• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical properties of several ternary nanostructures*

    2021-01-21 02:08:34XiaoLongTang唐小龍XinLuCheng程新路HuaLiangCao曹華亮andHuaDongZeng曾華東
    Chinese Physics B 2021年1期
    關(guān)鍵詞:新路華東小龍

    Xiao-Long Tang(唐小龍), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹華亮), and Hua-Dong Zeng(曾華東)

    Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: optical properties of nanostructures, plasmons on surfaces and interfaces, model and numerical simulation

    1. Introduction

    The optical properties in visible range of nanoparticles have been widely studied,[1–4]especially for TiO2and Au.[5–7]As a crucial material in photocatalysis, TiO2has received extensive attention since Fujishima and Honda demonstrated that TiO2can be used for photocatalysis in 1972.[8]However,the photocatalytic efficiency of TiO2is insufficient for photocatalytic applications. To improve the photocatalytic efficiency,TiO2was coupled with noble metal nanoparticles,[9,10]such as Au,[11]Ag,[12]Cu,[13]Pt,[14]etc. Meanwhile, noble metals have strong ability to transfer electrons, making the separation efficiency of electrons and holes higher,thus increasing the catalytic ability of materials.[15,16]Noble metals were also coupled to many materials to obtain different properties,[17,18]such as Fe3O4–Au (Ag),[19]ZnO–Au(Ag),[20]SiO2–Au(Ag),[21]ZrO2–Au,[22]TiO2–Au(Ag),[23]etc. As an efficiency combination, Janus TiO2–Au nanostructure has attracted more and more interest in photocatalysis. Seh et al. first demonstrated that TiO2–Au asymmetric Janus nanoparticleis possess higher efficiency to generate hydrogen than bare Au and core–shell structure in visible-light photocatalysis.[24]Wang et al. investigated the photocatalyst properties of Au/TiO2/Au nanostructure which exhibits a significant improvement in photocurrent density compared with the bare TiO2nanostructure in visible range.[25]Li and Li reported that an Au/Au3+TiO2photocatalyst can not only extend the light absorption of TiO2-based photocatalyst into visible range but also eliminate the rapid recombination of excited electrons/holes during photoreaction.[26]However, for Au–TiO2nanostructure, TiO2with a wide band gap width of 3.2 eV can provide energetic electrons for photocatalysis but lacks extinction in visible range. Au can excite the extinction of TiO2in visible range, but cannot extend the extinction range. Thus this combination of Au and TiO2possesses an improvement in the light absorption but a narrow extinction range in visible light. This restricts the utilization of visible light which contains the majority of the energy of sun light. Therefore, extending the light extinction range in visible light is vital for photocatalysis of Au and TiO2. Some investigations indicated that narrow band gap materials can sensitize wide band gap materials in visible light.[1–3]Therefore,finding a suitable and applicable material combined with TiO2and Au is a feasible way to improve photocatalysis in visible light.[27,28]Ma et al.[29]and Tada et al.[30]found that the CdS–Au–TiO2three-component nanojunction system exhibits much more photocatalytic activity than single-and twocomponent system. However, most of structures consisting of multiple components are of core–shell or multiple sphere.The core–shell structure can provide a huge interface between different materials, but the incident light cannot radiate inner materials directly,thereby limiting the interaction between materials under the incident irradiation.[31]Multiple-sphere structure can be illuminated directly by the incident light,but the interface between the spheres is very small, which also limits the interaction between materials. With the development of micro-nanometer manufacturing technology, Janus nanodisk has been fabricated,[32]and it is possible to generate the ternary nanodisk. In this structure,three materials are illuminated by the incident light directly,and there is a considerable interface between each two materials.

    In this paper, several ternary nanostructures , each with three equal volume parts, are designed. We calculate the optical properties of several types of ternary nanostructures by the the discrete dipole approximation(DDA)method,and the mechanism of the interaction among three materials is discussed.

    2. Method

    Since Mie calculated the nanospheres of Au by solving Maxwell’s equations,[33]more and more complex and different nanoparticles have been calculated. Benefiting from the fantastic work of Draine[34]and Draine and Flatau,[35]DDSCAT7.3[36]was used to simulate different kinds of nanostructures. DDSCAT is an efficient,open-source and free software package which is based on the theory of DDA. In the DDA method,the object is regarded as N-dipoles and the polarizations of these dipoles are calculated to simulate different materials with arbitrary morphologies and sizes.It can be used to calculate the extinction coefficients and near-field intensities of these nanoparticles.

    The real V is divided into N dipoles,and each dipole possesses volume d3in this soft package,specifically,

    In the simulation, the more the dipoles used, the more accurate the calculation is. Previous work shows a relative accuracy when N 1000.[37,38]In our calculations 157200 dipoles are used to simulate the nanostructure in order to obtain relatively high accurate results.The wavelengths we discussed are all between 300 nm and 750 nm. More computational details can be found in the reference.

