• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Marine Metagenome as A Resource for Novel Enzymes

    2015-12-21 03:13:16AmniAlmbdiTkshiGojoboriKtsuhikoMinet
    Genomics,Proteomics & Bioinformatics 2015年5期

    Amni D.Alm’bdi,Tkshi Gojobori*,Ktsuhiko Minet

    Computational Bioscience Research Center(CBRC),King Abdullah University of Science and Technology(KAUST), Thuwal 23955-6900,Saudi Arabia

    REVIEW

    Marine Metagenome as A Resource for Novel Enzymes

    Amani D.Alma’abadia,Takashi Gojobori*,b,Katsuhiko Minetac

    Computational Bioscience Research Center(CBRC),King Abdullah University of Science and Technology(KAUST), Thuwal 23955-6900,Saudi Arabia

    Available online 10 November 2015

    Handled by Fangqing Zhao

    Microbial diversity; Culture-independent studies; Catalysis; Lipase; Biotechnology

    More than 99%ofidentified prokaryotes,including many from the marine environment, cannot be cultured in the laboratory.This lack of capability restricts our knowledge of microbial genetics and community ecology.Metagenomics,the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample,has already provided a wealth of information about the uncultured microbialworld.Ithas also facilitated the discovery ofnovelbiocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities.Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry.Although the metagenomics approach has many limitations,it is expected to provide not only scientific insights but also economic benefits,especially in industry.This review highlights the importance ofmetagenomics in mining microbial lipases,as an example,by using high-throughput techniques.In addition,we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.

    Introduction

    Recent developments in catalysis have led to a renewed interest in the use of enzymes for the environmentally-friendly industry.Most industrially-relevant enzymes are of microbial origin [1].Identification and isolation of microbial enzymes are thus important steps in improving industrial processes,although only less than 1%of environmental bacteria can be cultivated in the laboratory[2–4].

    The current challenging questions have arisen regarding the discovery,identification,and function validation of the uncultured microorganisms.Metagenomics study,which usually starts from the isolation of environmental DNAs without culture,has emerged as an excellent means to study biodiversity and biotechnological applications in certain conditions such as marine environments(Figure 1)[5–7].It provides insights into the genomic pool of microorganisms that are recovered directly from environmental sources.Thus,metagenomics can be used for not only exploring ecological and environmentalpuzzles,but also finding unique biocatalysts with promisingcharacteristics for biotechnological applications[8–10].In particular of the biotechnological applications,metagenome libraries could be screened based on either protein function or nucleotide sequences.

    Figure 1 The process of functional metagenomics of marine microbes from environmental samplesThis flowchart illustrates how metagenome is analyzed with the emphasis on the four important processes.BAC,bacterialartificial chromosome.

    Function-based screening is a direct way of identifying novel enzymes[2].In this method,enzyme activities are assayed by harvesting a metagenomic library on agar plates enriched with substrates.Positive clones may then be recognized by visual screening for a clear zone called a halo[11]. As a result,function-based screening selects clones with functional activities,such as the synthetic and degradation activities.Unlike sequence-based approaches mentioned later, functional-based screening does not require identification of homologies to genes of known functions.It therefore contributes to nucleic acid and protein databases by adding novel functional annotations.However,this method often suffers from a number of limitations,such as a low hit rate of positive clones,low throughput,and time-consuming screening[11].

    In contrast,in sequence-based screening,which involves metagenomic DNA sequencing using next-generation sequencing(NGS)technology,microbial enzymes and bioactive compounds can be explored from niches of interest[10].However, sequence-based screening requires the detection of gene variants with conserved domain or motif of the known functions for enzymes identifications.This approach does not necessarily identify the novel genes.

    In light of an increasing demand for enzymes such as carbohydrases,proteases,polymerases,nucleases,and lipases,it is becoming extremely difficult to ignore the importance of hydrolytic enzymes as potential biocatalysts in a wide variety of industries,including chemical processing,dairy,agrochemicals,paper,cosmetics,pharmaceuticals,surfactants,detergents,polymers,and biofuel synthesis[12,13].For example, a lipase is often used at the consumable detergent,as it can hydrolyze fat from clothes and thus enhance its cleaning efficiency.Therefore,the hydrolytic enzymes have been used as promising environmentally-friendly biocatalysts in various industries.

    According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology,enzymes are classified into six main classes(Table 1).One of the most important classes is hydrolases(E.C.3.-.-.-),which catalyze the hydrolytic cleavage of different types of chemical bonds. Many commercially-critical enzymes belong to this class, e.g.,proteases,amylases,acylases,lipases,and esterases[14]. Lipases are simply hydrolytic enzymes that catalyze hydrolysis and synthesis reactions by breaking down triacylglycerides into free fatty acids and glycerols,which act under aqueous conditions on the carboxylester bonds present in triacylglycerols to liberate fatty acids and glycerol[15–17].Hydrolysis of glycerol esters carrying an acyl chain,which comprises less than 10carbon atoms in length,with tributyrylglycerol(tributyrin)as the standard substrate,usually indicates the presence of an esterase.Most lipases are able to hydrolyze esterase substrates [18].These reactions usually continue with high regio-and/or enantio-selectivity,making lipases a valuable group of biocatalysts in organic chemistry[19–21].

    Table 1 Lipase and enzyme classification according to EC number

    Two criteria are used to determine if a lipolytic enzyme is a genuine lipase(EC.3.1.1.3)(Table 1).The first criterion is the occurrence of an‘‘interfacial activation”state,which means an increased activity of lipase during emulsion by the triglycerides[18].The second criterion is an active site of the enzymes consisting of a surface loop‘‘lid”that moves together with the interface[17,22,23].These two criteria are important,particularly for the function-based approach.

