:
(1)管內(nèi)水的流速范圍為0.5~3 m/s,即0.5 m/s<vw<3 m/s;
(2)水側和空氣側的雷諾數(shù)均大于2300,即Redi>2300,Redc>2300;
(3)水側壓降小于50 kPa,即Δpw<50 kPa;
(4)空氣側壓降小于20 kPa,即Δpa<20 kPa。
表1 兩個算例對應工況的已知參數(shù)Tab.1 Known parameters for the exam p les
運用前文介紹的基于遺傳算法和耗散理論的傳熱優(yōu)化設計方法,在建立的數(shù)學模型基礎上,并根據(jù)設定的各項參數(shù)與限制條件,可進行不同風機盤管換熱器的優(yōu)化設計。優(yōu)化設計結果通過以下三部分來顯示:1)遺傳算法計算過程中的最佳個體對應的適應度值,即耗散熱阻值的變化情況;2)換熱器性能評價參數(shù)在優(yōu)化計算過程中的變化情況,包括換熱量(Q),氣側和水側的壓力損失(Δpa、Δpw),總泵功(WP)和換熱器能效(ε);3)初始結構和優(yōu)化結構下的換熱器各項性能指標進行對比。下面分別就供冷干式風機盤管換熱器和供暖型風機盤管換熱器的優(yōu)化設計計算結果進行分析。
表2 選定設計參數(shù)及其范圍設定Tab.2 Design variables selected and their ranges
2.2.1 算例1供冷干式風機盤管換熱器結果分析
隨著建筑節(jié)能和室內(nèi)空氣品質(zhì)要求的提高,溫濕度獨立控制和水蒸發(fā)冷卻空調(diào)技術的逐步推廣,干式風機盤管開始在工程系統(tǒng)中得到應用。干式風機盤管的主要任務是排出室內(nèi)顯熱余熱,因此在換熱器空氣側不存在相變[44-45]。下面對一典型工況(見表1)的供冷干式風機盤管換熱器進行優(yōu)化設計并分析。
圖4所示為耗散熱阻隨遺傳代數(shù)的變化趨勢,即遺傳算法優(yōu)化過程中適應度函數(shù)的變化情況。從圖中可以看出,耗散熱阻值隨遺傳代數(shù)的增加而逐漸降低,且在最初20多代的進化過程中降低的較快,之后緩慢降低,最終基本保持穩(wěn)定。這一結果可以證明本優(yōu)化計算方法的正確性和有效性。當耗散熱阻值達到穩(wěn)定時所對應的設計計算參數(shù)的值就認為是本次優(yōu)化設計的結果。圖中只表示了前100次遺傳進化的計算結果,因為后100次的數(shù)值基本上保持不變。
圖4 耗散熱阻隨遺傳代數(shù)的變化(算例1)Fig.4 Variations of the entransy dissipation based thermal resistance with generations(Examp le I)
圖5所示為傳熱量Q和總泵功Wp隨遺傳代數(shù)的變化情況。從圖中可以看到,傳熱量隨著遺傳代數(shù)的增加呈逐漸上升的趨勢,而總泵功的變化趨勢相反。說明隨著優(yōu)化過程的進行,換熱量得到了提高,同時維持換熱所需的運行能耗(總泵功)卻減小,從而使得換熱器的總體性能得到了提升。總泵功的降低,是由于空氣側阻力損失Δpa和水側的阻力損失Δpw都隨著遺傳代數(shù)而減小,如圖6所示。圖7顯示了換熱器的能效ε隨著遺傳代數(shù)的變化。換熱器能效的提高同樣可以證明換熱器總體性能的提升。
圖5 傳熱量和總泵功隨遺傳代數(shù)的變化(算例1)Fig.5 Variations of the heat transfer rate and total pumping power with generations(Examp le I)
圖6 空氣側和水側阻力損失隨遺傳代數(shù)的變化(算例1)Fig.6 Variations of the air side and water side pressure drops with generations(Exam ple I)
圖7 換熱器效能隨遺傳代數(shù)的變化(算例1)Fig.7 Variations of the effectiveness with generations(Example I)
為了進一步對比優(yōu)化設計前后的換熱器性能變化,表3中對設計參數(shù)以及各項相關參數(shù)的初始值與優(yōu)化值進行了對比。從表中可見,優(yōu)化后的值與初始值相比,耗散熱阻下降了57.8%,表明換熱器換熱過程中 的損耗減小了,即傳遞熱量的能力增加了,傳熱的不可逆性減小了。同時,由于空氣側和水側的壓力損失分別減小了5.0%和84.0%,使得泵的總功耗降低了12.2%,但換熱量增加了53.2%,此外換熱器的效能提高了25%。
表3 各參數(shù)的初始值與優(yōu)化值的對比(算例1)Tab.3 Com parison between the initial design and the optimal design(Exam p le I)
2.2.2 算例2供暖型風機盤管換熱器結果分析
隨著國家建筑節(jié)能政策的推廣,太陽能、江河湖海水、城市建筑廢熱、地熱及熱電廠余熱等在低溫熱源的低溫供暖系統(tǒng)得到廣泛的發(fā)展與應用。供暖型風機盤管作為一種適合低溫供暖的末端設備,具有啟動時間短、控制方便、可采用多種低溫熱源等優(yōu)點,還能解決供暖分戶計量實施過程中出現(xiàn)的許多問題。因此得到了越來越廣泛的應用[43]。