    Fig.1. Morphology of(a)ternary core–shell,(b)nanodisk,and(c)three-sphere structure.

    The morphology of the ternary core–shell, nanodisk and three-sphere structures are presented in Fig.1. The core–shell structure is a three-layer sphere structure,with outer layer radius being R3,the core radius R1,and the meddle layer radius R2, the three parts possess equal volume(Fig. 1(a)). In addition, the morphology of the core–shell structure in Fig. 1 is the cross-section diagram of this structure, and the real morphology in calculation of the structure is a complete core–shell structure. The radius of the nanodisk is R, and the thickness is d (Fig. 1(b)). The nanodisk is divided into three parts,M1=M2=M3=1/3 nanodisk. The three-sphere structure is composed of three spheres of equal radius R1. M1,M2,M3are three different materials (Fig. 1(c)). The incident light is linear radiation propagating along the ?xLFaxis. The polarization direction is parallel to ?zLF.[39]The ambient medium is set to be vacuum where the refractive index is 1.

    3. Results and discussion

    The surface plasmon resonance of nanoparticles is dependent on geometry,size,material composition and surrounding medium.[40–43]Among these factors,the geometry and material composition are the key points for studying the surface plasmon resonance of nanoparticles. A kind of ternary nanostructure composed of three different materials is designed and the optical properties are investigated in this work.

    For ternary nanostructures, the core–shell and threesphere structures are widely studied,[44,45]but the nanodisk structure is less concerned. To investigate the optical properties of ternary nanostructures,the extinction spectra of nanodisk, core–shell and three-sphere structures with equal volume of TiO2, Ag, and Au are calculated, in which the nanodisk structure is M1/M2/M3=TiO2/Ag/Au, the radius R of the nanodisk is 50 nm,and the thickness d is 20 nm. And the core–shell structure is of a three-layer sphere, which is composed of the core sphere, middle shell, and outer shell. The core sphere is of Ag with radius R1of 23.21 nm, the middle shell is of TiO2with a thickness of 6.04 nm,and the outer shell is of Au with a thickness of 4.23 nm. The three-sphere structure is composed of three spheres with a radius R1is 23.21 nm,which contact each other. They are composed of three spheres of TiO2, Au, and Ag. The extinction spectrum of nanodisk,core–shell and three-sphere structures are shown in Fig. 2.The extinction properties of nanodisk structure are much better than those of the core–shell structure and three-sphere structure in 300 nm–750 nm. This is due to the interaction among materials and the migration of electrons needing enough energy(incident light)and touching area(interface). The core–shell structure has a large interface among materials, but the incident light cannot directly irradiate the internal materials,which greatly reduces the interaction between the materials.In the three-sphere structure, although the incident light can directly irradiate the three materials, the interface among the three materials is less, also limiting the interaction between the materials. In the nanodisk structure,the incident light can directly irradiate three materials, and there is a considerable interface,so the interaction among materials is promoted.

    Several researches show that narrow band gap materials can sensitize the extinction characteristics of TiO2in the visible light range.[2,46]In order to study the sensitization effect of narrow band gap materials on TiO2under the local surface plasmon resonance excitation of Au,the extinction spectra of the nanodisk consiting of different band gap materials combined with Au and TiO2are calculated and discussed. We select a series of band gap materials to combine with TiO2[47]and Au.[48]The band gap width of these materials possess an approximately equal difference, PbSe (0.165 eV),[49]Ge(0.66 eV),[50]MoS2(1.17 eV),[51]CdSe(1.7 eV),[52]and CdS(2.4 eV).[53]

    Fig.2. Extinction spectrum of core–shell,nanodisk,and three-sphere structures for M1/M2/M3=TiO2/Ag/Au.

    Fig. 3. Extinction spectra of M1/M2/M3 structures, with M1 fixed to Au,M2=M3 being PbSe,Ge,MoS2,CdSe,CdS or TiO2 respectively.