    Various prior studies[24–26]have noted the importance of lipase in the industry,the growing demand for lipases encourages more exploring for novellipases and innovative properties of the known lipases.

    Novel lipases found in the environmentalsamples

    In recent years,there has been growing interest in finding microbiallipases,principally from bacteria and fungi(Table 2) [27–35].Interestingly,these microorganisms are very attractive as biocatalysts due to their unique properties of adapting to extreme environmental conditions such as hypersaline habitats,high pressure,and extreme temperature.In particular, some microorganisms are able to live in marine environments characterized by high levels of pollutants(e.g.the Norwegian Sea and the Red Sea),high pressures,high temperatures ranging 50–70°C,little to no light or oxygen,and high concentrations of salt and heavy metals[36].As an example of the extreme environmental conditions that are expected to enhance the activities of microbial lipases,we focus on the Red Sea and the microorganisms living there in the present review.

    Origin and history of the Red Sea

    The Red Sea rift initiated the separation of the African and Arabian(Asian)continent masses about 70 million years ago [37],and the rifting took place multiple times afterward,leading to the eventual formation of the Red Sea.Moreover,frequent episodes of volcanic activities gave rise to the creation of volcanic islands in the Red Sea[37].

    Table 2 List of representative bacterial lipases

    The Red Sea’s essential properties make it very unique in the tropics such as no river inflow to the Red Sea.Rainfall is limited between October and May.It is characterized by high salinity,which is estimated in the northern Red Sea to be approximately 40.0 practical salinity unit(psu)[38].The temperature of surface seawater varies from 20°C in spring to 35°C in summer.Since one of the effects by the global warming is the increase in the seawater temperature,thus the Red Sea is attractive to researchers working on climate change. Moreover,a high amount of radiant energy exists throughout the year,reaching its peak in June[39].

    The Red Sea has long been considered one of the most diverse and the warmest regions in the world[38,40].It is a geologically young sea basin that has experienced a conversion from a continentalrift to a true oceanic seafloor,producing the high temperature seawater with high concentration of the minerals.Thus,the Red Sea is thought to be an interesting environment to study critical problems such as the microorganism adaptation to the semi-extreme environments as above[41].In addition,these diverse environments with the adaptation can provide a quite different spectrum of microbial diversity in the Red Sea.Thus,the Red Sea can be regarded as a potential source for finding out novel enzymes of lipases.

    Challenges in conducting functionalscreening ofmarine metagenomics libraries

    Recently,a considerable amount of literature has emerged on isolating lipase enzymes of microbial origin as shown in Table 2.As shown in Figure 1,DNA extracted from environmentalsamples can be cloned into plasmids,fosmids,bacterial artificial chromosomes,or cosmids for proliferation in a suitable heterologous host organism,such as Escherichia coli, and then be screened for catalytic activities.The rapid development of functional screening on metagenomic libraries to find a new enzymatic activity has indicated the importance of microbial diversity in the novel enzyme detection[42–45]. However,the DNA quality of the environmental samples remains a challenge,because of the low copy number of clones and the different insert sizes of metagenomic libraries[46]. DNA purity from marine samples has also been a problem because ofthe complicated and multifarious nature of the marine environments and the role of co-extracted substances,such as humic acids that inhibits biochemical reactions[47].

    Currently,choosing the best host system for the construction of heterologous protein and for screening in metagenomic libraries is difficult,because it depends on the nature of target protein,such as a thermo tolerance[48].The gram-negative bacterium,E.coli,is the most used organism for heterologous protein construction as a well-studied model organism.Thus, the E.coli system is the mostly-used host for industrialprotein construction,e.g.,E.coli BL21 and K12[49].However,several types of proteins could not be expressed in E.coli due to the difference of the genetic system in E.coli[50].Thus using alternative bacterial hosts like Bacillus brevis,B.megaterium,and B.subtilis may complement the unachievable goal in E.coli expressing system.B.subtilis and other Bacillus strains were suggested to be the most well-known microbes for the metagenomic libraries screening and heterologous protein construction[50].Gram-positive Bacillus strains have more benefitsin the field of protein production and screening in metagenomic libraries for industrial applications because of absence of lipopolysaccharides in their outer membrane,since lipopolysaccharides in gram-negative bacteria are well-known endotoxin prompting macrophages[51–53].

    There are other crucial challenges to be resolved before the full potential of metagenomics can be utilized.First,a huge number of clones are required to be screened as a result of the great biodiversity in the microbial ecosystem.Establishment of high-throughput screening is crucial to identify millions of positive clones in a metagenomic library in a short time.Second,the insert size is a key issue in conducting effective metagenomic screening.For example,a plasmid vector can have a short insert size(less than 10 kb).Therefore,if we use a plasmid as a vector for the library construction,the library harbors only the short length of the target fragments. For this reason,more clones are subsequently required for successfulidentification of positive clones,particularly when compared with metagenomic libraries constructed from fosmid vectors(the insert size is about 40 kb)[7].Furthermore,large clusters of genes cannot be recovered with short inserts.

    To overcome the limitations of a cultivation approach,several DNA-based molecular methods have been established, including the capillary-based system of cell culturing on porous hollow-fiber membranes.An analysis of 16S rRNA genes generally supplies considerable information about the species present in an environment[45,54].In particular,various methods can be used to screen novel lipases,including Fourier transform infrared spectroscopy(FTIR).Interestingly,this method has already been used to examine the lipolysis of different substrates(tri octanoyl glycerol and vegetable oils) [55].Hosokawa et al introduced a high-throughput technique for functional screening of a metagenomic library,in which unique enzymes were extracted by droplet-based microfluidics [11].In their method,a microfluidic gel micro-droplet technique was used for co-encapsulation of metagenomic clones to screen a metagenomic library based on a lipolytic activity assay[11].Moreover,they used droplet technology coupled with fluorescent-activated cell sorting to assist the highthroughput screening of enzyme libraries with fluorogenic substrates[56].Thus,powerful techniques such as microfluidics have become a promising tool for screening in metagenomic libraries,especially in selecting novel catalysts.