耗散熱阻值隨遺傳代數(shù)的變化趨勢如圖8所示。隨著遺傳代數(shù)的增加,耗散熱阻值降低,且在最初10多代的進化過程中降低的速度很快,最終達到穩(wěn)定。說明隨著遺傳算法的進行,各設計參數(shù)值的變化方向是使得其適應度函數(shù)趨向最小化的,從而達到最優(yōu)。換熱量和總泵功的變化情況如圖9所示,換熱量增加而總泵功減小。同時如圖10所示,空氣側的阻力損失和水側的阻力損失都隨著遺傳代數(shù)而減小。換熱器能效值的變化情況如圖11所示,可見換熱器效能有了明顯的提高。
對設計參數(shù)以及各項相關參數(shù)的初始值與優(yōu)化值的對比見表4所示。從表中可見,優(yōu)化后的值與初始值相比,耗散熱阻下降了67.8%。同時,由于空氣側和水側的阻力損失分別下降了 27.7%和60.2%,從而導致總的泵功耗下降了8.0%,但換熱量增加了76.2%,此外換熱器能效提高了38.9%。
圖8 耗散熱阻隨遺傳代數(shù)的變化(算例2)Fig.8 Variations of the entransy dissipation based thermal resistance with generations(Exam p le II)
圖9 換熱量和總泵功隨遺傳代數(shù)的變化(算例2)Fig.9 Variations of the heat transfer rate and total Pumping power with generations(Exam ple II)
圖10 空氣側和水側阻力損失隨遺傳代數(shù)的變化(算例2)Fig.10 Variations of the air side and water side pressure drops with generations(Example II)
表4 各參數(shù)的初始值與優(yōu)化值的對比(算例2)Tab.4 Comparison between the initial design and the optimal design(Example II)
圖11 換熱器效能隨遺傳代數(shù)的變化(算例2)Fig.11 Variations of the effectiveness with generations(Exam p le II)
本文首先對基于遺傳算法和耗散理論的傳熱優(yōu)化方法進行了介紹。隨后對風機盤管中應用的板翅管式換熱器建立了數(shù)學模型。最后在優(yōu)化算法和數(shù)學模型的基礎上,對兩種不同運行條件下的風機盤管換熱器,即供冷用干式風機盤管換熱器和供暖型風機盤管換熱器進行了優(yōu)化設計和結果分析。
1)在供冷用干式風機盤管換熱器中,優(yōu)化后的值與初始值相比,耗散熱阻下降了57.8%,換熱量提高了53.2%,同時總泵功降低了12.2%。
2)在供暖型風機盤管換熱器中,優(yōu)化后的值與初始值相比,耗散熱阻下降了67.8%,換熱量提高了76.2%,同時總泵功降低了8.0%。
在兩個算例中,換熱器空氣側和水側的阻力損失降低了。綜上所述:經(jīng)過優(yōu)化設計,換熱器換熱過程中傳遞熱量的能力增加,傳熱的不可逆性減小,同時換熱器在運行過程中的運行能耗降低。
符號說明
A——面積,m2
Ai——換熱管內(nèi)側面積,m2
Ao——總的表面面積,m2
cp——定壓比熱,J/(kg·K)
dc——帶復層厚度的外直徑,m
df——翅高,m
dh——水力直徑,m
di——換熱管內(nèi)徑,m
dl——排間距,m
do——換熱管外徑,m
dt——管間距,m
E——換熱器總耗散,W·K
f——阻力因子
F——溫差修正系數(shù)
Gc——最小流通面積處的空氣流量,kg/(m2·s)
h——換熱系數(shù),W/(m2·K)
H——換熱器高度,m
j——換熱因子
k——導熱系數(shù),W/(m·K)
L——換熱器長度,m
m——質(zhì)量流量,kg/s
nf——翅片數(shù)
ngen——遺傳代數(shù)
nt——每排管數(shù)
Nt——管排數(shù)
NTU——傳熱單元數(shù)
Wp——總泵功,W
Δp——壓力損失,Pa
Δpl——直管段壓力損失,Pa
ΔpN——管頭壓力損失,Pa
Δpr——彎管部分壓力損失,Pa
Q——換熱量,W
r——換熱管半徑,m
RE——換熱器耗散熱阻,K/W
t——溫度,℃
T——溫度,K
ΔT——傳熱溫差,K
ΔTln——對數(shù)平均溫差,K
U——總的換熱系數(shù),W/(m2·K)
vmax——最大流速(最小過流面積處流速),m/s
W——換熱器寬度,m
δ——厚度,m
ε——換熱器效能
η——總的泵效率
ηo——表面效率
ηf——翅片效率
ρ——密度,kg/m3
σ——最小面積與迎風面積比值
φ——粘度修正系數(shù)
下標
1——入口
2——出口
a——空氣
f——翅片
m——平均值
t——管子
w——水
min——最小值
[1] 畢明華,李澤芳.風機盤管機組換熱器的分析與改進[J].低溫與超導,2011,39(6):64?67.(Bi Minghua,Li Zefang.Analysis and improvement for heat exchanger of fan?coil unit[J].Cryogenics and Superconductivity,2011, 39(6):64?67.)
