• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Behavior of Benzene Decomposition by Using Pulse Modulated Power Supply

    2015-12-20 09:13:18JIANGHuadong姜華東MATianpeng馬天鵬ZHONGFangchuan鐘方川
    關(guān)鍵詞:華東

    JIANG Hua-dong (姜華東),MA Tian-peng (馬天鵬),ZHONG Fang-chuan (鐘方川)*

    1 College of Science,Donghua University,Shanghai 201620,China

    2 College of Environmental Science and Engineering,Donghua University,Shanghai 201620,China

    Introduction

    Volatile organic compounds(VOCs)treatment is becoming a growing concern issue around the world for its harmful effect to the environment and human being such as ozone layer erosion,photochemical smog,carcinogenic effects[1-2].With the development of modern industry,more and more amounts of VOCs are generated during the industrial production.There are many conventional methods for VOCs reduction including adsorption,catalytic oxidation and thermal incineration.These techniques have drawbacks such as large energy cost,second pollution or low capacity for different initial concentrations.It needs to explore effective and clean solutions to decompose the VOCs.

    Non-thermal plasma (NTP) methods present potential advantages in decomposition of dilute VOCs for its easy operation,moderate energy cost and non-selectivity for the abatement species.In NTP,there are high energy electrons,radicals,UV and other substance which have synergistic effect on VOCs.NTP decomposition of VOCs has been studied for two decades.Many types of plasma reactors have been investigated like corona discharge[3],dielectric barrier discharge(DBD)[4-5],and ferroelectric pellet packed-bed reactor[6-7].All the efforts have been done to make the NTP methods more energy-efficient and more environmental friendly.

    DBD plasma is a common used NTP to treat VOCs and other pollutants.Usually the DBD plasma is generated by using continuous alternating current (AC)voltage from power-line frequency to several hundreds kHz[8].By using continuous sinusoidal voltage,a large amount of energy is wasted to heat the neutral gas molecules and the discharge chamber instead of accelerating electrons which is the key to decompose VOCs.Besides wasting the energy,raising temperature of the chamber is also harmful to reactor itself.Using nanosecond pulse power supply is one efficient way to improve the energy yield[9].The drawback of this method is the need of special nanosecond pulse power supply which is expensive and large in size.

    In order to improve the energy efficiency of NTP decomposition of VOCs in easy way,pulse modulated sinusoidal voltage power was chosen to generate DBD plasma in this study.The behavior of benzene abatement was investigated.

    1 Experimental Arrangement

    1.1 Experimental setup

    Figure 1 shows the schematic of the experimental setup.The DBD reactor is a coaxial cylinder tube.The inner electrode is a copper rod with 3 mm diameter which is enclosed by a quartz tube as dielectric barrier.The outer electrode is a copper mesh covering on a quartz tube with inner diameter of 19 mm.The thickness of both quartz tubes is 1 mm.The discharge gap and length are 7 mm and 15 cm,respectively.During experiments,the outer electrode is grounded while the inner electrode is connected to high voltage.

    Fig.1 Experimental setup

    Benzene was evaporated by bubbling with N2gas and diluted by a stream of compressed air.The reason to use air is to simulate practical VOCs waste streams in real industrial situation.In experiments,the flow rate of air was controlled at 0.9 L/min by the mass flow controller (MFC)after the air compressor,and the flow rate of nitrogen containing benzene was controlled within the range of 2-12 mL/min by the other MFC to obtain the desired initial concentration of benzene,leading to a total flow rate (Q)of around 0.9 L/min.The gas components were detected by gas-chromatography (GC)(Fuli 9790)at the outlet.

    1.2 Power supply

    A pulse modulated power supply was used to generate plasma in the experiment.As shown in Fig.2,the output of the voltage is a continuous sine wave voltage modulated by a rectangle pulse.The sine wave frequency is around 10 kHz,while the frequency and the duty cycle of the modulation pulse can be changed from 50-1 000 Hz and 10%-90%,respectively.

    Fig.2 Signals of high voltage pulse modulated power supply (a)voltage signal with no modulation;(b)voltage signal with modulation;(c)current signal

    1.3 Electrical analysis and gas analysis

    Specific input energy (SIE),also called injected energy density (IED),is an important parameter commonly used to investigate the VOCs decomposition behavior.Generally,removal rate is directly related to SIE.SIE (ε,kJ/L)is defined by:

    where Q is the gas flow rate and P is the input electrical power calculated from:

    where V (t)and I (t)are pulsed voltage and current of discharge,T is the pulse duration,and f is the modulation pulse frequency.

    Gas sample was detected by a GC.Benzene was detected by flame ionization detector (FID)(Column:SE-54,F(xiàn)ID temperature 140℃,oven temperature 120℃), and the oxycarbide (CO and CO2) were measured by thermal conductivity detector (TCD) (Column: TDX-01, TCD temperature 120℃,oven temperature 120℃).The removal efficiency of benzene (η,%),carbon balance (δ,%)and CO2selectivity (SCO2,%)are defined as follows.

    where n is the number of carbon atom in VOCs,CVOCs0and CVOCsindicate the inlet and outlet concentration of VOCs,respectively.