    For M1=Au, M2=M3=PbSe, Ge, MoS2, CdSe, CdS or TiO2respectively,the extinction spectra of nanodisk structures are shown in Fig.3. By analyzing the band gap width of M2and M3(PbSe=0.165 eV,Ge=0.66 eV,MoS2=1.17 eV,CdSe=1.7 eV, CdS=2.4 eV), the results show that the extinction coefficient is inversely proportional to the band gap for each of M2and M3in 300 nm–600 nm. The narrow band gap width leads to the low electronic transition energy and the high carrier concentration in equilibrium state. Therefore,under the excitation of the near-field energy generated by the local surface plasmon resonance of Au, the valence band electrons are more likely to be excited and transited to the conduction band in narrow band gap material, as a result, the absorption rate and extinction coefficient are both high. At the same time, when M2=M3=PbSe, Ge or MoS2, there is no extinction peak in 600 nm–700 nm, but there is an extinction peak at 676 nm, 652 nm or 658 nm respectively for M2=M3=CdSe,CdS or TiO2. This is due to the strong coupling between the plasmonic near-field produced by Au and the electronic transition energy in semiconductor. The electrons transit from valence band to conduction band under the excitation of plasmonic near-field,and the electron–hole pairs are formed. Since the Fermi energy level of semiconductor is higher than that of metal, when the two materials contact each other,the excited electrons will flow from semiconductor with high Fermi energy level to noble metal with low Fermi energy level,until their Fermi energy levels become the same and reach a static equilibrium. Due to the narrow band gap width of PbSe,Ge and MoS2,the energy values of the transition electrons from the bands are too low to pass through the Schottky barrier between Au and the material.[54–56]It cannot form a path to transfer the electrons from material to Au.[57]The band gap width of CdS, CdSe, and TiO2are wide. The transition electrons generated in CdS, CdSe, and TiO2have enough energy to pass through the Schottky barrier between the material and Au, and flow into Au until their Fermi energy levels reach a balance state, which effectively promotes the charge separation in semiconductor. In this process, the electron–hole pairs produced by electron transition and transfer can produce redox reaction with surrounding oxidants and reducers,thereby completing photocatalysis.

    From the above structures, the M1/M2/M3=Au/PbSe/PbSe structure has the maximum extinction coefficient in 300 nm–600 nm,and the M1/M/M3=Au/TiO2/TiO2structure has a maximum extinction coefficient in 600 nm–750 nm. Based on above results,to investigate how the different materials combined with Au and TiO2structure influence the extinction coefficient,the extinction spectra of the ternary nanodisk structures are calculated.

    Fig.4. Extinction spectra of M1/M2/M3 nanodisk structures with M1 =Au and M3=TiO2,and M2=PbSe,Ge,MoS2,CdSe or CdS respectively.

    The extinction spectra of the ternary nanodisks composed of Au, a semiconductor (PbSe, Ge, MoS2, CdSe or CdS)and TiO2are shown in Fig. 4. The extinction coefficient of M1/M2/M3= Au/PbSe/TiO2structure is always highest in 300 nm–600 nm. In 600 nm–750 nm, the extinction coefficient peak of M1/M2/M3= Au/CdS/TiO2structure is the highest, but the difference in extinction peak between different structures is small. The results show that the structure of M1/M2/M3=Au/PbSe/TiO2has the best extinction performance in the whole range of 300 nm–750 nm. Similarly, the extinction coefficient of the structure is also inversely proportional to the band gap width of M2material in 300 nm–600 nm.Because M1and M3are the same in each structure,the difference is mainly caused by M2material. The band gap width of M2material directly affects the extinction coefficient of this type of structure.

    Figures 5(a)–5(e) show the electric near-field distributions of the two different semiconductors and Au ternary nanodisks at 530 nm.The electric near-field distribution is consistent with the results of above extinction spectra.The near-field intensity outside the M2material is also inversely proportional to the band gap width of the M2material.This is because under the plasmonic near-field excitation,the smaller band gap leads the greater carrier concentration and the smaller transition energy,which makes the occurrence probability of the transition greater,so the absorption is greater. The boundaries of PbSe,Ge, and MoS2are very clear in Fig. 6, and the electric nearfield distributions in the three materials are all small. Due to the fact that at the interface between Au and these materials there exists a Schottky barrier while the transition electrons of these materials are not energetic enough to pass through the Schottky barrier, the electron–hole pairs formed in the material recombine rapidly,which prevents the electron–hole pairs from being continuously produced, leading the internal electric near-field distribution to become small.However,there are some near-field distributions near the interface of CdSe,CdS,TiO2, and Au, indicating that the transition electrons generated in these materials are energetic to cross the Schottky barrier between them and Au, thus further promoting the electrons’ transition and light absorption. The above-mentioned electric near-field distribution verifies the previous Schottky barrier theory discussed in extinction spectra.

    Figures 6(a)–6(e) show the electric near-field distributions of the ternary nanodisks, each of which is composed of two semiconductors and Au for the second peak in 650 nm–690 nm. There are a large number of near-field distributions around the interface between Au and TiO2at the maximum extinction peak,which is due to the strong coupling between the electronic transition in TiO2and the plasmonic near-field of Au.Because of the difference in Fermi energy level,the Fermi energy level of TiO2is higher than that of Au. A large number of electrons from the valence band in TiO2are injected into Au,which slows down the electron–hole pairs recombining in TiO2. It further enhances the efficiency of charge separation in TiO2, until the Fermi energy level of TiO2and Au reach a static balance. Therefore,a strong electric near-field distribution is produced near the interface between TiO2and Au. like the electric near-field distribution near 530 nm,the boundaries of PbSe,Ge,MoS2materials are also very clear for the same reason.