[2] 畢明華.影響風機盤管換熱器傳熱性能的因素分析[J].低溫與超導,2009,37(6):53?56.(Bi Minghua. Analysis of influencing factors on heat transfer performance of fan?coil unit heat exchanger[J].Cryogenics and Super?conductivity,2009,37(6):53?56.)
[3] Xie G N,Sunden B,Wang Q W.Optimization of compact heat exchangers by a genetic algorithm[J].Applied Ther?mal Engineering,2008,28(8/9):895?906.
[4] Rao R V,Patel V K.Thermodynamic optimization of cross flow plate?fin heat exchanger using a particle swarm optimi?zation algorithm[J].International Journal of Thermal Sci?ence,2012,49(9):1712?1721.
[5] Guo D C,Liu M,Xie L Y,et al.Optimization in plate?fin safety structure of heat exchanger using genetic and Monte Carlo algorithm[J].Applied Thermal Engineering,2014,70(1):341?349.
[6] Amini M,Bazargan M.Two objective optimization in shell?and?tube heat exchangers using genetic algorithm[J].Ap?plied Thermal Engineering,2014,69(1/2):278?285.
[7] Guo J F,Cheng L,Xu M T.Optimization design of shell?and?tube heat exchanger by entropy generation minimization and genetic algorithm[J].Applied Thermal Engineering,2009,29(14/15):2954?2960.
[8] Selbas R O,Kizilkan M,Reppich M.A new design ap?proach for shell?and?tube heat exchangers using genetic al?gorithms from economic point of view[J].Chemical Engi?neering Process,2006,45(4):268?275.
[9] Ponce J M,Serna M,Rico V,et al.Optimal design of shell?and?tube heat exchangers using genetic algorithms [J].Computer Chemical Engineering,2006,21(1):985?990.
[10]Ozcelik Y.Exergetic optimization of shell and tube heat ex?changers using a genetic based algorithm[J].Applied Thermal Engineering,2007,27(11/12):1849?1856.
[11]Ponce J M,Serna M,Jimenez A.Use of genetic algorithms for the optimal design of shell?and?tube heat exchangers [J].Applied Thermal Engineering,2009,29(2/3):203?209.
[12]Zhao M,Li Y Z.An effective layer pattern optimization model for multi?stream plate?fin heat exchanger using ge?netic algorithm[J].International Journal of Heat and Mass Transfer,2013,60:480?489.
[13]Mishra M,Das P K.Thermo?economic design optimisation of cross flow plate?fin heat exchanger using genetic algo?rithm[J].International Journal of Exergy,2009,6(1):237?252.
[14]Chen C T,Chen H I.Multi?objective optimization design of plate?fin heat sinks using a direction?based genetic algo?rithm[J].Journal of the Taiwan Institute of Chemical En?gineers,2013,44(2):257?265.
