• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical properties of several ternary nanostructures*

    2021-01-21 02:08:34XiaoLongTang唐小龍XinLuCheng程新路HuaLiangCao曹華亮andHuaDongZeng曾華東
    Chinese Physics B 2021年1期
    關(guān)鍵詞:新路華東小龍

    Xiao-Long Tang(唐小龍), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹華亮), and Hua-Dong Zeng(曾華東)

    Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: optical properties of nanostructures, plasmons on surfaces and interfaces, model and numerical simulation

    1. Introduction

    The optical properties in visible range of nanoparticles have been widely studied,[1–4]especially for TiO2and Au.[5–7]As a crucial material in photocatalysis, TiO2has received extensive attention since Fujishima and Honda demonstrated that TiO2can be used for photocatalysis in 1972.[8]However,the photocatalytic efficiency of TiO2is insufficient for photocatalytic applications. To improve the photocatalytic efficiency,TiO2was coupled with noble metal nanoparticles,[9,10]such as Au,[11]Ag,[12]Cu,[13]Pt,[14]etc. Meanwhile, noble metals have strong ability to transfer electrons, making the separation efficiency of electrons and holes higher,thus increasing the catalytic ability of materials.[15,16]Noble metals were also coupled to many materials to obtain different properties,[17,18]such as Fe3O4–Au (Ag),[19]ZnO–Au(Ag),[20]SiO2–Au(Ag),[21]ZrO2–Au,[22]TiO2–Au(Ag),[23]etc. As an efficiency combination, Janus TiO2–Au nanostructure has attracted more and more interest in photocatalysis. Seh et al. first demonstrated that TiO2–Au asymmetric Janus nanoparticleis possess higher efficiency to generate hydrogen than bare Au and core–shell structure in visible-light photocatalysis.[24]Wang et al. investigated the photocatalyst properties of Au/TiO2/Au nanostructure which exhibits a significant improvement in photocurrent density compared with the bare TiO2nanostructure in visible range.[25]Li and Li reported that an Au/Au3+TiO2photocatalyst can not only extend the light absorption of TiO2-based photocatalyst into visible range but also eliminate the rapid recombination of excited electrons/holes during photoreaction.[26]However, for Au–TiO2nanostructure, TiO2with a wide band gap width of 3.2 eV can provide energetic electrons for photocatalysis but lacks extinction in visible range. Au can excite the extinction of TiO2in visible range, but cannot extend the extinction range. Thus this combination of Au and TiO2possesses an improvement in the light absorption but a narrow extinction range in visible light. This restricts the utilization of visible light which contains the majority of the energy of sun light. Therefore, extending the light extinction range in visible light is vital for photocatalysis of Au and TiO2. Some investigations indicated that narrow band gap materials can sensitize wide band gap materials in visible light.[1–3]Therefore,finding a suitable and applicable material combined with TiO2and Au is a feasible way to improve photocatalysis in visible light.[27,28]Ma et al.[29]and Tada et al.[30]found that the CdS–Au–TiO2three-component nanojunction system exhibits much more photocatalytic activity than single-and twocomponent system. However, most of structures consisting of multiple components are of core–shell or multiple sphere.The core–shell structure can provide a huge interface between different materials, but the incident light cannot radiate inner materials directly,thereby limiting the interaction between materials under the incident irradiation.[31]Multiple-sphere structure can be illuminated directly by the incident light,but the interface between the spheres is very small, which also limits the interaction between materials. With the development of micro-nanometer manufacturing technology, Janus nanodisk has been fabricated,[32]and it is possible to generate the ternary nanodisk. In this structure,three materials are illuminated by the incident light directly,and there is a considerable interface between each two materials.

    In this paper, several ternary nanostructures , each with three equal volume parts, are designed. We calculate the optical properties of several types of ternary nanostructures by the the discrete dipole approximation(DDA)method,and the mechanism of the interaction among three materials is discussed.

    2. Method

    Since Mie calculated the nanospheres of Au by solving Maxwell’s equations,[33]more and more complex and different nanoparticles have been calculated. Benefiting from the fantastic work of Draine[34]and Draine and Flatau,[35]DDSCAT7.3[36]was used to simulate different kinds of nanostructures. DDSCAT is an efficient,open-source and free software package which is based on the theory of DDA. In the DDA method,the object is regarded as N-dipoles and the polarizations of these dipoles are calculated to simulate different materials with arbitrary morphologies and sizes.It can be used to calculate the extinction coefficients and near-field intensities of these nanoparticles.