    The energy yield (ξ,g/(kW·h))gives the insights of energy cost in VOCs decomposition.It can be calculated with the following equation:

    where m is the relative molar mass of benzene.

    2 Results and Discussion

    2.1 Performance comparison of benzene decomposition with modulated and nonmodulated power supply

    Figure 3 is the variation of removal efficiency with the change of the pulse duty cycle for four different discharging voltages when the benzene initial concentration is fixed at 750 ppm.As the duty cycle increases,the behavior of output voltage will be more similar to that of non-modulated continuous mode.The maximum duty cycle of the modulated power is 90%,the behavior of which can be regarded as that of the nonmodulated power output.From Fig.3,it is indicated that the benzene removal efficiency increases with increasing of the duty cycle and the discharge voltage.For example,for both 40%duty cycle,90% benzene was removed at 36 kV and 60%benzene was removed at 32 kV.

    Figure 4 is the energy yield of benzene decomposition based on the removal efficiency in Fig.3.Unlike the monotonic increase of removal efficiency with duty cycle,the energy yield shows the parabolic-like curves,firstly increasing and then decreasing with the duty cycle.There is an optimal duty cycle to achieve the highest energy yield for a given discharge voltage.For peak-to-peak (p-p)voltages of 30,32,34 and 36 kV,the optimal duty cycle is 70%,40%,35% and 20%,respectively.The higher p-p voltage is applied,the higher maximum energy yield will be achieved.The maximum energy yield of 24 g/(kW·h)was achieved for p-p voltage of 36 kV at 20% duty cycle,while 20 g/(kW·h)was obtained for p-p voltage of 32 kV at its optimal duty cycle of 40%.These results indicate that the energy yield is improved by using pulse modulated AC power.

    Fig.3 Removal efficiency of benzene versus duty cycle (750 ppm benzene;Q =0.9 L/min;f=150 Hz)

    Fig.4 Energy yield of benzene decomposition versus duty cycle(750 ppm benzene;Q =0.9 L/min;f=150 Hz)

    The reason for the increasing energy yield with the modulated power is that radicals and ions produced in the discharge period can still exist during the non-discharge period,which lasts for around 5 ms for 150 Hz modulation frequency and 20% duty cycle.For example the life time of O—H is around 100 μs[10],and theand ozone can last over seconds[11],as also the metastable.These residual radicals and ions lead to benzene decomposition without energy input into the reactor.The low energy yield at both lower and higher duty cycles are caused by the low removal efficiency and excessive power input,respectively.Moreover,more radicals will be produced at high voltage amplitude rather than at low voltage amplitude,which will allow longer proper non-discharging time,or could say lower proper duty cycle,to properly consume remained ions and radicals for maximum energy yield.That is the reason why modulated power shows more advantage at 36 kV.

    Figure 5 is the temperature of the outer quartz tube wall which is measured by thermocouple for the duty cycle of 20%and 90%,respectively.Temperature of DBD reactor using modulated power is around 60℃,140℃lower than that of the non-modulated power.On the one hand,the use of modulated power decreases the power input and thus the ohm heating effect decreases.On the other hand,the reactor can be cooled during the non-discharging period.

    In conclusion,pulse modulated power has potential in increasing the energy yield of VOCs decomposition by NTP.Besides,the low temperature also has benefits to the reactor itself.More experiments should be carried out to explore the characteristics of VOCs treatment by pulse modulated power.In the following sections,the influence of initial concentration on benzene decomposition and carbon balance and CO2selectivity are investigated in more detail.

    Fig.5 Temperature of reactor chamber in modulated and non-modulated power

    2.2 Characteristics of benzene decomposition by pulse modulated power

    2.2.1 Effect of initial concentration on benzene removal efficiency

    Figure 6 is the relation of the benzene removal efficiency and the SIE under different initial concentrations.In experiments,the modulation pulse with 20% duty cycle and 150 Hz frequency were used.SIE is controlled by changing the p-p voltage.It can be seen that the benzene removal efficiency increases with increasing input energy density.It also clearly shows that with increasing of the initial concentration,the benzene removal efficiency will be decreased,as reported in most references[6,8].At 310 ppm concentration,benzene decomposition efficiency reached above 80% at energy density of 200 J/L and tended to 98% with increase of the SIE,much higher than that of 1 200-ppm benzene,which increased from 52% to 88% for the same SIE variation.