    Metagenomics can be conducted easily to identify genomic segments.However,it is a tough question on how we can obtain a microorganism itself from genomic segments.When a function-based analysis is conducted,it is ideal to have individual samples of the microorganism.This is a serious problem,because most of those microorganisms are uncultivable as mentioned before.To avoid this problem,we may identify a particular coding region in nucleotide sequences that corresponds to a given functional domain of an enzyme such as lipase.Then,using genetic engineering,this functional domain can be expressed to obtain a sufficient amount of proteins in E.coli or yeast for biochemicalassay.If we can invoke a single cell technology;however,isolation of an individual sample of the microorganism of interest is still necessary.This remains one of the biggest challenges.

    In short,while metagenomics may help improve our understanding of microbial physiology,genetics,and community ecology[42–44],it can be an advanced and powerful tool for finding out a novel enzyme that is useful for biotechnology application and industrialization.

    Challenges related to DNA sequencing and bioinformatics

    Over the last few decades,metagenomics has become a fundamental tool in microbial ecology,and a revolution in metagenomic studies is poised to begin,with the support of recent developments in NGS technology.Despite these facts,metagenomics still has computational challenges that need to be addressed.

    In the studies of metagenomics,environmental DNA is,in the mostcases,fragmented into smallsegments[57].Therefore, production of millions of small reads must be reassembled de novo utilizing bioinformatics tools and software.However, the reassembly of these reads into contigs is stilla serious computationalchallenge.The reconstruction of the entire genomes of microorganisms in the environmentalsample remains virtually impossible atpresent,although continuous advances in the development of bioinformatics software and tools will have been made.

    In fact,depending on the platform used,the read lengths generated from NGS platforms mostly range 75–1000 bp [58].Short read lengths and low depth of coverage lead to the introduction of large gaps in the assembled contigs.Hence, due to the length and number of these gaps,accurate assembly of the contigs is now difficult.Therefore,regeneration of the entire gene sequences becomes extremely difficult and even impossible[59].These challenges can be overcome through a continuous progression of high-throughput gene sequencing technologies and the establishment of methodologies used to sequence longer reads with maximal depth and efficiency. For instance,single molecule real-time sequencing(SMRT) technology,the third-generation sequencing platform,is the latest system developed by Pacific Biosciences[60].This system has the ability to resolve such problems in current gene sequencing platforms by producing longer reads,up to 60 kb with the PacBio RS II platform(http://www.pacificbiosciences.com).Increased depth coverage and long overlapping reads allow reconstruction ofa genome with fewer obstacles,in our prediction.

    Instead,there is an approach to annotate the metagenome data without reassembly,i.e.,by classifying the NGS read directly.Functional and taxonomical classifications are the most important processes to revealthe feature of the microbial community and to find the useful enzymes.However,like the assembly of the short reads,the shortness of the NGS reads also prevents the accurate and fast classification.Several software and algorithms to solve this issue such as MetaCV[61] and CVTree3[62]have been developed and main web resources for metagenomics studies are reviewed in this issue as well[63].

    Gene prediction is also a challenge in the sequencing of metagenomics data.Many current gene finder systems require long stretches of the sequence to differentiate coding from non-coding sequences.They usually need to train sequences from a single species that is afterward utilized to generate a species-specific gene prediction model[64].Unfortunately,this is inadequate for metagenomes that are constructed from avariety of sequences from distinct microorganisms and frequently constitute not only a limited number of long contigs but also short assemblies and unassembled reads[64]. Moreover,metagenomes are usually permeated with frameshifts that make gene prediction in metagenomes an ambitious task[65].To overcome these issues,the bioinformatics tools to predict genes from metagenome data are actively developed such as MetaGeneMark[66],FragGeneScan[67],and MetaGeneAnnotator[68].

    Conclusion

    Marine metagenomics is a fast-developing and promising area of genomic studies,by which we can investigate the microbial communities in marine environments.Marine metagenomics has already opened new avenues of research by uncovering a remarkable diversity of marine microorganisms and providing a chance of access to this microbial diversity in laboratory. Marine metagenomics can be used alternatively without culturing microorganisms to discover unique biocatalysts for new functions applied in biotechnological applications,such as lipase enzymes[4,69].In fact,the development of metagenomics has increased the discovery of biocatalysts as many demonstrating novel characteristics.To date,however,most biocatalysts remain uncharacterized.Biocatalysts discovery remains a challenge even with the increased functionalscreening capabilities.

    Competing interests

    The authors have declared no competing interests.

    Acknowledgments

    This work was supported by King Abdullah University of Science and Technology(KAUST),Saudi Arabia.

    References

    [1]Anbu P,Gopinath SC,Chaulagain BP,Tang TH,Citartan M. Microbial enzymes and their applications in industries and medicine 2014.Biomed Res Int 2015;2015:816419.

    [2]Uchiyama T,Miyazaki K.Functional metagenomics for enzyme discovery:challenges to efficient screening.Curr Opin Biotechnol 2009;20:616–22.

    [3]Amann RI,Ludwig W,Schleifer KH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiol Rev 1995;59:143–69.

    [4]Jeon JH,Kim JT,Kim YJ,Kim HK,Lee HS,Kang SG,et al. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome.Appl Microbiol Biotechnol 2009;81:865–74.

    [5]Simon C,Daniel R.Achievements and new knowledge unraveled by metagenomic approaches.Appl Microbiol Biotechnol 2009;85:265–76.

    [6]Simon C,Daniel R.Metagenomic analyses:past and future trends.Appl Environ Microbiol 2011;77:1153–61.