    The real V is divided into N dipoles,and each dipole possesses volume d3in this soft package,specifically,

    In the simulation, the more the dipoles used, the more accurate the calculation is. Previous work shows a relative accuracy when N 1000.[37,38]In our calculations 157200 dipoles are used to simulate the nanostructure in order to obtain relatively high accurate results.The wavelengths we discussed are all between 300 nm and 750 nm. More computational details can be found in the reference.

    Fig.1. Morphology of(a)ternary core–shell,(b)nanodisk,and(c)three-sphere structure.

    The morphology of the ternary core–shell, nanodisk and three-sphere structures are presented in Fig.1. The core–shell structure is a three-layer sphere structure,with outer layer radius being R3,the core radius R1,and the meddle layer radius R2, the three parts possess equal volume(Fig. 1(a)). In addition, the morphology of the core–shell structure in Fig. 1 is the cross-section diagram of this structure, and the real morphology in calculation of the structure is a complete core–shell structure. The radius of the nanodisk is R, and the thickness is d (Fig. 1(b)). The nanodisk is divided into three parts,M1=M2=M3=1/3 nanodisk. The three-sphere structure is composed of three spheres of equal radius R1. M1,M2,M3are three different materials (Fig. 1(c)). The incident light is linear radiation propagating along the ?xLFaxis. The polarization direction is parallel to ?zLF.[39]The ambient medium is set to be vacuum where the refractive index is 1.

    3. Results and discussion

    The surface plasmon resonance of nanoparticles is dependent on geometry,size,material composition and surrounding medium.[40–43]Among these factors,the geometry and material composition are the key points for studying the surface plasmon resonance of nanoparticles. A kind of ternary nanostructure composed of three different materials is designed and the optical properties are investigated in this work.

    For ternary nanostructures, the core–shell and threesphere structures are widely studied,[44,45]but the nanodisk structure is less concerned. To investigate the optical properties of ternary nanostructures,the extinction spectra of nanodisk, core–shell and three-sphere structures with equal volume of TiO2, Ag, and Au are calculated, in which the nanodisk structure is M1/M2/M3=TiO2/Ag/Au, the radius R of the nanodisk is 50 nm,and the thickness d is 20 nm. And the core–shell structure is of a three-layer sphere, which is composed of the core sphere, middle shell, and outer shell. The core sphere is of Ag with radius R1of 23.21 nm, the middle shell is of TiO2with a thickness of 6.04 nm,and the outer shell is of Au with a thickness of 4.23 nm. The three-sphere structure is composed of three spheres with a radius R1is 23.21 nm,which contact each other. They are composed of three spheres of TiO2, Au, and Ag. The extinction spectrum of nanodisk,core–shell and three-sphere structures are shown in Fig. 2.The extinction properties of nanodisk structure are much better than those of the core–shell structure and three-sphere structure in 300 nm–750 nm. This is due to the interaction among materials and the migration of electrons needing enough energy(incident light)and touching area(interface). The core–shell structure has a large interface among materials, but the incident light cannot directly irradiate the internal materials,which greatly reduces the interaction between the materials.In the three-sphere structure, although the incident light can directly irradiate the three materials, the interface among the three materials is less, also limiting the interaction between the materials. In the nanodisk structure,the incident light can directly irradiate three materials, and there is a considerable interface,so the interaction among materials is promoted.

    Several researches show that narrow band gap materials can sensitize the extinction characteristics of TiO2in the visible light range.[2,46]In order to study the sensitization effect of narrow band gap materials on TiO2under the local surface plasmon resonance excitation of Au,the extinction spectra of the nanodisk consiting of different band gap materials combined with Au and TiO2are calculated and discussed. We select a series of band gap materials to combine with TiO2[47]and Au.[48]The band gap width of these materials possess an approximately equal difference, PbSe (0.165 eV),[49]Ge(0.66 eV),[50]MoS2(1.17 eV),[51]CdSe(1.7 eV),[52]and CdS(2.4 eV).[53]

    Fig.2. Extinction spectrum of core–shell,nanodisk,and three-sphere structures for M1/M2/M3=TiO2/Ag/Au.

    Fig. 3. Extinction spectra of M1/M2/M3 structures, with M1 fixed to Au,M2=M3 being PbSe,Ge,MoS2,CdSe,CdS or TiO2 respectively.