[15]Mishra M,Das P K,Sarangi S.Second law based optimis?ation of cross flow plate?fin heat exchanger design using ge?netic algorithm[J].Applied Thermal Engineering,2009,29(14/15):2983?2989.
[16]Peng H,Ling X.Optimal design approach for the plate?fin heat exchangers using neural networks cooperated with ge?netic algorithms[J].Applied Thermal Engineering,2008,28(5/6):642?650.
[17]Sanaye S,Hajabdollahi H.Thermal?economic multi?objec?tive optimization of plate fin heat exchanger using genetic algorithm[J].Applied Energy,2010,87(6):1893?1902.
[18]Ghosh S,Ghosh I,Pratihar D K,et al.Optimum stacking pattern for multi?stream plate?fin heat exchanger through a genetic algorithm[J].International Journal of Thermal Sci?ence,2011,50(2):214?224.
[19]Najafi H,Najafi B,Hoseinpoori P.Energy and cost opti?mization of a plate and fin heat exchanger using genetic al?gorithm[J].Applied Thermal Engineering,2011,31 (10):1839?1847.
[20]Yousefi M,Enayatifar R,Darus A N.Optimal design of plate?fin heat exchangers by a hybrid evolutionary algorithm [J].Internal Communications of Heat and Mass Transfer,2012,39(2):258?263.
[21]Wu Z G,Ding G L,Wang K J,et al.Application of a ge?netic algorithm to optimize the refrigerant circuit of fin?and?tube heat exchangers for maximum heat transfer or shortest tube[J].Internal Journal of Thermal Science,2008,47 (8):985?997.
[22]Sepehr S,Dehghandokht M.Modeling and multi?objective optimization of parallel flow condenser using evolutionary algorithm[J].Applied Energy,2011,88(5):1568?1577.
[23]Gen M,Cheng R W.Genetic Algorithms and Engineering Design[M].John Wiley&Sons Inc,1997.
[24]Guo Z Y,Zhu H Y,Liang X G.Entransy?A physical quantity describing heat transfer ability[J].International Journal of Heat and Mass Transfer,2007,50(13/14):2545?2556.
[25]Qian X D,Li Z X.Analysis of entransy dissipation in heat exchangers[J].International Journal of Thermal Science,2011,50(4):608?614.
[26]Chen L,Chen Q,Li Z,et al.Optimization for a heat ex?changer couple based on the minimum thermal resistance principle[J].International Journal of Heat and Mass Transfer,2009,52(21/22):4778?4784.
[27]柳雄斌,過增元.換熱器性能分析新方法[J].物理學報,2009,58(7):4766?4771.(Liu Xiongbin,Guo Zengyuan.A novel method for heat exchanger analysis[J]. Acta Physica Sinica,2009,58(7):4766?4771.)
[28]Guo Z Y,Liu X B,Tao W Q,et al.Effectiveness?thermal resistance method for heat exchanger design and analysis [J].International Journal of Heat and Mass Transfer,2010,53(13/14):2877?2884.
[29]Chen Q.Entransy dissipation?based thermal resistance method for heat exchanger performance design and optimi?zation[J].International Journal of Heat and Mass Trans?fer,2013,60(1):156?162.
[30]Cheng X T,Liang X G.Computation of effectiveness of two?stream heat exchanger networks based on concepts of entropy generation,entransy dissipation and entransy?dissi?pation?based thermal resistance[J].Energy Conversion and Management,2012,58(1):163?170.
[31]Cheng X T,Zhang Q Z,Liang X G.Analyses of entransy dissipation,entropy generation and entransy?dissipation?based thermal resistance on heat exchanger optimization [J].Applied Thermal Engineering,2012,38(1):31?39.
[32]Wang C C,Webb R L,Chi K Y.Data reduction for air?side performance of fin?and?tube heat exchangers[J].Ex?perimental Thermal and Fluid Science,2000,21(4):218?226.
[33]Wang C C,Chi K Y,Chang C J.Heat transfer and friction characteristics of plain fin?and?tube heat exchangers,part II:Correlation[J].International Journal of Heat and Mass Transfer,2000,43(15):2693?2700.
[34]Wang C C,Chi K Y.Heat transfer and friction characteris?tics of plain fin?and?tube heat exchangers,part I:new ex?perimental data[J].International Journal of Heat and Mass Transfer,2000,43(15):2681?2691.
[35]Gnielinski V.New equation for heat and mass transfer in turbulent pipe and channel flow[J].International Chemi?cal Engineering,1976,16(2):359?368.