    Fig.6 Removal efficiency of benzene (Q =0.9 L/min;f=150 Hz;20% duty cycle)

    2.2.2 Effect of initial concentration on energy yield of benzene decomposition

    Figure 7 is the energy yield according to the benzene removal efficiency in Fig.6.It can be seen that all the different initial concentrations of benzene reach the best energy yield when SIE is around 180 J/L.It is also indicated that the higher initial benzene concentration,the better the decomposition energy yield.The largest difference in energy yield was about 35 g/(kW·h)between 310 ppm and 1 200 ppm,which appeared from SIE 180 J/L.This difference was almost unchanged with the SIE increasing.

    Fig.7 Energy yield of benzene decomposition (Q = 0.9 L/min;f=150 Hz;20% duty cycle)

    It should be noted that the SIE region for maximum energy yield does not depend on the benzene concentration.All the maximum energy yields occurred at SIE range from 100 to 200 J/L.This is an interesting point because the concentration of waste gas emitted from factory can hardly be controlled.It would be convenient for fixing power input into the equipment to get the maximum energy yield without concerning the concentration of waste gases.

    2.3 Carbon balance and CO2 selectivity of benzene decomposition

    2.3.1 Carbon balance

    Carbon balance is an important parameter of VOCs decomposition which indicates the distribution of oxidation products of VOCs.It is ideal case that all the byproducts can be oxidized into CO2.Carbon concentration plot,as shown in Fig.8,was used to investigate the carbon balance of benzene decomposition at different concentrations as many research groups did[13-14].In Fig.8,X and Y axes represent the concentration of carbon atoms from removed benzene and the concentration of produced COx,respectively.The diagonal in the figure indicates the carbon balance of 100%,which means that all the removed benzene has been converted into oxycarbide with no organic compounds formed.Dot lines in the figure indicate the carbon balance value of 50% and the dash lines drawn along the experimental points show the change of carbon balance along with SIE or reacted carbon concentration clearly.

    It is shown from Fig.8 that higher carbon balance can be achieved for lower concentration of benzene.Both dash lines were close to the straight line at 310 ppm,and the carbon balance reached about 80%.For 570 ppm benzene,the concentration of oxycarbide dropped nearly close to the dot line,and 55% carbon balance was obtained.When the initial benzene concentration increased to 840 and 1 200 ppm,the carbon balance decreased to 50%.

    Fig.8 Carbon balance of benzene decomposition (Q =0.9 L/min;f=150 Hz;20% duty cycle)

    It is worth emphasizing that there are two slopes for the dash lines for each investigated initial benzene concentration.The slope of the dash line for the larger reacted carbon concentration (higher SIE)is steeper than that for the lower reacted carbon concentration.This means better carbon balance under higher SIE.The distinct change of carbon balance at low and high SIE is due to the concentration limits of high energy electrons produced by plasma.When the SIE is high enough,VOCs' degradability will be saturated.Excessive high energy electrons react with other substances like secondary products,benzene fragments,etc.,which can produce more reactive species and molecular groups to increase the oxycarbide concentration.More importantly,the polymer which sticks on the DBD reactor wall during benzene decomposition would be bombed off by high energy electrons and the ions smashing on the walls and turned into CO,CO2,H2O,etc.So the amount of oxycarbide would increase dramatically and cause the steep increasing of carbon balance at high SIE.In addition,for higher concentration of benzene,a large part of energy would be consumed for benzene decomposition instead of for oxycarbide production.This is the reason why the changing of carbon balance at low and high SIE becomes smaller when the initial concentration is increased.It can be found that the angle of two dash lines in Fig.8 (d)is much smaller than that in Fig.8 (a).

    2.3.2 CO2selectivity

    CO2selectivity is another criterion for evaluating benzene decomposition performance,and 100% is the ideal value.Figure 9 is the relationship of CO2selectivity and SIE for different initial benzene concentrations.From Fig.9,it is found that better CO2selectivity can be obtained for lower initial concentration of benzene.At low SIE region,it is found that CO2selectivity dramatically decreased from 95% to 76% for 310-ppm benzene and from 86% to 56% for 1 200-ppm benzene with the increase of SIE.By further increasing the SIE,SCO2becomes stable at 76%,70%,65% and 56% for initial benzene concentrations of 310 ppm,570 ppm,840 ppm and 1 200 ppm,respectively.For each initial concentration,the CO2selectivity has only about 8% improvement with increasing SIE from 125 J/L to 500 J/L.

    The ionization rate is low and the energy of electrons and ions is small at low SIE,so the benzene decomposition rate is low.Unlike the decomposition rate,the CO2selectivity is high in Fig.9.Similar phenomenon was reported in Refs[12,15].This implies that the benzene fragments produced by plasma in low SIE are more likely to be converted into CO2.One possible reason maybe owing to the formation of formic acid (HCOOH)which was reported can be largest in low SIE[16].Decompositon of HCOOH preferably produces CO2and induces the high CO2selectivity in low SIE.With increasing SIE,more and more reactions which could produce CO due to the diversity of intermediate products during benzene decomposition.The proportion of CO and CO2increased and CO2selectivity decreased until the rate of CO2and CO reactions was stable.Then CO2selectivity slowly increases for higher oxidizability at higher SIE.After 125 J/L,the proportion of CO and CO2becomes stable with a little increasing trend in CO2selectivity.Considering the high carbon balance values in last section,it is surprisingly found that although high SIE is inclined to affect the amount of oxycarbide effectively,the selectivity of CO2is improved by only 8% when SIE increased from 125 J/L to 500 J/L.