    For M1=Au, M2=M3=PbSe, Ge, MoS2, CdSe, CdS or TiO2respectively,the extinction spectra of nanodisk structures are shown in Fig.3. By analyzing the band gap width of M2and M3(PbSe=0.165 eV,Ge=0.66 eV,MoS2=1.17 eV,CdSe=1.7 eV, CdS=2.4 eV), the results show that the extinction coefficient is inversely proportional to the band gap for each of M2and M3in 300 nm–600 nm. The narrow band gap width leads to the low electronic transition energy and the high carrier concentration in equilibrium state. Therefore,under the excitation of the near-field energy generated by the local surface plasmon resonance of Au, the valence band electrons are more likely to be excited and transited to the conduction band in narrow band gap material, as a result, the absorption rate and extinction coefficient are both high. At the same time, when M2=M3=PbSe, Ge or MoS2, there is no extinction peak in 600 nm–700 nm, but there is an extinction peak at 676 nm, 652 nm or 658 nm respectively for M2=M3=CdSe,CdS or TiO2. This is due to the strong coupling between the plasmonic near-field produced by Au and the electronic transition energy in semiconductor. The electrons transit from valence band to conduction band under the excitation of plasmonic near-field,and the electron–hole pairs are formed. Since the Fermi energy level of semiconductor is higher than that of metal, when the two materials contact each other,the excited electrons will flow from semiconductor with high Fermi energy level to noble metal with low Fermi energy level,until their Fermi energy levels become the same and reach a static equilibrium. Due to the narrow band gap width of PbSe,Ge and MoS2,the energy values of the transition electrons from the bands are too low to pass through the Schottky barrier between Au and the material.[54–56]It cannot form a path to transfer the electrons from material to Au.[57]The band gap width of CdS, CdSe, and TiO2are wide. The transition electrons generated in CdS, CdSe, and TiO2have enough energy to pass through the Schottky barrier between the material and Au, and flow into Au until their Fermi energy levels reach a balance state, which effectively promotes the charge separation in semiconductor. In this process, the electron–hole pairs produced by electron transition and transfer can produce redox reaction with surrounding oxidants and reducers,thereby completing photocatalysis.

    From the above structures, the M1/M2/M3=Au/PbSe/PbSe structure has the maximum extinction coefficient in 300 nm–600 nm,and the M1/M/M3=Au/TiO2/TiO2structure has a maximum extinction coefficient in 600 nm–750 nm. Based on above results,to investigate how the different materials combined with Au and TiO2structure influence the extinction coefficient,the extinction spectra of the ternary nanodisk structures are calculated.

    Fig.4. Extinction spectra of M1/M2/M3 nanodisk structures with M1 =Au and M3=TiO2,and M2=PbSe,Ge,MoS2,CdSe or CdS respectively.

    The extinction spectra of the ternary nanodisks composed of Au, a semiconductor (PbSe, Ge, MoS2, CdSe or CdS)and TiO2are shown in Fig. 4. The extinction coefficient of M1/M2/M3= Au/PbSe/TiO2structure is always highest in 300 nm–600 nm. In 600 nm–750 nm, the extinction coefficient peak of M1/M2/M3= Au/CdS/TiO2structure is the highest, but the difference in extinction peak between different structures is small. The results show that the structure of M1/M2/M3=Au/PbSe/TiO2has the best extinction performance in the whole range of 300 nm–750 nm. Similarly, the extinction coefficient of the structure is also inversely proportional to the band gap width of M2material in 300 nm–600 nm.Because M1and M3are the same in each structure,the difference is mainly caused by M2material. The band gap width of M2material directly affects the extinction coefficient of this type of structure.

    Figures 5(a)–5(e) show the electric near-field distributions of the two different semiconductors and Au ternary nanodisks at 530 nm.The electric near-field distribution is consistent with the results of above extinction spectra.The near-field intensity outside the M2material is also inversely proportional to the band gap width of the M2material.This is because under the plasmonic near-field excitation,the smaller band gap leads the greater carrier concentration and the smaller transition energy,which makes the occurrence probability of the transition greater,so the absorption is greater. The boundaries of PbSe,Ge, and MoS2are very clear in Fig. 6, and the electric nearfield distributions in the three materials are all small. Due to the fact that at the interface between Au and these materials there exists a Schottky barrier while the transition electrons of these materials are not energetic enough to pass through the Schottky barrier, the electron–hole pairs formed in the material recombine rapidly,which prevents the electron–hole pairs from being continuously produced, leading the internal electric near-field distribution to become small.However,there are some near-field distributions near the interface of CdSe,CdS,TiO2, and Au, indicating that the transition electrons generated in these materials are energetic to cross the Schottky barrier between them and Au, thus further promoting the electrons’ transition and light absorption. The above-mentioned electric near-field distribution verifies the previous Schottky barrier theory discussed in extinction spectra.