    Fig. 5. Electric near-field distribution maps of the peaks at 530 nm for (a) M1/M2/M3 =Au/PbSe/TiO2, (b) Au/Ge/TiO2, (c) Au/MoS2/TiO2, (d)Au/CdSe/TiO2,(e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 structures in x plane.

    Fig.6. Electric near-field distribute maps of the second peak between 650 nm and 690 nm for(a)M1/M2/M3 =Au/PbSe/TiO2, (b)Au/Ge/TiO2, (c)Au/MoS2/TiO2,(d)Au/CdSe/TiO2 (e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 in x plane.

    The extinction spectrum of the ternary nanodisk consisting of two different noble metals and TiO2is calculated. Figure 7 shows the extinction coefficient spectrum of M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt and TiO2/Au/Pt structures. The results show that the M1/M2/M3= TiO2/Ag/Pt structure has the best extinction performance in 300 nm–750 nm. The M1/M2/M3= TiO2/Ag/Au structure has two absorption peaks at 406 nm and 546 nm, respectively. The M1/M2/M3=TiO2/Ag/Pt structure has three extinction peaks at 410 nm, 670 nm, and 694 nm, respectively, and the M1/M2/M3=TiO2/Au/Pt has two extinction peaks at 532 nm and 732 nm, respectively. There is an extinction peak near 400 nm for structure containing Ag,540 nm for structure containing Au,and 700 nm for structure containing Pt.This is due to the fact that the coupling extinction peak of Ag and TiO2is near 400 nm, the coupling extinction peak of Au and TiO2is near 500 nm,and the coupling extinction peak of Pt and TiO2is near 700 nm.[58,59]The difference among the material combinations might be the reason for causing some differences in the location and value of extinction peaks. Based on above results,there is a complementation of extinction efficiency between the TiO2/Ag/Au and TiO2/Ag/Pt structures in visible range.

    Fig. 7. Extinction coefficient spectrum of M1/M2/M3 = TiO2/Ag/Au,TiO2/Ag/Pt,and TiO2/Au/Pt structures.

    The electric near-field distributions of M1/M2/M3=TiO2/Ag/Pt structure at extinction peaks of 410 nm, 670 nm,694 nm are calculated. The electric near-field distribution at 410 nm, 670 nm, and 694 nm in the x plane are shown in Figs. 8(a1), 8(b1), and 8(c1), respectively. And the electric near-field distribution in the y plane at 410 nm, 670 nm, and 694 nm are shown in Figs. 8(a2), 8(b2), and 8(c2), respectively. The electric near-field distribution at 410 nm is mainly concentrated in the part of M2=Ag. The electric near-field distribution at 670 nm is similar to that at 694 nm, which are mainly distributed around M2and M3, and the distribution is larger in M2. It is due to the fact that both Ag and Pt have a coupling effect with TiO2, resulting in two extinction peaks,and that the distance between the two coupling extinction peaks is very close,so the structure has two adjacent extinction peaks at 670 nm and 694 nm.

    Fig.8. Near-field distribution of M1/M2/M3 =TiO2/Ag/Pt structure at(a1)410 nm, (b1)670 nm, (c1)694 nm in x plane and(a2)410 nm,(b2)670 nm,(c2)694 nm y plane.

    4. Conclusions

    We conclude that the ternary nanodisk has better extinction properties than core–shell and three-sphere structures.For the nanodisk structures of M1/M2/M3=Au/(PbSe, Ge,MoS2, CdSe, or CdS)/TiO2, the best extinction performance is obtained for Au/PbSe/TiO2ternary nanodisk in 300 nm–750 nm. And the extinction coefficient is inversely proportional to the band gap of M2in 300 nm–600 nm. When M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt or TiO2/Au/Pt of nanodisk structures,the TiO2/Ag/Pt nanodisk has the best extinction performance. The extinction efficiency and electric nearfield intensity of TiO2/Ag/Pt structure are much higher than those of Au/PbSe/TiO2. The TiO2/Ag/Pt nanodisk structure has two extinction peaks and strong electric near-field in visible range,so it is hopeful to achieve a better efficiency in the field of photocatalysis. The spectrum of TiO2/Ag/Pt structure and the spectrum of TiO2/Ag/Au structure can form a threepeak extinction spectrum in visible range, it provides a reference for extending the extinction range.