    Fig.9 CO2 selectivity of benzene (Q =0.9 L/min;f=150 Hz;20% duty cycle)

    Combining the catalyst could be the promising way to improve the carbon balance and CO2selectivity.More experiments should be exerted to further understand and optimize the performance of NTP method by pulse modulated power.

    3 Conclusions

    A normal sinusoidal AC power with pulse modulation is used to generate DBD plasma for benzene destruction.The characteristic of benzene decomposition in the pulse modulation plasma are studied.The main conclusions are as follows.

    (1)The pulse modulation can improve the energy yield and reduce the heating of the chamber wall.For instance,for the 310 ppm benzene at 36 kV p-p voltage,the energy yield reached up to 24 g/(kW·h),two times of the energy yield in continue mode.

    (2)There is an optimal duty cycle for achieving the maximum energy yield for a certain discharge voltage.For the 30,32,34,and 36 kV p-p discharging voltages,the optimal duty cycle is 70%,40%,35% and 20%,respectively.

    (3)Low initial VOCs concentration is more suitable for decomposition by plasma.Higher removal efficiency,carbon balance and CO2selectivity will be obtained at low initial concentration.

    (4)Energy yield is largely improved by using pulse modulated DBD plasmas and increase with increasing initial concentration.Energy yield achieved maximum around 180 J/L SIE for all initial concentrations.

    (5)The two slopes in carbon concentration plot imply that the carbon balance becomes much better with the increasing of the SIE after benzene degradability is saturated.

    [1]Vandenbroucke A M,Morent R,Geyter N D,et al.Nonthermal Plasmas for Non-catalytic and Catalytic VOC Abatement[J].Journal of Hazardous Materials,2011,195(15):30-54.

    [2]Than Quoc A H,Pham Huu T,Le Van T,et al.Application of Atmospheric Non Thermal Plasma-Catalysis Hybrid System for Airpollution Control:Toluene Removal[J].Catalysis Today,2011,176(1):474-477.

    [3]Marotta E,Schiorlin M,Rea M,et al.Products and Mechanisms of the Oxidation of Organic Compounds in Atmospheric Air Plasmas[J].Journal of Physics D—Applied Physics,2010,43(12):124011.

    [4]Ye Z L,Zhang Y L,Li P,et al.Feasibility of Destruction of Gaseous Benzene with Dielectric Barrier Discharge[J].Journal of Hazardous Materials,2008,156(1/2/3):356-364.

    [5]Li J,Han S T,Bai S P,et al.Effect of Pt/g-Al2O3Catalyst on Nonthermal Plasma Decomposition of Benzene and Byproducts[J].Environmental Engineering Science,2011,28(6):395-403.

    [6]Sugasawa M,Terasawa T,F(xiàn)utamura S.Additive Effect of Water on the Decomposition of VOCs in Nonthermal Plasma[J].IEEE Transactions on Industry Applications,2010,46(5):1692-1698.

    [7]Zhu T,Wan Y D,Li H R,et al.VOCs Decomposition via Modified Ferroelectric Packed Bed Dielectric Barrier Discharge Plasma[J].IEEE Transactions on Plasma Science,2011,39(8):1695-1700.

    [8]Zhu S L,Hu T,Zhong F C.Degradation of Toluene by Using Pulse Modulated Dielectric Barrier Discharge and Catalytic Techniques[J].Environment Engineering,2013,31(3):66-70.(in Chinese)

    [9]Wang H C,Li D,Wu Y,et al.Removal of Four Kinds of Volatile Organic Compounds Mixture in Air Using Silent Discharge Reactor Driven by Bipolar Pulsed Power[J].Journal of Electrostatics,2009,67(4):547-553.

    [10]Holzer F,Roland U,Kopinke F D.Combination of Non-thermal Plasma and Heterogeneous Catalysis for Oxidation of Volatile Organic Compounds[J].Applied Catalysis B:Environmental,2002,38(3):163-181.

    [11]Atsushi O J,Shao F Q,Zou D B.Numerical Simulation of Negative Oxygen Ion Generation and Temporal Evolution in Atmospheric Plasma[J].Acta Physics Sinica,2011,60(11):110209.

    [12]Hyun H K,Seung M O,Atsushi O,et al.Decomposition of Gas-Phase Benzene Using Plasma-Driven Catalyst (PDC)Reactor Packed with Ag/TiO2Catalyst[J].Applied Catalysis B:Environmental,2005,56(3):213-220.