    Figures 6(a)–6(e) show the electric near-field distributions of the ternary nanodisks, each of which is composed of two semiconductors and Au for the second peak in 650 nm–690 nm. There are a large number of near-field distributions around the interface between Au and TiO2at the maximum extinction peak,which is due to the strong coupling between the electronic transition in TiO2and the plasmonic near-field of Au.Because of the difference in Fermi energy level,the Fermi energy level of TiO2is higher than that of Au. A large number of electrons from the valence band in TiO2are injected into Au,which slows down the electron–hole pairs recombining in TiO2. It further enhances the efficiency of charge separation in TiO2, until the Fermi energy level of TiO2and Au reach a static balance. Therefore,a strong electric near-field distribution is produced near the interface between TiO2and Au. like the electric near-field distribution near 530 nm,the boundaries of PbSe,Ge,MoS2materials are also very clear for the same reason.

    Fig. 5. Electric near-field distribution maps of the peaks at 530 nm for (a) M1/M2/M3 =Au/PbSe/TiO2, (b) Au/Ge/TiO2, (c) Au/MoS2/TiO2, (d)Au/CdSe/TiO2,(e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 structures in x plane.

    Fig.6. Electric near-field distribute maps of the second peak between 650 nm and 690 nm for(a)M1/M2/M3 =Au/PbSe/TiO2, (b)Au/Ge/TiO2, (c)Au/MoS2/TiO2,(d)Au/CdSe/TiO2 (e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 in x plane.

    The extinction spectrum of the ternary nanodisk consisting of two different noble metals and TiO2is calculated. Figure 7 shows the extinction coefficient spectrum of M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt and TiO2/Au/Pt structures. The results show that the M1/M2/M3= TiO2/Ag/Pt structure has the best extinction performance in 300 nm–750 nm. The M1/M2/M3= TiO2/Ag/Au structure has two absorption peaks at 406 nm and 546 nm, respectively. The M1/M2/M3=TiO2/Ag/Pt structure has three extinction peaks at 410 nm, 670 nm, and 694 nm, respectively, and the M1/M2/M3=TiO2/Au/Pt has two extinction peaks at 532 nm and 732 nm, respectively. There is an extinction peak near 400 nm for structure containing Ag,540 nm for structure containing Au,and 700 nm for structure containing Pt.This is due to the fact that the coupling extinction peak of Ag and TiO2is near 400 nm, the coupling extinction peak of Au and TiO2is near 500 nm,and the coupling extinction peak of Pt and TiO2is near 700 nm.[58,59]The difference among the material combinations might be the reason for causing some differences in the location and value of extinction peaks. Based on above results,there is a complementation of extinction efficiency between the TiO2/Ag/Au and TiO2/Ag/Pt structures in visible range.

    Fig. 7. Extinction coefficient spectrum of M1/M2/M3 = TiO2/Ag/Au,TiO2/Ag/Pt,and TiO2/Au/Pt structures.

    The electric near-field distributions of M1/M2/M3=TiO2/Ag/Pt structure at extinction peaks of 410 nm, 670 nm,694 nm are calculated. The electric near-field distribution at 410 nm, 670 nm, and 694 nm in the x plane are shown in Figs. 8(a1), 8(b1), and 8(c1), respectively. And the electric near-field distribution in the y plane at 410 nm, 670 nm, and 694 nm are shown in Figs. 8(a2), 8(b2), and 8(c2), respectively. The electric near-field distribution at 410 nm is mainly concentrated in the part of M2=Ag. The electric near-field distribution at 670 nm is similar to that at 694 nm, which are mainly distributed around M2and M3, and the distribution is larger in M2. It is due to the fact that both Ag and Pt have a coupling effect with TiO2, resulting in two extinction peaks,and that the distance between the two coupling extinction peaks is very close,so the structure has two adjacent extinction peaks at 670 nm and 694 nm.

    Fig.8. Near-field distribution of M1/M2/M3 =TiO2/Ag/Pt structure at(a1)410 nm, (b1)670 nm, (c1)694 nm in x plane and(a2)410 nm,(b2)670 nm,(c2)694 nm y plane.