    猜你喜歡
    新路華東小龍
    El regreso del dragón
    華東銷售在一線
    水土保持探新路 三十九年寫春秋
    相華東:走在欣欣向榮的田野上
    華人時刊(2022年21期)2022-02-15 03:42:36
    小小小小龍
    蔬果種植走新路
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    多絲量新品種華東×春晨的引進(jìn)推廣
    蠶桑通報(2015年2期)2015-12-15 00:41:56
    民國時期無“華東”稱渭
    城鄉(xiāng)一體化走出的新路
    美女中出高潮动态图| 麻豆av在线久日| 亚洲欧美一区二区三区黑人| 亚洲国产欧美一区二区综合| 亚洲精品自拍成人| 日韩av在线免费看完整版不卡| 欧美日韩成人在线一区二区| 国产黄色免费在线视频| 国产成人精品久久二区二区91| 精品福利永久在线观看| 王馨瑶露胸无遮挡在线观看| 最近手机中文字幕大全| 97人妻天天添夜夜摸| 免费在线观看黄色视频的| 国产成人91sexporn| 操美女的视频在线观看| 免费久久久久久久精品成人欧美视频| 一级毛片我不卡| 久久久久久久国产电影| 亚洲国产精品999| 最近最新中文字幕大全免费视频 | 日韩中文字幕欧美一区二区 | 国产高清国产精品国产三级| 国产av国产精品国产| 日韩中文字幕欧美一区二区 | 亚洲中文日韩欧美视频| 成年人午夜在线观看视频| 老司机亚洲免费影院| 天堂俺去俺来也www色官网| 黄色 视频免费看| av在线app专区| 日本欧美视频一区| 人人妻人人爽人人添夜夜欢视频| www.自偷自拍.com| 精品国产一区二区三区四区第35| 欧美激情 高清一区二区三区| 五月开心婷婷网| 日本a在线网址| 天天躁夜夜躁狠狠久久av| 制服诱惑二区| 操美女的视频在线观看| 久久ye,这里只有精品| 精品少妇内射三级| 黄色a级毛片大全视频| 看免费av毛片| 夜夜骑夜夜射夜夜干| 一边摸一边做爽爽视频免费| 亚洲国产欧美日韩在线播放| videos熟女内射| 赤兔流量卡办理| 一二三四社区在线视频社区8| 久久女婷五月综合色啪小说| 母亲3免费完整高清在线观看| 中文欧美无线码| 日本vs欧美在线观看视频| 国产精品三级大全| 国产免费视频播放在线视频| 欧美日韩精品网址| 伊人久久大香线蕉亚洲五| 午夜免费观看性视频| 久久鲁丝午夜福利片| 少妇裸体淫交视频免费看高清 | xxxhd国产人妻xxx| 午夜91福利影院| 亚洲精品一卡2卡三卡4卡5卡 | 大话2 男鬼变身卡| 后天国语完整版免费观看| 久久99一区二区三区| 国产精品国产三级专区第一集| 精品国产乱码久久久久久小说| 国产成人啪精品午夜网站| 伦理电影免费视频| 亚洲国产最新在线播放| 少妇 在线观看| av天堂在线播放| 蜜桃在线观看..| 精品国产一区二区三区久久久樱花| 久久鲁丝午夜福利片| 男女之事视频高清在线观看 | 在线观看免费午夜福利视频| 最新在线观看一区二区三区 | 久久ye,这里只有精品| 一本久久精品| a 毛片基地| 韩国精品一区二区三区| 久久天堂一区二区三区四区| 国产av精品麻豆| 在线观看免费日韩欧美大片| e午夜精品久久久久久久| 人人澡人人妻人| 99国产精品99久久久久| 国产精品99久久99久久久不卡| 丝瓜视频免费看黄片| 成人午夜精彩视频在线观看| 国产精品一区二区在线观看99| 丝袜人妻中文字幕| 一级毛片 在线播放| 看免费av毛片| 免费在线观看视频国产中文字幕亚洲 | 成年av动漫网址| 久久亚洲精品不卡| 午夜福利免费观看在线| 中文字幕人妻丝袜一区二区| 宅男免费午夜| 久久久久精品国产欧美久久久 | 国产av国产精品国产| cao死你这个sao货| 在线亚洲精品国产二区图片欧美| 制服诱惑二区| 久久精品久久精品一区二区三区| 在线观看免费午夜福利视频| 日韩,欧美,国产一区二区三区| 午夜精品国产一区二区电影| 欧美另类一区| 十八禁网站网址无遮挡| 我的亚洲天堂| 精品福利永久在线观看| 日本欧美视频一区| 欧美乱码精品一区二区三区| 最黄视频免费看| 国产三级黄色录像| 精品国产超薄肉色丝袜足j| 欧美国产精品一级二级三级| 交换朋友夫妻互换小说| 欧美97在线视频| 国产片特级美女逼逼视频| 成人影院久久| 国产熟女午夜一区二区三区| 捣出白浆h1v1| 国产高清视频在线播放一区 | 成人亚洲欧美一区二区av| 丝袜喷水一区| 美女国产高潮福利片在线看| 精品一区二区三区四区五区乱码 | 91字幕亚洲| 国产人伦9x9x在线观看| 久久人妻福利社区极品人妻图片 | 色精品久久人妻99蜜桃| 欧美老熟妇乱子伦牲交| 久久久久国产精品人妻一区二区| 久久久久久久精品精品| 伊人亚洲综合成人网| 国产欧美日韩一区二区三 | 国产极品粉嫩免费观看在线| 久久 成人 亚洲| 国产免费福利视频在线观看| 看十八女毛片水多多多| 看十八女毛片水多多多| 