    [13]Zhang Y,Li D,Wang H C.Removal of Volatile Organic Compounds (VOCs) Mixture by Multi-Pin-Mesh Corona Discharge Combined with Pulsed High-Voltage[J].Plasma Science and Technology,2010,12(6):702-707.

    [14]Futamura S,Sugasawa M.Additive Effect on Energy Efficiency and Byproduct Distribution in VOC Decomposition with Nonthermal Plasma [J].IEEE Transactions on Industry Applications,2008,44(1):40-45.

    [15]Ogata A,Yamanouchi K,Mizuno K,et al.Oxidation of Dilute Benzene in an Alumina Hybrid Plasma Reactor at Atmospheric Pressure[J].Plasma Chemistry and Plasma Processing,1999,19(3):383-394.

    [16]Hyun H K,Atsushi O,Shigeru F.Atmospheric Plasma-Driven Catalysis for the Low Temperature Decomposition of Dilute Aromatic Compounds[J].Physics D—Applied Physics,2005,38(8):1292-1300.

    猜你喜歡
    華東
    華東銷售在一線
    相華東:走在欣欣向榮的田野上
    Optical properties of several ternary nanostructures*
    一道解三角形題目的多種解法
    杭州中美華東制藥有限公司
    杭州中美華東制藥有限公司
    0到1500萬(wàn)!華東已布局!看看漁東伽這場(chǎng)年會(huì)還透露了什么?
    蒲公英最懂我的心
    利群:順勢(shì)而為,登場(chǎng)華東
    商周刊(2018年19期)2018-10-26 03:31:16
    多絲量新品種華東×春晨的引進(jìn)推廣
    亚洲精品在线美女| 久久久水蜜桃国产精品网| 一个人免费在线观看的高清视频| 国产成人影院久久av| 操出白浆在线播放| 国产精品一区二区免费欧美| 欧美精品亚洲一区二区| 精品一品国产午夜福利视频| 亚洲黑人精品在线| 97超级碰碰碰精品色视频在线观看| 伦理电影免费视频| 一区二区三区激情视频| 久久中文看片网| 久久亚洲真实| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 97碰自拍视频| 精品久久久久久久毛片微露脸| 99在线视频只有这里精品首页| 亚洲欧洲精品一区二区精品久久久| 中文字幕精品免费在线观看视频| 日韩欧美三级三区| 国产亚洲精品久久久久5区| 久久九九热精品免费| 国产亚洲欧美98| 9色porny在线观看| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 久久久久九九精品影院| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区视频了| 男女做爰动态图高潮gif福利片 | 午夜福利免费观看在线| 操出白浆在线播放| 国产成人精品久久二区二区免费| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 99香蕉大伊视频| 最新美女视频免费是黄的| 美女国产高潮福利片在线看| 日韩欧美一区视频在线观看| 在线观看午夜福利视频| 最近最新中文字幕大全电影3 | 午夜久久久在线观看| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| 丝袜美足系列| 亚洲少妇的诱惑av| 国产av精品麻豆| 亚洲人成伊人成综合网2020| 99国产精品一区二区三区| 国产精品影院久久| 叶爱在线成人免费视频播放| 精品久久久久久电影网| 搡老熟女国产l中国老女人| 久久久久亚洲av毛片大全| 国产免费现黄频在线看| 成人国语在线视频| 欧美性长视频在线观看| 免费少妇av软件| 国内毛片毛片毛片毛片毛片| e午夜精品久久久久久久| 久久久久久久久中文| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 波多野结衣一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 身体一侧抽搐| 久久香蕉国产精品| 十分钟在线观看高清视频www| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 熟女少妇亚洲综合色aaa.