    [7]Lopez-Lopez O,Cerdan ME,Gonzalez Siso MI.New extremophilic lipases and esterases from metagenomics.Curr Protein Pept Sci 2014;15:445–55.

    [8]Handelsman J,Rondon MR,Brady SF,Clardy J,Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products.Chem Biol 1998;5: R245–9.

    [9]Schloss PD,Handelsman J.Biotechnological prospects from metagenomics.Curr Opin Biotechnol 2003;14:303–10.

    [10]Steele HL,Streit WR.Metagenomics:advances in ecology and biotechnology.FEMS Microbiol Lett 2005;247:105–11.

    [11]Hosokawa M,Hoshino Y,Nishikawa Y,Hirose T,Yoon DH, Mori T,et al.Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes.Biosens Bioelectron 2015;67:379–85.

    [12]Hasan F,Shah AA,Hameed A.Industrial applications of microbial lipases.Enzyme Microb Tech 2006;39:235–51.

    [13]Saxena RK,Ghosh PK,Gupta R,Davidson WS,Bradoo S, Gulati R.Microbial lipases:potential biocatalysts for the future industry.Curr Sci India 1999;77:101–15.

    [14]Zhang C,Kim SK.Research and application of marine microbial enzymes:status and prospects.Mar Drugs 2010;8:1920–34.

    [15]Gupta R,Gupta N,Rathi P.Bacterial lipases:an overview of production,purification and biochemicalproperties.Appl Microbiol Biotechnol 2004;64:763–81.

    [16]Dalmaso GZ,Ferreira D,Vermelho AB.Marine extremophiles:a source of hydrolases for biotechnologicalapplications.Mar Drugs 2015;13:1925–65.

    [17]Su J,Zhang F,Sun W,Karuppiah V,Zhang G,Li Z,et al.A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp.World J Microbiol Biotechnol 2015;31:1093–102.

    [18]Jaeger KE,Dijkstra BW,Reetz MT.Bacterial biocatalysts: molecular biology,three-dimensional structures,and biotechnological applications of lipases.Annu Rev Microbiol 1999;53:315–51.

    [19]Mukherjee KD.Plant lipases and their application in lipid biotransformations.Prog Lipid Res 1994;33:165–74.

    [20]Jaeger KE,Eggert T,Eipper A,Reetz MT.Directed evolution and the creation of enantioselective biocatalysts.Appl Microbiol Biotechnol 2001;55:519–30.

    [21]Jaeger KE,Reetz MT.Microbial lipases form versatile tools for biotechnology.Trends Biotechnol 1998;16:396–403.

    [22]Brzozowski AM,Derewenda U,Derewenda ZS,Dodson GG, Lawson DM,Turkenburg JP,et al.A model for interfacial activation in lipases from the structure of a fungallipase–inhibitor complex.Nature 1991;351:491–4.

    [23]Derewenda U,Brzozowski AM,Lawson DM,Derewenda ZS. Catalysis at the interface—the anatomy of a conformational change in a triglyceride lipase.Biochemistry 1992;31:1532–41.

    [24]Lee LP,Karbul HM,Citartan M,Gopinath SC,Lakshmipriya T, Tang TH.Lipase-secreting Bacillus species in an oil-contaminated habitat:promising strains to alleviate oil pollution.Biomed Res Int 2015;2015:820575.

    [25]Rodrigues RC,Fernandez-Lafuente R.Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process.J Mol Catal B Enzym 2010;64:1–22.

    [26]Schmid A,Dordick JS,Hauer B,Kiener A,Wubbolts M,Witholt B.Industrial biocatalysis today and tomorrow.Nature 2001;409:258–68.

    [27]Oliveira LC,Ramos PL,Marem A,Kondo MY,Rocha RC, Bertolini T,et al.Halotolerant bacteria in the Sao Paulo Zoo composting process and their hydrolases and bioproducts.Braz J Microbiol 2015;46:347–54.

    [28]Balan A,Ibrahim D,Abdul Rahim R,Ahmad Rashid FA. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra.Enzyme Res 2012;2012:987523.

    [29]Rohban R,Amoozegar MA,Ventosa A.Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake,Iran.J Ind Microbiol Biotechnol 2009;36:333–40.

    [30]Cao J,Dang G,Li H,Li T,Yue Z,Li N,et al.Identification and characterization oflipase activity and immunogenicity of LipL from Mycobacterium tuberculosis.PLoS One 2015;10:e0138151.

    [31]Vaquero ME,Prieto A,Barriuso J,Martinez MJ.Expression and properties of three novel fungal lipases/sterol esterases predicted in silico:comparison with other enzymes of the Candida rugosalike family.Appl Microbiol Biotechnol 2015;99:10057–67.

    [32]Vakhlu J,Kour A.Yeast lipases:enzyme purification, biochemical properties and gene cloning.Electron J Biotechnol 2006;9:69–85.

    [33]Ji X,Li S,Lin L,Zhang Q,Wei Y.Gene cloning,sequence analysis and heterologous expression of a novel cold-active lipase from Pseudomonas sp.PF16.Technol Health Care 2015;23: S109–17.

    [34]Ali MS,Ganasen M,Rahman RN,Chor AL,Salleh AB,BasriM. Cold-adapted RTX lipase from antarctic Pseudomonas sp.strain AMS8:isolation,molecular modeling and heterologous expression.Protein J 2013;32:317–25.

    [35]Kumar S,Karan R,Kapoor S,S PS,S KK.Screening and isolation of halophilic bacteria producing industrially important enzymes.Braz J Microbiol 2012;43:1595–603.

    [36]Barone R,De Santi C,Palma Esposito F,Tedesco P,Galati F, Visone M,et al.Marine metagenomics,a valuable tool for enzymes and bioactive compounds discovery.Front Mar Sci2014. http://dx.doi.org/10.3389/fmars.2014.0003.