    4. Conclusions

    We conclude that the ternary nanodisk has better extinction properties than core–shell and three-sphere structures.For the nanodisk structures of M1/M2/M3=Au/(PbSe, Ge,MoS2, CdSe, or CdS)/TiO2, the best extinction performance is obtained for Au/PbSe/TiO2ternary nanodisk in 300 nm–750 nm. And the extinction coefficient is inversely proportional to the band gap of M2in 300 nm–600 nm. When M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt or TiO2/Au/Pt of nanodisk structures,the TiO2/Ag/Pt nanodisk has the best extinction performance. The extinction efficiency and electric nearfield intensity of TiO2/Ag/Pt structure are much higher than those of Au/PbSe/TiO2. The TiO2/Ag/Pt nanodisk structure has two extinction peaks and strong electric near-field in visible range,so it is hopeful to achieve a better efficiency in the field of photocatalysis. The spectrum of TiO2/Ag/Pt structure and the spectrum of TiO2/Ag/Au structure can form a threepeak extinction spectrum in visible range, it provides a reference for extending the extinction range.

    猜你喜歡
    新路華東小龍
    El regreso del dragón
    華東銷售在一線
    水土保持探新路 三十九年寫春秋
    相華東:走在欣欣向榮的田野上
    華人時刊(2022年21期)2022-02-15 03:42:36
    小小小小龍
    蔬果種植走新路
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    多絲量新品種華東×春晨的引進(jìn)推廣
    蠶桑通報(2015年2期)2015-12-15 00:41:56
    民國時期無“華東”稱渭
    城鄉(xiāng)一體化走出的新路
    日韩 亚洲 欧美在线| 全区人妻精品视频| 亚洲精品日韩在线中文字幕| 成人国语在线视频| 国产在视频线精品| 新久久久久国产一级毛片| 91精品三级在线观看| 美女大奶头黄色视频| 99久久中文字幕三级久久日本| 99九九线精品视频在线观看视频| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 中文字幕人妻丝袜制服| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 久久精品国产亚洲网站| 久久婷婷青草| 一级,二级,三级黄色视频| 在线观看三级黄色| 亚洲精品日本国产第一区| 伊人久久国产一区二区| 大陆偷拍与自拍| 成人手机av| a级毛片免费高清观看在线播放| 一本久久精品| 国产乱人偷精品视频| 国产欧美亚洲国产| 亚洲天堂av无毛| 欧美另类一区| 午夜激情福利司机影院| 久久毛片免费看一区二区三区| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| av电影中文网址| 亚洲图色成人| 国产av精品麻豆| 亚洲美女视频黄频| 一级毛片我不卡| 国产在线免费精品| 人成视频在线观看免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲四区av| av黄色大香蕉| 久久人妻熟女aⅴ| 亚洲av.av天堂| 99久久综合免费| 婷婷色av中文字幕| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区 | 成人国产麻豆网| 黄片播放在线免费| 久热久热在线精品观看| 亚洲久久久国产精品| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 热re99久久精品国产66热6| 久久亚洲国产成人精品v| 亚洲av中文av极速乱| 少妇的逼好多水| 日韩亚洲欧美综合| 亚洲精品久久成人aⅴ小说 | 欧美日韩国产mv在线观看视频| 久久久久久久久久久丰满| av有码第一页| 大香蕉久久成人网| 亚洲综合色网址| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人爽人人夜夜| 美女脱内裤让男人舔精品视频| 亚洲av日韩在线播放| 午夜日本视频在线| 日韩不卡一区二区三区视频在线| 又粗又硬又长又爽又黄的视频| 