| 老司机亚洲免费影院| 免费少妇av软件| 人成视频在线观看免费观看| 最近最新中文字幕大全电影3 | 人人妻人人添人人爽欧美一区卜| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线进入| 免费在线观看亚洲国产| 免费日韩欧美在线观看| 黄色女人牲交| 一级作爱视频免费观看| 香蕉久久夜色| 啦啦啦免费观看视频1| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合久久99| 久久精品亚洲熟妇少妇任你| 日韩欧美一区二区三区在线观看| 后天国语完整版免费观看| 免费观看精品视频网站| 涩涩av久久男人的天堂| 欧美在线一区亚洲| 成人18禁高潮啪啪吃奶动态图| 成人特级黄色片久久久久久久| 人人妻人人爽人人添夜夜欢视频| 国产精品秋霞免费鲁丝片| 国产亚洲精品综合一区在线观看 | 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| a级片在线免费高清观看视频| 成人手机av| 一级毛片女人18水好多| 国产亚洲精品第一综合不卡| 欧美日韩乱码在线| 久久伊人香网站| 国产精品98久久久久久宅男小说| av欧美777| 国产精品自产拍在线观看55亚洲| 亚洲第一欧美日韩一区二区三区| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 欧美最黄视频在线播放免费 | 国产成人影院久久av| 黑人猛操日本美女一级片| 欧美日韩瑟瑟在线播放| 亚洲成av片中文字幕在线观看| 香蕉国产在线看| 在线播放国产精品三级| 999久久久精品免费观看国产| 亚洲成av片中文字幕在线观看| 男人操女人黄网站| 亚洲自偷自拍图片 自拍| 一级a爱片免费观看的视频| 日本免费a在线| 中出人妻视频一区二区| 丰满饥渴人妻一区二区三| 国产三级黄色录像| 久久久久久亚洲精品国产蜜桃av| 变态另类成人亚洲欧美熟女 | 嫁个100分男人电影在线观看| 日韩大尺度精品在线看网址 | 精品久久久久久久毛片微露脸| 国产97色在线日韩免费| 欧美日韩av久久| 两个人免费观看高清视频| 视频在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 日本黄色视频三级网站网址| 国产精品av久久久久免费| av片东京热男人的天堂| av免费在线观看网站| 啦啦啦免费观看视频1| 国产精品久久视频播放| 中文字幕av电影在线播放| 精品人妻1区二区| 国产黄a三级三级三级人| 一进一出抽搐动态| 欧美日韩瑟瑟在线播放| 成年人免费黄色播放视频| 黄色片一级片一级黄色片| 成人精品一区二区免费| av在线播放免费不卡| 亚洲国产欧美一区二区综合| 国产精品永久免费网站| 不卡一级毛片| 国产精品av久久久久免费| 中出人妻视频一区二区| 一边摸一边做爽爽视频免费| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 一进一出抽搐动态| 久热爱精品视频在线9| 精品乱码久久久久久99久播| 99久久国产精品久久久| 9热在线视频观看99| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人免费av在线播放| 欧美成人性av电影在线观看| www.熟女人妻精品国产| 亚洲成人免费电影在线观看| 亚洲狠狠婷婷综合久久图片| 十分钟在线观看高清视频www| a级毛片黄视频| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 日韩 欧美 亚洲 中文字幕| av网站免费在线观看视频| 制服人妻中文乱码| 久久久国产欧美日韩av| 真人一进一出gif抽搐免费| 中文字幕高清在线视频| 日韩欧美一区视频在线观看| 老司机午夜十八禁免费视频| 水蜜桃什么品种好| 黄色视频,在线免费观看| 日本三级黄在线观看| 少妇粗大呻吟视频| 国产av精品麻豆| 亚洲国产中文字幕在线视频| 精品电影一区二区在线| 麻豆av在线久日| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 日韩av在线大香蕉| 亚洲 欧美一区二区三区| 在线视频色国产色| 在线观看免费日韩欧美大片| 久久精品国产综合久久久| 国产av一区二区精品久久| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| 亚洲av日韩精品久久久久久密| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| 日日干狠狠操夜夜爽| 久久青草综合色| 啦啦啦免费观看视频1| 男人操女人黄网站| 麻豆成人av在线观看| 91成年电影在线观看| 高清在线国产一区| 亚洲成人精品中文字幕电影 | 亚洲av五月六月丁香网| 免费高清在线观看日韩| 在线播放国产精品三级| 精品一区二区三卡| 色婷婷av一区二区三区视频| 亚洲成人久久性| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区| 女人精品久久久久毛片| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 在线观看免费高清a一片| 一a级毛片在线观看| 国产国语露脸激情在线看| 在线观看66精品国产| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 国产精品美女特级片免费视频播放器 | 亚洲av熟女| 国产成人av激情在线播放| 美女大奶头视频| 日韩高清综合在线| 欧美日韩精品网址| 日韩欧美免费精品| 亚洲精品av麻豆狂野| 婷婷六月久久综合丁香| 中文字幕色久视频| 91字幕亚洲| a在线观看视频网站| 一本大道久久a久久精品| 亚洲熟妇熟女久久| 国产片内射在线| 久久国产乱子伦精品免费另类| 真人一进一出gif抽搐免费| 欧美日韩av久久| 黄色视频,在线免费观看| 黄色怎么调成土黄色| 