    [37]Klaus R.Coral reefs and communities of the Central and Southern Red Sea(Sudan,Eritrea,Djibouti,and Yemen).In: Rasul NMA,Stewart ICF,editors.The Red Sea.Berlin Heidelberg:Springer-Verlag;2015.p.409–51.

    [38]Berumen ML,Hoey AS,Bass WH,Bouwmeester J,Catania D, Cochran JEM,et al.The status of coral reef ecology research in the Red Sea.Coral Reefs 2013;32:737–48.

    [39]Shaikh EA,Roff JC,Dowidar NM.Phytoplankton ecology and production in the Red Sea off Jiddah,Saudi Arabia.Mar Biol 1986;92:405–16.

    [40]Stehli FG,Wells JW.Diversity and age patterns in hermatypic corals.Syst Zool 1971;20:115–26.

    [41]Rasul NMA,Stewart ICF,editors.The Red Sea.Berlin Heidelberg:Springer-Verlag;2015.

    [42]Ferrer M,Martinez-Abarca F,Golyshin PN.Mining genomes and’metagenomes’for novel catalysts.Curr Opin Biotechnol 2005;16:588–93.

    [43]Cowan D,Meyer Q,Stafford W,Muyanga S,Cameron R, Wittwer P.Metagenomic gene discovery:past,present and future. Trends Biotechnol 2005;23:321–9.

    [44]Cowan DA,Arslanoglu A,Burton SG,Baker GC,Cameron RA, Smith JJ,et al.Metagenomics,gene discovery and the ideal biocatalyst.Biochem Soc Trans 2004;32:298–302.

    [45]Streit WR,Schmitz RA.Metagenomics—the key to the uncultured microbes.Curr Opin Microbiol 2004;7:492–8.

    [46]Hurt RA,Qiu X,Wu L,Roh Y,Palumbo AV,Tiedje JM,et al. Simultaneous recovery of RNA and DNA from soils and sediments.Appl Environ Microbiol 2001;67:4495–503.

    [47]Corinaldesi C,Danovaro R,Dell’Anno A.Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments.Appl Environ Microbiol 2005;71:46–50.

    [48]Angelov A,Mientus M,Liebl S,Liebl W.A two-host fosmid system for functional screening of(meta)genomic libraries from extreme thermophiles.Syst Appl Microbiol 2009;32: 177–85.

    [49]Tenaillon O,Skurnik D,Picard B,Denamur E.The population genetics of commensal Escherichia coli.Nat Rev Microbiol 2010;8:207–17.

    [50]Westers L,Westers H,Quax WJ.Bacillus subtilis as cell factory for pharmaceutical proteins:a biotechnological approach to optimize the host organism.Biochim Biophys Acta 2004;1694:299–310.

    [51]Terpe K.Overview of bacterial expression systems for heterologous protein production:from molecular and biochemicalfundamentals to commercial systems.Appl Microbiol Biotechnol 2006;72:211–22.

    [52]Wang H,Bloom O,Zhang M,Vishnubhakat JM,Ombrellino M, Che J,et al.HMG-1 as a late mediator of endotoxin lethality in mice.Science 1999;285:248–51.

    [53]Zweers JC,Barak I,Becher D,Driessen AJ,Hecker M,Kontinen VP,et al.Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes.Microb Cell Fact 2008;7:10.

    [54]Stewart EJ.Growing unculturable bacteria.J Bacteriol 2012;194:4151–60.

    [55]Beisson F,Tiss A,Riviere C,Verger R.Methods for lipase detection and assay:a critical review.Eur J Lipid Sci Technol 2000;102:133–53.

    [56]Aharoni A,Amitai G,Bernath K,Magdassi S,Tawfik DS.Highthroughput screening of enzyme libraries:thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments.Chem Biol 2005;12:1281–9.

    [57]Pop M,Salzberg SL.Bioinformatics challenges of new sequencing technology.Trends Genet 2008;24:142–9.

    [58]Henson J,Tischler G,Ning Z.Next-generation sequencing and large genome assemblies.Pharmacogenomics 2012;13:901–15.

    [59]Riesenfeld CS,Schloss PD,Handelsman J.Metagenomics: genomic analysis of microbial communities.Annu Rev Genet 2004;38:525–52.

    [60]Rhoads A,Au KF.PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015;13:278–89.

    [61]Liu J,Wang H,Yang H,Zhang Y,Wang J,Zhao F,et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functionalenrichment of microorganisms.Nucleic Acids Res 2013;41:e3.

    [62]Zuo G,Hao B.CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy.Genomics Proteomics Bioinformatics 2015;13:321–31.

    [63]Dudhagara P,Bhavsar S,Bhagat C,Ghelani A,Bhatt S,Patel R. Web resources for metagenomics studies.Genomics Proteomics Bioinformatics 2015;13:296–303.

    [64]Teeling H,Glockner FO.Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Brief Bioinform 2012;13:728–42.

    [65]Hoff KJ.The effect of sequencing errors on metagenomic gene prediction.BMC Genomics 2009;10:520.

    [66]Zhu W,Lomsadze A,Borodovsky M.Ab initio gene identification in metagenomic sequences.Nucleic Acids Res 2010;38:e132.

    [67]Rho M,Tang H,Ye Y.FragGeneScan:predicting genes in short and error-prone reads.Nucleic Acids Res 2010;38:e191.

    [68]Noguchi H,Taniguchi T,Itoh T.MetaGeneAnnotator:detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes.DNA Res 2008;15:387–96.

    [69]Turnbaugh PJ,Gordon JI.An invitation to the marriage of metagenomics and metabolomics.Cell 2008;134:708–13.

    2 October 2015;revised 19 October 2015;accepted 19 October 2015

    .