美女xxoo啪啪120秒动态图| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 亚洲欧美中文字幕日韩二区| 欧美亚洲日本最大视频资源| 中文字幕人妻熟人妻熟丝袜美| 赤兔流量卡办理| 亚洲经典国产精华液单| 22中文网久久字幕| 搡女人真爽免费视频火全软件| 激情五月婷婷亚洲| 日韩强制内射视频| 亚洲av免费高清在线观看| 亚洲精品456在线播放app| 国产色婷婷99| 国产熟女欧美一区二区| 免费不卡的大黄色大毛片视频在线观看| 插阴视频在线观看视频| 亚洲第一av免费看| 国产永久视频网站| 青青草视频在线视频观看| 免费看av在线观看网站| 久久久久久久久久久免费av| 桃花免费在线播放| 国产 精品1| 两个人免费观看高清视频| 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 蜜桃久久精品国产亚洲av| 国产成人精品在线电影| 国产男人的电影天堂91| 国产日韩欧美视频二区| 国产在线视频一区二区| 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看| 免费看光身美女| 99热国产这里只有精品6| 少妇猛男粗大的猛烈进出视频| 十八禁高潮呻吟视频| 全区人妻精品视频| 男女国产视频网站| 日韩一区二区三区影片| 女人久久www免费人成看片| 亚洲综合色惰| 午夜激情av网站| 国产又色又爽无遮挡免| 一区二区三区精品91| 午夜免费鲁丝| videos熟女内射| 男女免费视频国产| 国产片内射在线| 亚洲精品中文字幕在线视频| 精品国产一区二区三区久久久樱花| 亚洲精品色激情综合| 国产黄色视频一区二区在线观看| 精品酒店卫生间| 精品一区二区免费观看| 高清欧美精品videossex| h视频一区二区三区| 亚洲精品,欧美精品| 亚洲情色 制服丝袜| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 成人影院久久| av线在线观看网站| 亚洲精品aⅴ在线观看| av天堂久久9| 亚洲国产成人一精品久久久| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 一级二级三级毛片免费看| 香蕉精品网在线| 色网站视频免费| 精品久久国产蜜桃| 嘟嘟电影网在线观看| 久久久久久久久久人人人人人人| 免费av中文字幕在线| 超碰97精品在线观看| 女人久久www免费人成看片| 各种免费的搞黄视频| 久久久国产精品麻豆| 最近最新中文字幕免费大全7| 下体分泌物呈黄色| 国产成人精品福利久久| 亚洲av.av天堂| 熟女人妻精品中文字幕| av有码第一页| xxx大片免费视频| 99热全是精品| 性高湖久久久久久久久免费观看| 精品午夜福利在线看| 秋霞在线观看毛片| 精品国产露脸久久av麻豆| 色哟哟·www| 欧美亚洲日本最大视频资源| 精品国产露脸久久av麻豆| 欧美少妇被猛烈插入视频| 婷婷成人精品国产| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| 亚洲国产精品国产精品| 国产精品成人在线| av不卡在线播放| kizo精华| 五月玫瑰六月丁香| 成年av动漫网址| 亚洲av日韩在线播放| 黑人欧美特级aaaaaa片| 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院 | 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 久久久久精品性色| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 国产亚洲av片在线观看秒播厂| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 免费人成在线观看视频色| 欧美精品一区二区免费开放| av女优亚洲男人天堂| 少妇被粗大的猛进出69影院 | 91精品三级在线观看| 亚洲国产精品一区二区三区在线| 五月伊人婷婷丁香| 久久精品久久精品一区二区三区| 亚洲五月色婷婷综合| 久久毛片免费看一区二区三区| 国产免费一级a男人的天堂| 日韩大片免费观看网站| 卡戴珊不雅视频在线播放| 国产视频内射| 国产淫语在线视频| 男女免费视频国产| 一级a做视频免费观看| 精品人妻熟女av久视频| 精品一区二区三卡| 三级国产精品欧美在线观看| 99久久中文字幕三级久久日本| 一本久久精品| 国产亚洲av片在线观看秒播厂| 日本-黄色视频高清免费观看| 搡老乐熟女国产| 精品99又大又爽又粗少妇毛片| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 国产又色又爽无遮挡免| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 欧美激情 高清一区二区三区| 七月丁香在线播放| 国产欧美日韩一区二区三区在线 | 青春草国产在线视频| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx在线观看| 亚洲精品一区蜜桃| 亚洲天堂av无毛| 简卡轻食公司| 亚洲欧美精品自产自拍| 成人无遮挡网站| 免费看不卡的av| 99热网站在线观看| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 丰满少妇做爰视频| 精品酒店卫生间| 成人影院久久| 男女无遮挡免费网站观看| 亚洲av成人精品一二三区| 