[36]劉紀福.翅片管換熱器的原理與設計[M].哈爾濱:哈爾濱工業(yè)大學出版社,2013.
[37]Kays W M,London A.Compact heat exchangers[M].3rd ed.New York:Mcgraw?Hill,1984.
[38]賴周平,張榮克.空氣冷卻器[M].北京:中國石化出版社,2009.
[39]中華人民共和國工業(yè)和信息化部.JB/T 11524—2013干式風機盤管機組[S].北京:中國標準出版社,2013.
[40]中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局.GB/T 19232—2003風機盤管機組[S].北京:中國標準出版社,2003.
[41]張秀平,徐北瓊,田旭東,等.《干式風機盤管機組》標準中名義工況溫度條件和產(chǎn)品基本規(guī)格的研究[J].流體機械,2011,39(8):59?63.(Zhang Xiuping,Xu Beiqiong,Tian Xudong,et al.Research on nominal test conditions and the basic specification of the units in the standard“The Dry Fan Coil Units”[J].Fluid Machinery,2011,39(8):59?63.)
[42]吳小舟,趙加寧,魏建民.進風口變化時供暖型風機盤管性能的實驗研究[C]//全國暖通空調(diào)制冷2010年學術年會.杭州:中國制冷學會,2010.
[43]吳小舟,趙加寧,魏建民.供暖型風機盤管散熱量計算方法的探討[J].暖通空調(diào),2010,40(7):63?66.(Wu Xiaozhou,Zhao Jianing,Wei Jianmin.Study of heat re?lease calculation method of heating?only fan coil unit[J]. Journal of HV&AC,2010,40(7):63?66.)
[44]吳俊峰,張秀平,王雷,等.干式風機盤管翅片管換熱器流動換熱的數(shù)值模擬與試驗對比[J].制冷與空調(diào)(北京),2010,10(5):59?62.(Wu Junfeng,Zhang Xiup?ing,Wang Lei,et al.Numerical simulation and experi?mental comparison for the performance of fluid flow and heat transfer of heat exchanger for dry fan?coil units[J]. Refrigeration and Air?conditioning,2010,10(5):59?62.)
[45]曹陽,劉剛.干盤管換熱器與濕盤管換熱器熱工性能試驗研究[J].制冷學報,2010,31(4):45?49.(Cao Yang,Liu Gang.Experiment on thermal performance of dry coil heat exchanger and wet coil heat exchanger[J]. Journal of Refrigeration,2010,31(4):45?49.)
李寧,女,博士,北京大學工學院能源與資源工程系。(0472)3651530,E?mail:liningmail7@163.com。研究方向:傳熱優(yōu)化理論,換熱器優(yōu)化設計,空調(diào)系統(tǒng)控制等。
About the corresponding author
Li Ning,female,Ph.D.,Department of Energy and Resources Engineering,College of Engineering,Peking University,+86 472?3651530,E?mail:liningmail7@163.com.Research fields:heat transfer optimization,heat exchanger optimization design,air conditioning system control,et al.
Optim ization Design of the Heat Exchangers in Fan Coil Units Using Genetic Algorithm
Li Ning1Cui Zengguang2Zhang Xinrong1
(1.College of Engineering,Peking University,Beijing,100084,China;2.School of Energy and Environment,In?ner Mongolia University of Science and Technology,Baotou,014010,China)
Water In this study,an optimization method based on genetic algorithm and entransy dissipation theory is applied to the optimization design of the plate fin and tube heat exchangers in fan coil units.Two examples,i.e.the heat exchanger in a cooling dry fan coil unit and the heat exchanger in a heating fan coil unit,are studied and reported.Both of the two heat exchangers have plate fin and tube structure,but with different conditions and constraints.The optimization objective selected is the entransy dissipation based thermal resistance,and the design variables are the transverse tube pitch,longitudinal tube pitch,tube outside diameter,fin pitch and number of fins.To evalu?ate the performances of the heat exchanger,the heat transfer rate,air side and water side pressure drop,total pumping power and effec?tiveness are used as the evaluation index.The optimization results show that both the entransy dissipation based thermal resistance and other performances are improved,under the specific conditions in the current study.
optimization design;genetic algorithm;entransy dissipation;plate fin and tube heat exchanger;fan coil unit
TK124;TK172
A
0253-4339(2015)04-0035-10
10.3969/j.issn.0253-4339.2015.04.035
簡介
2014年11月29日