    E-mail:takashi.gojobori@kaust.edu.sa(Gojobori T).aORCID:0000-0001-8895-5423.bORCID:0000-0001-7850-1743.cORCID:0000-0002-4727-045X.

    Peer review under responsibility of Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China.

    色网站视频免费| 国产成人freesex在线| 夫妻性生交免费视频一级片| 18在线观看网站| 成人国产av品久久久| 国产精品久久久久久精品电影小说| av线在线观看网站| 最近中文字幕2019免费版| 国产 一区精品| 欧美另类一区| 久久精品国产亚洲网站| 人人妻人人爽人人添夜夜欢视频| 成人毛片a级毛片在线播放| 成人国产av品久久久| 久久精品人人爽人人爽视色| 五月伊人婷婷丁香| 国产黄片视频在线免费观看| 蜜桃国产av成人99| av有码第一页| 成人国产麻豆网| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 日韩成人伦理影院| av在线观看视频网站免费| 亚洲精品久久成人aⅴ小说 | 国产国语露脸激情在线看| 国产有黄有色有爽视频| 久久精品国产亚洲av涩爱| 国产在线视频一区二区| 欧美激情极品国产一区二区三区 | 国产在线免费精品| 亚洲中文av在线| 精品国产露脸久久av麻豆| 22中文网久久字幕| av在线观看视频网站免费| 成人国产麻豆网| 免费人妻精品一区二区三区视频| 国产精品国产三级专区第一集| 亚洲熟女精品中文字幕| 少妇人妻 视频| 国产一区亚洲一区在线观看| 色哟哟·www| 天美传媒精品一区二区| 好男人视频免费观看在线| 免费日韩欧美在线观看| 99热6这里只有精品| 熟妇人妻不卡中文字幕| 成人综合一区亚洲| 成年女人在线观看亚洲视频| 天天躁夜夜躁狠狠久久av| 国产精品免费大片| 三级国产精品片| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 在线观看美女被高潮喷水网站| a级毛色黄片| a级片在线免费高清观看视频| 这个男人来自地球电影免费观看 | 看免费成人av毛片| 亚洲国产av新网站| av电影中文网址| 91成人精品电影| 国产精品久久久久久久电影| xxx大片免费视频| 高清欧美精品videossex| 乱码一卡2卡4卡精品| 亚洲成人av在线免费| 亚洲综合色惰| 亚洲四区av| 天天影视国产精品| 边亲边吃奶的免费视频| 伦理电影免费视频| 久久精品国产亚洲网站| 女性生殖器流出的白浆| 成人国产av品久久久| 99视频精品全部免费 在线| 嫩草影院入口| 国产成人精品一,二区| 亚洲欧美精品自产自拍| 免费av中文字幕在线| 亚洲精品第二区| 亚洲国产精品999| 成人手机av| 日本爱情动作片www.在线观看| 国产精品久久久久久久久免| 国产免费现黄频在线看| av又黄又爽大尺度在线免费看| 日本欧美国产在线视频| 欧美激情 高清一区二区三区| 街头女战士在线观看网站| 观看美女的网站| 香蕉精品网在线| 九草在线视频观看| xxx大片免费视频| 国产 精品1| 少妇被粗大的猛进出69影院 | 日韩伦理黄色片| 91精品国产国语对白视频| 久久精品国产亚洲av天美| 99国产综合亚洲精品| 99久久中文字幕三级久久日本| 2021少妇久久久久久久久久久| 精品一区二区三卡| 大香蕉久久成人网| 毛片一级片免费看久久久久| 精品一区二区三卡| 亚洲精品亚洲一区二区| 中文字幕av电影在线播放| 亚洲精品国产av蜜桃| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 亚洲av免费高清在线观看| 国产淫语在线视频| 国产一区二区三区av在线| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 亚洲综合精品二区| 热99久久久久精品小说推荐| 久久精品久久久久久噜噜老黄| 欧美日韩国产mv在线观看视频| 国产成人精品一,二区| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 黑人欧美特级aaaaaa片| videos熟女内射| 满18在线观看网站| 久久青草综合色| 九九爱精品视频在线观看| 狠狠婷婷综合久久久久久88av| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 最近最新中文字幕免费大全7| 美女国产高潮福利片在线看| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产av玫瑰| 日韩亚洲欧美综合| 免费看光身美女| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 国产精品人妻久久久久久| 如日韩欧美国产精品一区二区三区 | 视频区图区小说| 夜夜骑夜夜射夜夜干| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 99久国产av精品国产电影| 精品人妻在线不人妻| 午夜av观看不卡| 午夜老司机福利剧场| 午夜免费观看性视频| 欧美精品一区二区免费开放| 日韩亚洲欧美综合| 亚洲中文av在线| 亚洲国产欧美在线一区| 91精品国产九色| 亚洲成人av在线免费| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 在线看a的网站| 青春草亚洲视频在线观看| 18禁观看日本| 亚洲av中文av极速乱| 在线观看免费高清a一片| 一级爰片在线观看| 日本与韩国留学比较| 在线观看免费高清a一片| 日本欧美视频一区| 国产黄频视频在线观看| 国产精品久久久久成人av| 国产精品人妻久久久久久| 成人国产麻豆网| 下体分泌物呈黄色| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线 | 国产乱来视频区| 成人亚洲精品一区在线观看| av天堂久久9| 亚洲av在线观看美女高潮| 欧美精品一区二区大全| 精品卡一卡二卡四卡免费| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 婷婷色av中文字幕| 男的添女的下面高潮视频| 