亚洲欧美日韩另类电影网站| 午夜福利网站1000一区二区三区| 性色avwww在线观看| 日韩视频在线欧美| 国产一区二区在线观看av| 久久久精品区二区三区| 交换朋友夫妻互换小说| 亚洲av免费高清在线观看| 五月开心婷婷网| 男女边吃奶边做爰视频| 国产精品久久久久久久久免| 精品国产露脸久久av麻豆| 少妇丰满av| 亚洲美女黄色视频免费看| av又黄又爽大尺度在线免费看| 精品人妻熟女av久视频| 亚洲精品一二三| av免费观看日本| 日韩免费高清中文字幕av| 考比视频在线观看| 如日韩欧美国产精品一区二区三区 | 男的添女的下面高潮视频| 在线观看国产h片| 国产精品国产三级国产专区5o| 久久av网站| 日本午夜av视频| 黄色毛片三级朝国网站| 建设人人有责人人尽责人人享有的| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久蜜臀av无| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 超色免费av| 午夜福利影视在线免费观看| 中文字幕久久专区| a级毛片在线看网站| 日本av手机在线免费观看| 国产亚洲精品第一综合不卡 | 最新的欧美精品一区二区| 国产av国产精品国产| 午夜免费观看性视频| 亚洲美女视频黄频| 免费黄色在线免费观看| videos熟女内射| 亚洲av国产av综合av卡| 91在线精品国自产拍蜜月| 伊人亚洲综合成人网| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 国产av一区二区精品久久| 美女主播在线视频| 能在线免费看毛片的网站| 欧美激情国产日韩精品一区| 亚洲av福利一区| 国产乱来视频区| 伊人久久精品亚洲午夜| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 国产精品久久久久久久电影| 99热国产这里只有精品6| av国产久精品久网站免费入址| 高清视频免费观看一区二区| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 看免费成人av毛片| 国产亚洲欧美精品永久| 国产深夜福利视频在线观看| av播播在线观看一区| 一级毛片我不卡| 少妇被粗大的猛进出69影院 | 美女脱内裤让男人舔精品视频| 观看美女的网站| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 国产成人精品福利久久| 男女边吃奶边做爰视频| 免费黄网站久久成人精品| 亚洲国产精品一区二区三区在线| av国产精品久久久久影院| 亚洲欧美色中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 能在线免费看毛片的网站| 欧美人与善性xxx| 精品久久国产蜜桃| 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到 | 精品少妇久久久久久888优播| 免费黄频网站在线观看国产| 亚洲精品日韩av片在线观看| 少妇人妻精品综合一区二区| 午夜福利在线观看免费完整高清在| 亚洲精品久久午夜乱码| 国产色婷婷99| 亚洲欧美成人综合另类久久久| 欧美日韩av久久| 成人亚洲精品一区在线观看| 久久99蜜桃精品久久| 插阴视频在线观看视频| 99re6热这里在线精品视频| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99热网站在线观看| 伊人亚洲综合成人网| 亚洲av电影在线观看一区二区三区| 三上悠亚av全集在线观看| av.在线天堂| 国产精品女同一区二区软件| 丝瓜视频免费看黄片| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女福利国产在线| 国产精品国产av在线观看| 人人妻人人澡人人看| 99热6这里只有精品| videosex国产| 国产亚洲欧美精品永久| 晚上一个人看的免费电影| 22中文网久久字幕| 国产乱来视频区| 久久人妻熟女aⅴ| 精品少妇久久久久久888优播| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 大香蕉久久网| 成人无遮挡网站| 熟女电影av网| 简卡轻食公司| 一区二区三区精品91| 欧美3d第一页| 成人国产麻豆网| 十八禁高潮呻吟视频| 色吧在线观看| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 国产午夜精品一二区理论片| 观看美女的网站| 九草在线视频观看| 人妻人人澡人人爽人人| 中文天堂在线官网| 天堂俺去俺来也www色官网| 国产一区二区三区av在线| 如何舔出高潮| 极品人妻少妇av视频| 一个人免费看片子| 国产精品欧美亚洲77777| 97超碰精品成人国产| 青春草亚洲视频在线观看| 欧美激情国产日韩精品一区| 精品少妇内射三级| 夜夜看夜夜爽夜夜摸| 国产精品熟女久久久久浪| av网站免费在线观看视频| 国产精品一区www在线观看| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 亚洲av综合色区一区| av免费观看日本| 久久精品国产亚洲av天美| 成人国产av品久久久| 亚洲精品乱久久久久久| 久热这里只有精品99| 久久久久人妻精品一区果冻| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 人人澡人人妻人| 看免费成人av毛片| 