王 鑫, 邢文雅, 李勝軍
(海南大學(xué)信息科學(xué)技術(shù)學(xué)院, 海口570228)
廣義淺水波方程新的行波解
王鑫,邢文雅,李勝軍
(海南大學(xué)信息科學(xué)技術(shù)學(xué)院, 海口570228)
[摘要]通過(guò)利用新的G展開法,并借助Mathematica計(jì)算軟件,研究了廣義淺水波方程的精確解,獲得了該方程的含有多個(gè)任意參數(shù)的新的顯式行波解,分別為三角函數(shù)解、雙曲函數(shù)解、有理函數(shù)解和指數(shù)函數(shù)解,擴(kuò)大了該類方程的解的范圍.
[關(guān)鍵詞]廣義淺水波方程; 新的G展開法; 行波解
1引言
本文研究廣義淺水波方程[1-2]
uxxxt+αuxuxt+βutuxx-uxt-uxx=0,
(1)
其中α,β為任意非零常數(shù)且α+β≠0.此方程是在經(jīng)典淺水波理論中用Boussinesq逼近法得到的,它常用于描述淺水波在(1+1)維空間中的運(yùn)動(dòng)規(guī)律.Clarkson and Mansfield在文獻(xiàn)[2]得到了該方程的完全可積的充分必要條件是α=β或α=2β,且用反散射法驗(yàn)證了此時(shí)的可解性;文獻(xiàn)[3]證明了當(dāng)α=β或α=2β時(shí),此方程能表示成Hirota’s的雙線性形式;文獻(xiàn)[4]運(yùn)用Backlund變換的變量分離法求出了該方程的含有低維任意函數(shù)的變量分離解.
2新的G展開法
對(duì)于非線性偏微分方程
(2)
(3)
設(shè)方程(3)的解有如下形式
(4)
(5)
這里λ,μ及δ為任意常數(shù).對(duì)于此方程,通過(guò)借助Mathematica軟件,可求得其以下幾種解的情況,
(6)
這里C1,C2為積分常數(shù).
(7)
這里C1,C2為積分常數(shù).
(8)
這里C1,C2為積分常數(shù).
④ 當(dāng)λ=-1且μ≠0時(shí),方程(5)的解為
(9)
這里C1,C2為積分常數(shù).
⑤ 當(dāng)λ=-1且μ=0時(shí),方程(5)的解為
(10)
這里C1,C2為積分常數(shù).
3廣義淺水波方程新的行波解
設(shè)方程(1)有行波解
u=u(ξ)=u(x-ct),
其中c表示波速,是一非零常數(shù),從而方程可化為
將方程兩邊關(guān)于ξ積分并化簡(jiǎn),得
(11)
其中M為任意常數(shù).設(shè)廣義淺水波方程(1)的解能夠表示成多項(xiàng)式
且G=G(ξ)滿足二階非線性常微分方程
(12)
由方程(5)式和(12)式可得
(13)
其中C0為任意常數(shù),將(13)式代入(12)式,得到
由于G滿足方程(5)式,從而我們可以得到下列廣義淺水波方程的顯式行波解:
這里ξ=x-t.此為方程(1)的有理函數(shù)形式的解.
④ 當(dāng)λ=-1,μ≠0且μ≠±1時(shí),由(9)式,可得方程(1)的解為
⑤ 當(dāng)λ=-1,μ=0時(shí),由(10)式,可得方程(1)的解為
這里ξ=x-t.此為方程(1)的另一有理函數(shù)形式的解.
4結(jié)論
[參考文獻(xiàn)]
[1]Whitham G B. Linear and Nonlinear Waves[M]. New York: Wiley-Interscience, 1974.
[2]Clarkson P A. Mansfield E L. On a shallow water wave equation[J]. Nonlinearity, 1994, 7: 975.
[3]Hietarinta J, Conte R, Boccara N. Editors NATO ASI Seres C: Mathematical and Physical Sciences[M]. Dordrecht: Kluwer, 1990,310: 459-478.
[4]沈守楓. (1+1)維廣義的淺水波方程的變量分離解和孤子激發(fā)模式[J]. 物理學(xué)報(bào), 2006, 55(3):1016-1022.
[5]Wang M L, Li X Z, Zhang J L. The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J]. Phys. Lett. A, 2008, 372: 417-423.
[6]Wang M L, Zhang J L, Li X Z. Application of the (G’/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations [J]. Appl Math Comput, 2008, 206: 321-326.
[7]Li L X, Wang M L. The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrodinger equation [J]. Appl Math Comput, 2009, 208: 440-445.
[8]Wang M L. Solitary wave solution for variant Boussineq equations [J]. Phys. Lett. A, 1995, 199: 169-172.
[9]Wang M L. Exact solutions for a compound Kdv-Burgers equation [J]. Phys. Lett. A, 1996, 213: 279-287.
[10]Wang M L, ect. Application of homogeneous balance method to exact solutions of nonlinear evolution equation in mathematical physics [J]. Phys. Lett. A, 1996, 216: 67-73.
[11]薛豐剛, 丁丹平. 二階Camassa-Holm 方程行波解[J]. 大學(xué)數(shù)學(xué), 2013, 29(6):30-34.
[12]王艷紅, 劉新樂(lè),姬鵬斌. 廣義KdV方程與廣義Burgers方程的精確解[J]. 大學(xué)數(shù)學(xué), 2012, 28(16):111-113.
[13]曹瑞.G′/G方法構(gòu)造(2+1)維破裂孤子方程的精確解[J]. 大學(xué)數(shù)學(xué), 2012, 28(2):34-36.
New Travelling Wave Solutions for the Generalized Shallow Water Wave Equation
WANGXin,XINGWen-ya,LISheng-jun
(College of Information Science and Technology, Hainan University, Haikou 570228, China)
Abstract:The generalized shallow water wave equation is studied by the new G-expansion method with the aid of computer symbolic systems Mathematica. As a result, some new explicit travelling wave solutions which involving parameters are obtained, these solutions contain the hyperbolic function solutions, the trigonometric function solutions, the rational function solutions and the exponential function solutions. The solutions of the generalized shallow water wave equation have been enriched.
Key words:generalized shallow water wave equation; new G-expansion method; travelling wave solutions
[中圖分類號(hào)]O175.29
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1672-1454(2015)04-0009-05