综合色丁香网| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| 全区人妻精品视频| 中文字幕av电影在线播放| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 欧美亚洲日本最大视频资源| 亚洲精品亚洲一区二区| av不卡在线播放| 亚洲久久久国产精品| 国产一区二区在线观看av| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频| av一本久久久久| 精品亚洲乱码少妇综合久久| 日本与韩国留学比较| 春色校园在线视频观看| 国产欧美亚洲国产| 久久影院123| 免费黄频网站在线观看国产| 亚洲av不卡在线观看| 国产精品女同一区二区软件| 人妻少妇偷人精品九色| 天天影视国产精品| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 久久午夜综合久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 搡老乐熟女国产| 亚洲人与动物交配视频| 日韩一区二区视频免费看| 成人毛片a级毛片在线播放| 国产成人精品婷婷| 国产片特级美女逼逼视频| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| xxx大片免费视频| 免费日韩欧美在线观看| 精品久久久噜噜| 伊人亚洲综合成人网| 国产亚洲最大av| 国产亚洲一区二区精品| 大香蕉久久网| 日本wwww免费看| 国产在视频线精品| 内地一区二区视频在线| 久久精品国产亚洲网站| 大香蕉久久网| 大码成人一级视频| 免费黄色在线免费观看| 人妻制服诱惑在线中文字幕| 国产成人精品婷婷| 日本黄色片子视频| 精品国产露脸久久av麻豆| 男女高潮啪啪啪动态图| 久久精品国产亚洲网站| 十八禁网站网址无遮挡| 五月伊人婷婷丁香| 中文字幕av电影在线播放| 亚洲人成网站在线播| 免费av不卡在线播放| 精品一区二区免费观看| 国产精品熟女久久久久浪| 热99久久久久精品小说推荐| 如日韩欧美国产精品一区二区三区 | 精品久久久精品久久久| 亚洲欧美日韩卡通动漫| 日韩一区二区三区影片| 国产日韩欧美在线精品| 国产白丝娇喘喷水9色精品| 国产一区二区在线观看日韩| 热re99久久国产66热| 久久精品国产鲁丝片午夜精品| 一级毛片黄色毛片免费观看视频| 国产成人精品婷婷| 少妇 在线观看| 热99久久久久精品小说推荐| 亚洲精品视频女| 久久综合国产亚洲精品| 国产一级毛片在线| 欧美人与善性xxx| 日韩精品有码人妻一区| 精品国产国语对白av| 久久国产精品男人的天堂亚洲 | 成人手机av| 国产精品久久久久久精品电影小说| 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 在线播放无遮挡| 一级片'在线观看视频| av线在线观看网站| 亚洲欧洲国产日韩| 性色av一级| 国产永久视频网站| 亚洲国产精品成人久久小说| 满18在线观看网站| 亚洲精品日本国产第一区| 国产男女超爽视频在线观看| 久久久久久久精品精品| 国产探花极品一区二区| 日韩成人av中文字幕在线观看| 久热这里只有精品99| 日韩三级伦理在线观看| 丁香六月天网| 久久久久久伊人网av| 亚洲精品国产av蜜桃| 91aial.com中文字幕在线观看| 亚洲人与动物交配视频| 日韩人妻高清精品专区| 欧美xxxx性猛交bbbb| 高清黄色对白视频在线免费看| 一级毛片我不卡| 日韩,欧美,国产一区二区三区| 成人漫画全彩无遮挡| av视频免费观看在线观看| 精品久久蜜臀av无| 久久精品国产鲁丝片午夜精品| av福利片在线| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到 | 亚洲熟女精品中文字幕| 成人二区视频| 国产精品一国产av| 如何舔出高潮| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线 | 在线观看人妻少妇| 一本色道久久久久久精品综合| 乱人伦中国视频| 少妇丰满av| 特大巨黑吊av在线直播| 最黄视频免费看| 欧美丝袜亚洲另类| 哪个播放器可以免费观看大片| 丰满饥渴人妻一区二区三| 久久久亚洲精品成人影院| 亚洲精品日本国产第一区| 精品熟女少妇av免费看| 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 最近手机中文字幕大全| 天堂中文最新版在线下载| 午夜福利影视在线免费观看| 日本免费在线观看一区| 中文字幕精品免费在线观看视频 | 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 少妇人妻 视频| 三上悠亚av全集在线观看| 免费观看a级毛片全部| 婷婷色av中文字幕| 欧美精品一区二区免费开放| 欧美3d第一页| 永久网站在线| 99热网站在线观看| 精品卡一卡二卡四卡免费| 晚上一个人看的免费电影| 久久久国产精品麻豆| 国产 一区精品| 男男h啪啪无遮挡| 一区二区日韩欧美中文字幕 | 精品国产露脸久久av麻豆| 成人18禁高潮啪啪吃奶动态图 | 日本黄大片高清| 欧美日韩视频高清一区二区三区二| 亚洲av成人精品一区久久| 国产熟女午夜一区二区三区 | 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| 一本色道久久久久久精品综合| 日本黄色片子视频| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 国产午夜精品一二区理论片| 精品久久久久久电影网| 在线免费观看不下载黄p国产| 黑丝袜美女国产一区| 免费观看性生交大片5| 考比视频在线观看| 国产亚洲最大av| 国产又色又爽无遮挡免| 欧美性感艳星| 免费看光身美女| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 99久久综合免费| .