亚洲久久久国产精品| 青春草视频在线免费观看| 国产日韩欧美在线精品| 久久精品国产a三级三级三级| 亚洲 国产 在线| 乱人伦中国视频| 亚洲精品在线美女| 999精品在线视频| 午夜免费鲁丝| 美女大奶头黄色视频| 国产日韩欧美亚洲二区| 国产老妇伦熟女老妇高清| 成人18禁高潮啪啪吃奶动态图| 交换朋友夫妻互换小说| 欧美黄色片欧美黄色片| 飞空精品影院首页| 国产精品久久久久久精品电影小说| 美女扒开内裤让男人捅视频| 久久精品成人免费网站| 久久人妻熟女aⅴ| 精品人妻在线不人妻| 亚洲欧美一区二区三区国产| 中文精品一卡2卡3卡4更新| 99国产精品一区二区蜜桃av | 欧美乱码精品一区二区三区| 久久久精品国产亚洲av高清涩受| 久久精品人人爽人人爽视色| 国产精品免费大片| 国产成人一区二区在线| 国产男女内射视频| 欧美日韩成人在线一区二区| 黄色视频不卡| 考比视频在线观看| 精品亚洲乱码少妇综合久久| 在线观看人妻少妇| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 又大又爽又粗| 国产免费一区二区三区四区乱码| 美女午夜性视频免费| 国产成人影院久久av| 午夜免费鲁丝| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 精品卡一卡二卡四卡免费| 精品一品国产午夜福利视频| 一区在线观看完整版| 亚洲欧美清纯卡通| 欧美黑人精品巨大| 国产成人精品久久久久久| 亚洲黑人精品在线| 日本色播在线视频| 亚洲欧洲日产国产| 免费一级毛片在线播放高清视频 | 飞空精品影院首页| 韩国精品一区二区三区| 亚洲专区中文字幕在线| 欧美精品一区二区大全| 十分钟在线观看高清视频www| 一级毛片女人18水好多 | 国产高清不卡午夜福利| 黄色片一级片一级黄色片| 国产99久久九九免费精品| 国产精品一区二区精品视频观看| 无遮挡黄片免费观看| 波野结衣二区三区在线| 视频区图区小说| 日日夜夜操网爽| 蜜桃国产av成人99| 欧美黑人精品巨大| 中文字幕人妻丝袜制服| 日本vs欧美在线观看视频| 国产av国产精品国产| 欧美日韩黄片免| 国产一区二区三区综合在线观看| 国产黄色免费在线视频| 夫妻午夜视频| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 90打野战视频偷拍视频| 黄频高清免费视频| bbb黄色大片| 国产男女内射视频| 成年人午夜在线观看视频| av线在线观看网站| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲高清精品| 亚洲精品美女久久久久99蜜臀 | 国产视频一区二区在线看| 少妇精品久久久久久久| 免费观看av网站的网址| 啦啦啦在线观看免费高清www| 2021少妇久久久久久久久久久| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 一本一本久久a久久精品综合妖精| 成在线人永久免费视频| 国产一区二区在线观看av| 少妇猛男粗大的猛烈进出视频| 亚洲精品中文字幕在线视频| 午夜免费男女啪啪视频观看| 国产有黄有色有爽视频| 在线av久久热| 一本久久精品| 欧美精品高潮呻吟av久久| 男女之事视频高清在线观看 | 99国产精品一区二区三区| 国产亚洲av片在线观看秒播厂| 51午夜福利影视在线观看| 91麻豆av在线| 国产精品久久久久久精品电影小说| 午夜免费观看性视频| 电影成人av| 伦理电影免费视频| 亚洲欧美一区二区三区国产| 在线观看免费视频网站a站| 一级,二级,三级黄色视频| 两个人看的免费小视频| 欧美精品亚洲一区二区| 国产亚洲精品第一综合不卡| 国产成人精品在线电影| 这个男人来自地球电影免费观看| 国产97色在线日韩免费| 精品国产国语对白av| 精品少妇一区二区三区视频日本电影| 丝袜喷水一区| 男女之事视频高清在线观看 | 亚洲国产欧美网| 亚洲av在线观看美女高潮| 成人亚洲精品一区在线观看| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 久久国产精品影院| 欧美激情 高清一区二区三区| 极品少妇高潮喷水抽搐| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 搡老乐熟女国产| 国产免费又黄又爽又色| 99热网站在线观看| 狠狠精品人妻久久久久久综合| 丝袜人妻中文字幕| www日本在线高清视频| 色94色欧美一区二区| 丰满迷人的少妇在线观看| h视频一区二区三区| 日韩大片免费观看网站| 亚洲 国产 在线| 制服诱惑二区| 黄网站色视频无遮挡免费观看| 天天操日日干夜夜撸| 丰满少妇做爰视频| 成人免费观看视频高清| 亚洲 欧美一区二区三区| a级片在线免费高清观看视频| 中文精品一卡2卡3卡4更新| av在线app专区| 99精品久久久久人妻精品| 欧美成人午夜精品| cao死你这个sao货| av不卡在线播放| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| www.999成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网 | 日韩中文字幕视频在线看片| 午夜免费成人在线视频| 操出白浆在线播放| 亚洲精品国产区一区二| 国产精品成人在线| 一级黄色大片毛片| 亚洲黑人精品在线| 久久久久网色| 男女免费视频国产| 老司机亚洲免费影院| 色网站视频免费| 日日摸夜夜添夜夜爱| 十八禁网站网址无遮挡| www.