在线观看一区二区三区| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 香蕉国产在线看| 9热在线视频观看99| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡一卡二| x7x7x7水蜜桃| 国产无遮挡羞羞视频在线观看| 一个人观看的视频www高清免费观看 | 国产高清videossex| 国产野战对白在线观看| 国产国语露脸激情在线看| 成人特级黄色片久久久久久久| 久久久久久久精品吃奶| 久久精品亚洲熟妇少妇任你| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线免费观看视频4| 午夜免费观看网址| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看 | 精品国产超薄肉色丝袜足j| 免费人成视频x8x8入口观看| 不卡av一区二区三区| 国产成人精品在线电影| 中文字幕高清在线视频| 成人免费观看视频高清| 免费一级毛片在线播放高清视频 | 99riav亚洲国产免费| 女性被躁到高潮视频| 国产av精品麻豆| 日日摸夜夜添夜夜添小说| 久久天堂一区二区三区四区| 中出人妻视频一区二区| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 亚洲欧美激情在线| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲| 国产精品自产拍在线观看55亚洲| 久久国产亚洲av麻豆专区| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 88av欧美| 最近最新中文字幕大全电影3 | 又紧又爽又黄一区二区| 免费人成视频x8x8入口观看| a级毛片黄视频| 久久人妻福利社区极品人妻图片| 91九色精品人成在线观看| 岛国视频午夜一区免费看| 久久伊人香网站| 男人舔女人下体高潮全视频| 校园春色视频在线观看| 日本 av在线| 在线av久久热| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 看片在线看免费视频| 婷婷六月久久综合丁香| 在线观看日韩欧美| 女同久久另类99精品国产91| 久久久久国内视频| 午夜两性在线视频| 久久性视频一级片| 欧美日韩黄片免| 在线观看免费日韩欧美大片| 久久久久久免费高清国产稀缺| 国产精品久久视频播放| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片 | 日本三级黄在线观看| 日韩 欧美 亚洲 中文字幕| 久久精品国产99精品国产亚洲性色 | 久久精品91蜜桃| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 18美女黄网站色大片免费观看| 精品福利观看| 亚洲五月天丁香| 9热在线视频观看99| 久久久久久久精品吃奶| 欧美精品亚洲一区二区| 国产黄色免费在线视频| 国产亚洲精品久久久久久毛片| 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区mp4| 最近最新免费中文字幕在线| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 国产亚洲精品久久久久久毛片| 久久久久国内视频| 精品国产亚洲在线| 99在线视频只有这里精品首页| 亚洲精品中文字幕在线视频| 国产欧美日韩综合在线一区二区| 国产精品影院久久| 国产亚洲欧美98| 涩涩av久久男人的天堂| 中出人妻视频一区二区| 在线观看免费视频网站a站| 欧美成人免费av一区二区三区| 久久国产乱子伦精品免费另类| 久久久国产成人精品二区 | 国产aⅴ精品一区二区三区波| 亚洲视频免费观看视频| 久久人妻av系列| 深夜精品福利| 国产激情欧美一区二区| 成人亚洲精品一区在线观看| 久久精品亚洲精品国产色婷小说| 国产亚洲欧美98| 亚洲 国产 在线| 视频区图区小说| 国产精品影院久久| 久久草成人影院| 免费少妇av软件| 校园春色视频在线观看| 久久精品国产清高在天天线| 久久久久久久久免费视频了| 女生性感内裤真人,穿戴方法视频| 久久国产亚洲av麻豆专区| videosex国产| av电影中文网址| 欧美激情高清一区二区三区| 又黄又爽又免费观看的视频| 人成视频在线观看免费观看| 久久国产精品影院| 日韩高清综合在线| 国产99白浆流出| 大香蕉久久成人网| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 亚洲精品国产区一区二| 久99久视频精品免费| 纯流量卡能插随身wifi吗| 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av | 神马国产精品三级电影在线观看 | 国产成人欧美| 国产极品粉嫩免费观看在线| 国产精品影院久久| 十分钟在线观看高清视频www| 亚洲自拍偷在线| 国产精品亚洲av一区麻豆| 日本免费一区二区三区高清不卡 | 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费无遮挡视频| 国产黄a三级三级三级人| 一级毛片精品| 亚洲性夜色夜夜综合| av电影中文网址| 黄频高清免费视频| 欧美性长视频在线观看| 电影成人av| 麻豆成人av在线观看| 一边摸一边抽搐一进一小说| 亚洲精品国产区一区二| 久99久视频精品免费| 国产欧美日韩一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品美女特级片免费视频播放器 | 欧美乱码精品一区二区三区| 91av网站免费观看| 亚洲午夜精品一区,二区,三区| 免费搜索国产男女视频| 女同久久另类99精品国产91| 男人操女人黄网站| 99久久人妻综合| 国产97色在线日韩免费| av在线播放免费不卡| svipshipincom国产片| 国产精品久久久人人做人人爽| 久久久久精品国产欧美久久久| 国产一卡二卡三卡精品| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区 | 91老司机精品| 90打野战视频偷拍视频| 又黄又爽又免费观看的视频| 国产精品成人在线| 自线自在国产av| 桃色一区二区三区在线观看| 婷婷六月久久综合丁香| 亚洲色图综合在线观看| 中文字幕人妻丝袜制服| 亚洲欧美精品综合一区二区三区| 久9热在线精品视频| www.自偷自拍.com| 老司机福利观看| 另类亚洲欧美激情| 脱女人内裤的视频| 国产亚洲精品久久久久5区| 国产精品1区2区在线观看.| 久久午夜亚洲精品久久| 国产av在哪里看| 亚洲avbb在线观看| 亚洲精品美女久久久久99蜜臀| 精品国内亚洲2022精品成人| 日本免费a在线| 在线观看66精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 色在线成人网| av天堂久久9| 啦啦啦 在线观看视频| 亚洲专区字幕在线| 又大又爽又粗| 久久欧美精品欧美久久欧美| 午夜成年电影在线免费观看| 国产一区二区在线av高清观看| 精品久久久精品久久久| 午夜福利在线观看吧| 久久婷婷成人综合色麻豆| 在线永久观看黄色视频| 黄色怎么调成土黄色| 久久中文字幕人妻熟女| 久热爱精品视频在线9| 别揉我奶头~嗯~啊~动态视频| 午夜影院日韩av| 久久久久精品国产欧美久久久| 国产午夜精品久久久久久| 老司机深夜福利视频在线观看| a级毛片在线看网站| 免费在线观看影片大全网站| 久久久国产成人精品二区 | 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| av电影中文网址| 国产黄色免费在线视频| 国产深夜福利视频在线观看| 欧美中文综合在线视频| 美女高潮到喷水免费观看| 757午夜福利合集在线观看| 成人手机av| 亚洲美女黄片视频| 精品第一国产精品| 国产精品av久久久久免费| 侵犯人妻中文字幕一二三四区| 一级作爱视频免费观看| 色在线成人网| 亚洲欧洲精品一区二区精品久久久| 女性生殖器流出的白浆| 午夜激情av网站| 99精品久久久久人妻精品| 巨乳人妻的诱惑在线观看| 亚洲在线自拍视频| 性色av乱码一区二区三区2| 丰满饥渴人妻一区二区三| 桃色一区二区三区在线观看| a级片在线免费高清观看视频| 9191精品国产免费久久| 一边摸一边抽搐一进一小说| 日韩精品青青久久久久久| 亚洲男人的天堂狠狠| 99在线人妻在线中文字幕| 不卡av一区二区三区| 如日韩欧美国产精品一区二区三区| 最好的美女福利视频网| 国产人伦9x9x在线观看| 成在线人永久免费视频| 亚洲欧美激情在线| 久久久久久亚洲精品国产蜜桃av| 99热只有精品国产| 无限看片的www在线观看| 男人的好看免费观看在线视频 | 国内久久婷婷六月综合欲色啪| 女性生殖器流出的白浆| 亚洲精品一卡2卡三卡4卡5卡| 操出白浆在线播放| 日韩欧美一区视频在线观看| 中文字幕高清在线视频| 久久久久国内视频| 久久人人精品亚洲av| 国产在线精品亚洲第一网站| 一夜夜www| 999久久久精品免费观看国产| 久久精品国产99精品国产亚洲性色 | 老司机靠b影院| 成人三级做爰电影| 99在线人妻在线中文字幕| a级毛片黄视频| 一进一出抽搐动态| 少妇被粗大的猛进出69影院| 热re99久久国产66热| 久久精品成人免费网站| 亚洲少妇的诱惑av| 黑人欧美特级aaaaaa片| 亚洲av第一区精品v没综合| 每晚都被弄得嗷嗷叫到高潮| 色综合欧美亚洲国产小说| 日韩三级视频一区二区三区| 97人妻天天添夜夜摸| 日本wwww免费看| 国产精品久久久人人做人人爽| 91在线观看av| 欧美乱妇无乱码| 日韩 欧美 亚洲 中文字幕| 久久国产亚洲av麻豆专区| 午夜福利在线观看吧| 新久久久久国产一级毛片| 久久人妻av系列| 久久久精品欧美日韩精品| a级毛片黄视频| 大香蕉久久成人网| 在线观看一区二区三区激情| 制服人妻中文乱码| 18禁美女被吸乳视频| 午夜视频精品福利| 丰满人妻熟妇乱又伦精品不卡| 俄罗斯特黄特色一大片| 身体一侧抽搐| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 中文亚洲av片在线观看爽| 国产单亲对白刺激| 国产午夜精品久久久久久| 在线观看66精品国产| 亚洲一区高清亚洲精品| 亚洲第一青青草原| 757午夜福利合集在线观看| 国产成人av教育| 精品国产美女av久久久久小说| 无限看片的www在线观看| av福利片在线| 午夜免费观看网址| 热99国产精品久久久久久7| 欧美日韩福利视频一区二区| 日韩欧美一区二区三区在线观看| 无限看片的www在线观看| 欧美日韩一级在线毛片| 日韩精品免费视频一区二区三区| 国产aⅴ精品一区二区三区波| 18禁美女被吸乳视频| 12—13女人毛片做爰片一| 国产亚洲欧美98| 99在线人妻在线中文字幕| 侵犯人妻中文字幕一二三四区| 女人被狂操c到高潮| 女生性感内裤真人,穿戴方法视频| 国产亚洲av高清不卡| 成年女人毛片免费观看观看9| 五月开心婷婷网| 激情视频va一区二区三区| 国产精品久久电影中文字幕| 国产精品av久久久久免费| 国产精品综合久久久久久久免费 | 丝袜美足系列|