国产精品久久| 好男人视频免费观看在线| 黑丝袜美女国产一区| 一本久久精品| 两个人的视频大全免费| 精品国产一区二区三区久久久樱花| 日韩欧美一区视频在线观看| 搡老乐熟女国产| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 欧美激情极品国产一区二区三区 | 国产69精品久久久久777片| 国产精品成人在线| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 免费人成在线观看视频色| 国产精品免费大片| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| kizo精华| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| 成人无遮挡网站| 欧美xxⅹ黑人| 51国产日韩欧美| 国产黄频视频在线观看| 成年av动漫网址| 亚洲av.av天堂| 欧美一级a爱片免费观看看| 国产男女内射视频| 午夜福利,免费看| 一区二区三区四区激情视频| 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 成人毛片60女人毛片免费| 久久精品夜色国产| 国产熟女午夜一区二区三区 | 国产精品三级大全| 国产精品不卡视频一区二区| 国产av国产精品国产| 黑丝袜美女国产一区| 国产精品熟女久久久久浪| 美女大奶头黄色视频| 亚洲五月色婷婷综合| 午夜av观看不卡| 免费黄网站久久成人精品| 国产成人91sexporn| 黄色欧美视频在线观看| 国产日韩一区二区三区精品不卡 | 男女国产视频网站| 亚洲国产日韩一区二区| 最近手机中文字幕大全| 日韩av在线免费看完整版不卡| 麻豆精品久久久久久蜜桃| 男人操女人黄网站| 精品人妻一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 啦啦啦视频在线资源免费观看| 九九在线视频观看精品| 最近2019中文字幕mv第一页| 日本午夜av视频| 久久精品国产亚洲av天美| 国产一区亚洲一区在线观看| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 精品酒店卫生间| 黄片播放在线免费| 日韩在线高清观看一区二区三区| av国产精品久久久久影院| 精品酒店卫生间| 亚洲精品,欧美精品| 人妻系列 视频| 亚洲熟女精品中文字幕| 精品亚洲成国产av| 国产亚洲最大av| 九草在线视频观看| 在现免费观看毛片| 亚洲美女黄色视频免费看| 国产爽快片一区二区三区| 日韩三级伦理在线观看| 中国美白少妇内射xxxbb| 久久韩国三级中文字幕| 国产成人精品久久久久久| 久久精品国产亚洲网站| 亚洲怡红院男人天堂| 男女无遮挡免费网站观看| 国产精品一区二区在线不卡| 亚洲av二区三区四区| 老司机亚洲免费影院| 欧美日韩成人在线一区二区| 精品亚洲乱码少妇综合久久| 欧美少妇被猛烈插入视频| 国产在线视频一区二区| 国产精品久久久久成人av| 最新的欧美精品一区二区| 内地一区二区视频在线| 国产男女内射视频| 九草在线视频观看| 中文乱码字字幕精品一区二区三区| 日本与韩国留学比较| 国产乱人偷精品视频| 黑人高潮一二区| 中国美白少妇内射xxxbb| 好男人视频免费观看在线| 中文天堂在线官网| 在线亚洲精品国产二区图片欧美 | 色5月婷婷丁香| 王馨瑶露胸无遮挡在线观看| 男的添女的下面高潮视频| 91精品国产九色| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 国模一区二区三区四区视频| 午夜日本视频在线| 黑人巨大精品欧美一区二区蜜桃 | 午夜激情av网站| 美女主播在线视频| 免费少妇av软件| 国产成人av激情在线播放 | 高清不卡的av网站| 纵有疾风起免费观看全集完整版| 飞空精品影院首页| 午夜激情久久久久久久| 99国产精品免费福利视频| 婷婷色综合www| 大香蕉久久成人网| 免费黄频网站在线观看国产| 美女xxoo啪啪120秒动态图| 黑丝袜美女国产一区| 少妇 在线观看| 国产伦精品一区二区三区视频9| 一区二区日韩欧美中文字幕 | 中文乱码字字幕精品一区二区三区| 制服诱惑二区| 国产色婷婷99| av国产精品久久久久影院| 满18在线观看网站| 久久久久久久大尺度免费视频| xxx大片免费视频| 看非洲黑人一级黄片| 日本91视频免费播放| 欧美性感艳星| 天堂中文最新版在线下载| 另类精品久久| xxx大片免费视频| 国产在线视频一区二区| a级毛片黄视频| 日韩伦理黄色片| 午夜免费观看性视频| 国产成人a∨麻豆精品| 久久99一区二区三区| 女的被弄到高潮叫床怎么办| 一边亲一边摸免费视频| 女性生殖器流出的白浆| 97精品久久久久久久久久精品| 亚洲国产av影院在线观看| 考比视频在线观看| 成人无遮挡网站| 大香蕉久久成人网| 国产日韩欧美在线精品| 免费观看性生交大片5| 亚洲精品aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 国产亚洲午夜精品一区二区久久| videosex国产| 最近的中文字幕免费完整| 日本vs欧美在线观看视频| 国产伦理片在线播放av一区| 国内精品宾馆在线| 欧美bdsm另类| 日韩欧美一区视频在线观看| 亚洲高清免费不卡视频| 一区二区三区精品91| 亚洲欧美色中文字幕在线| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠久久av| 日日啪夜夜爽| 国产精品女同一区二区软件| 日本黄大片高清| 精品99又大又爽又粗少妇毛片| 精品一区在线观看国产| 美女脱内裤让男人舔精品视频| 欧美3d第一页| 九色成人免费人妻av| .国产精品久久| 天堂俺去俺来也www色官网| 一本色道久久久久久精品综合| 国产在线视频一区二区| 水蜜桃什么品种好| 亚洲av男天堂| 免费看光身美女| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 99热全是精品| 在线观看免费日韩欧美大片 | 亚洲av欧美aⅴ国产| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 国产精品99久久99久久久不卡 | 精品久久国产蜜桃| 人妻一区二区av| av卡一久久| 简卡轻食公司| 男的添女的下面高潮视频| 国产 精品1| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 桃花免费在线播放| 国产精品人妻久久久久久| 久久韩国三级中文字幕| 22中文网久久字幕| 纯流量卡能插随身wifi吗| 免费不卡的大黄色大毛片视频在线观看| 黄色欧美视频在线观看| 一级毛片电影观看| 欧美日本中文国产一区发布| 能在线免费看毛片的网站| 亚洲av欧美aⅴ国产| 蜜桃国产av成人99| av免费在线看不卡| 少妇被粗大的猛进出69影院 |