精华液| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 观看av在线不卡| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| 亚洲精品日韩在线中文字幕| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 国产成人精品在线电影| 免费久久久久久久精品成人欧美视频| 建设人人有责人人尽责人人享有的| 大香蕉久久网| av又黄又爽大尺度在线免费看| 建设人人有责人人尽责人人享有的| 久久精品人人爽人人爽视色| 国产精品三级大全| 午夜视频精品福利| 满18在线观看网站| 人人澡人人妻人| av线在线观看网站| 满18在线观看网站| 国产av国产精品国产| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 国产成人一区二区三区免费视频网站 | 91精品伊人久久大香线蕉| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 高潮久久久久久久久久久不卡| 黄片小视频在线播放| 国产一区二区 视频在线| 国产欧美日韩一区二区三 | 99国产精品99久久久久| 大香蕉久久网| av一本久久久久| 国产爽快片一区二区三区| 精品免费久久久久久久清纯 | 美女中出高潮动态图| 成人三级做爰电影| 一区福利在线观看| 一级毛片电影观看| 国产一卡二卡三卡精品| 久久影院123| 亚洲男人天堂网一区| 精品第一国产精品| 久久毛片免费看一区二区三区| 多毛熟女@视频| 国产又色又爽无遮挡免| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀 | 日本a在线网址| 国产精品久久久久成人av| 久久精品国产亚洲av高清一级| 成年人午夜在线观看视频| 亚洲av欧美aⅴ国产| 老司机影院成人| av网站免费在线观看视频| 亚洲专区国产一区二区| 在线观看免费日韩欧美大片| 老司机在亚洲福利影院| 91精品伊人久久大香线蕉| 国产淫语在线视频| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 国产在线视频一区二区| 欧美日韩亚洲国产一区二区在线观看 | 丰满少妇做爰视频| 亚洲,欧美,日韩| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 制服诱惑二区| 欧美日韩精品网址| 波野结衣二区三区在线| 国产一区二区 视频在线| 美女午夜性视频免费| 午夜老司机福利片| 亚洲精品成人av观看孕妇| 免费女性裸体啪啪无遮挡网站| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 最新在线观看一区二区三区 | 国产在线免费精品| 欧美国产精品一级二级三级| videos熟女内射| 日本午夜av视频| 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 亚洲成人手机| 亚洲第一青青草原| 久久久久视频综合| 婷婷成人精品国产| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 宅男免费午夜| 国产亚洲欧美精品永久| 韩国精品一区二区三区| 国产精品一国产av| 99国产精品一区二区三区| 亚洲,一卡二卡三卡| 三上悠亚av全集在线观看| 亚洲精品自拍成人| 日本欧美国产在线视频| 国产精品.久久久| 久久青草综合色| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 两个人免费观看高清视频| 亚洲精品国产一区二区精华液| kizo精华| 亚洲,一卡二卡三卡| 99国产综合亚洲精品| 老司机亚洲免费影院| 国产黄色免费在线视频| 悠悠久久av| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 黄色a级毛片大全视频| 久久久国产精品麻豆| 中文字幕精品免费在线观看视频| 日本a在线网址| 欧美人与性动交α欧美软件| 99精国产麻豆久久婷婷| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 19禁男女啪啪无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 午夜影院在线不卡| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 久久99精品国语久久久| 国产精品一区二区精品视频观看| 久久99一区二区三区| 色播在线永久视频| 九草在线视频观看| 一级毛片女人18水好多 | 亚洲免费av在线视频| 韩国精品一区二区三区| 最黄视频免费看| 蜜桃国产av成人99| 在线观看免费日韩欧美大片| 亚洲精品第二区| 久久久亚洲精品成人影院| a级毛片黄视频| cao死你这个sao货| 热99国产精品久久久久久7| 丝袜美腿诱惑在线| 亚洲国产欧美网| 国产成人精品在线电影| 91精品伊人久久大香线蕉| 国产在线视频一区二区| 黄色a级毛片大全视频| 久久亚洲国产成人精品v| av一本久久久久| 午夜免费男女啪啪视频观看| 国产精品欧美亚洲77777| 美女中出高潮动态图| 国产男女内射视频| 男女无遮挡免费网站观看| 成人三级做爰电影| 国产精品久久久av美女十八| 成人国产av品久久久| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 免费人妻精品一区二区三区视频| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 国产精品99久久99久久久不卡| 免费观看人在逋| 老司机深夜福利视频在线观看 | 永久免费av网站大全| 亚洲精品日本国产第一区| 最近最新中文字幕大全免费视频 | 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 免费高清在线观看日韩| 咕卡用的链子| 少妇裸体淫交视频免费看高清 | 免费观看av网站的网址| 超碰成人久久| 大话2 男鬼变身卡| 丝袜脚勾引网站| 视频在线观看一区二区三区| 久久国产精品影院| 1024视频免费在线观看| 亚洲成人免费电影在线观看 | 超碰97精品在线观看| 日本av免费视频播放| 老司机靠b影院| 国产精品一国产av| 999精品在线视频| 最黄视频免费看| 国产深夜福利视频在线观看| 精品国产一区二区久久| 国产深夜福利视频在线观看| 亚洲av男天堂| 日本欧美视频一区| www.熟女人妻精品国产| 80岁老熟妇乱子伦牲交| av天堂久久9| 久久精品国产亚洲av涩爱| 日日爽夜夜爽网站| 欧美亚洲 丝袜 人妻 在线| 亚洲五月色婷婷综合| 国产精品成人在线| 久久久久久人人人人人| 亚洲国产av影院在线观看| 日本五十路高清| 精品欧美一区二区三区在线| 午夜免费观看性视频| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 一级毛片女人18水好多 | 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 一本综合久久免费| 久久精品国产亚洲av高清一级| 黄色视频在线播放观看不卡| 免费看十八禁软件| 超碰97精品在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 久久久久视频综合| h视频一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲男人天堂网一区| 国产成人免费无遮挡视频| 叶爱在线成人免费视频播放| 国产精品久久久久久精品电影小说| 一区二区三区精品91| 黄色视频在线播放观看不卡| 日韩人妻精品一区2区三区| 亚洲熟女毛片儿| 别揉我奶头~嗯~啊~动态视频 | 涩涩av久久男人的天堂| 久久国产精品人妻蜜桃| 肉色欧美久久久久久久蜜桃| 国产一级毛片在线| 夫妻午夜视频| 99国产综合亚洲精品| 999精品在线视频| 国产成人啪精品午夜网站| 欧美激情极品国产一区二区三区| 国产精品一区二区精品视频观看| av片东京热男人的天堂| 国产成人一区二区在线| 久久精品亚洲熟妇少妇任你| 婷婷色综合大香蕉| 午夜免费男女啪啪视频观看| 欧美人与性动交α欧美软件| 欧美日韩福利视频一区二区| 亚洲人成网站在线观看播放| 欧美乱码精品一区二区三区| 麻豆国产av国片精品| 男女无遮挡免费网站观看| 午夜日韩欧美国产| 如日韩欧美国产精品一区二区三区| 成年动漫av网址| 亚洲中文日韩欧美视频| 成人手机av| 久久亚洲精品不卡| 丰满少妇做爰视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成网站在线观看播放| 欧美 亚洲 国产 日韩一| 欧美日韩视频精品一区| 午夜免费成人在线视频| 日本猛色少妇xxxxx猛交久久| 亚洲久久久国产精品| 色播在线永久视频| 男女下面插进去视频免费观看| 婷婷色av中文字幕| 久久这里只有精品19| 国产又爽黄色视频| 精品第一国产精品|