夜夜骑夜夜射夜夜干| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 成人黄色视频免费在线看| 高清毛片免费看| 亚州av有码| 考比视频在线观看| av国产精品久久久久影院| 成人亚洲欧美一区二区av| 一本一本综合久久| 亚洲精品日韩在线中文字幕| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 国产白丝娇喘喷水9色精品| 欧美日韩国产mv在线观看视频| 寂寞人妻少妇视频99o| 99热6这里只有精品| 观看av在线不卡| 欧美成人午夜免费资源| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人午夜福利电影在线观看| 免费观看无遮挡的男女| 制服丝袜香蕉在线| 一边摸一边做爽爽视频免费| 亚洲欧洲国产日韩| 成人综合一区亚洲| 18禁在线播放成人免费| 老司机影院毛片| 曰老女人黄片| 成人亚洲精品一区在线观看| 精品国产国语对白av| 高清午夜精品一区二区三区| 老司机亚洲免费影院| 亚洲精品视频女| 欧美日韩亚洲高清精品| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| xxxhd国产人妻xxx| 欧美三级亚洲精品| 国产视频内射| 日日撸夜夜添| 国产成人午夜福利电影在线观看| 美女福利国产在线| av网站免费在线观看视频| 婷婷色av中文字幕| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 全区人妻精品视频| 三级国产精品片| 99热国产这里只有精品6| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 成人免费观看视频高清| 成年人午夜在线观看视频| 国产精品偷伦视频观看了| 亚洲精品乱码久久久v下载方式| 午夜激情久久久久久久| 国产成人freesex在线| 性色avwww在线观看| 日韩av在线免费看完整版不卡| 欧美成人精品欧美一级黄| 国产精品国产三级国产av玫瑰| 国产又色又爽无遮挡免| 精品卡一卡二卡四卡免费| 欧美精品一区二区大全| 999精品在线视频| 亚洲一级一片aⅴ在线观看| kizo精华| 最后的刺客免费高清国语| 久久热精品热| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 91精品一卡2卡3卡4卡| 王馨瑶露胸无遮挡在线观看| 亚洲精品自拍成人| 精品99又大又爽又粗少妇毛片| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| av在线观看视频网站免费| 97在线人人人人妻| av天堂久久9| 黑丝袜美女国产一区| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| av视频免费观看在线观看| 国产成人a∨麻豆精品| 伊人亚洲综合成人网| 久久久精品区二区三区| 观看av在线不卡| 精品99又大又爽又粗少妇毛片| 最黄视频免费看| 18禁动态无遮挡网站| 3wmmmm亚洲av在线观看| 婷婷成人精品国产| 欧美日韩视频精品一区| 久久久久久久国产电影| 精品久久久久久电影网| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 国产免费又黄又爽又色| 日韩av免费高清视频| 欧美变态另类bdsm刘玥| 国产高清国产精品国产三级| 蜜桃在线观看..| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 免费观看无遮挡的男女| 久久精品人人爽人人爽视色| 人妻人人澡人人爽人人| 成人毛片60女人毛片免费| 51国产日韩欧美| 免费高清在线观看视频在线观看| 国产精品久久久久久精品古装| 少妇被粗大猛烈的视频| 亚洲图色成人| 爱豆传媒免费全集在线观看| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久 | 天天躁夜夜躁狠狠久久av| 中文字幕亚洲精品专区| 免费av中文字幕在线| 老司机影院毛片| 建设人人有责人人尽责人人享有的| 成人国语在线视频| 国产成人freesex在线| 曰老女人黄片| 亚洲国产av影院在线观看| 久久久欧美国产精品| 午夜福利影视在线免费观看| 亚洲熟女精品中文字幕| 亚洲丝袜综合中文字幕| 一区二区三区免费毛片| av在线观看视频网站免费| 亚洲欧美色中文字幕在线| 最近中文字幕高清免费大全6| 在线看a的网站| 内地一区二区视频在线| 久久影院123| 亚洲欧美一区二区三区黑人 | 国产精品一二三区在线看| 成人国语在线视频| 日韩,欧美,国产一区二区三区| 黄色视频在线播放观看不卡| 亚洲美女视频黄频| 日日摸夜夜添夜夜添av毛片| 99久久精品国产国产毛片| 精品久久久久久久久亚洲| 欧美变态另类bdsm刘玥| 婷婷色综合www| 成人黄色视频免费在线看| 秋霞伦理黄片| 一区二区三区乱码不卡18| 交换朋友夫妻互换小说| 婷婷色av中文字幕| 亚洲av男天堂| 91精品三级在线观看| 精品人妻熟女av久视频| 一区二区av电影网| 国产成人一区二区在线| 久久久久精品性色| 久久久久久久久大av| 男女无遮挡免费网站观看| 免费大片18禁| 99精国产麻豆久久婷婷| 国产一级毛片在线| 一级毛片电影观看| 亚洲国产日韩一区二区| 久久国内精品自在自线图片| 国产精品国产三级专区第一集| 又黄又爽又刺激的免费视频.| 黄色毛片三级朝国网站| 超色免费av| 免费人成在线观看视频色| 丰满少妇做爰视频| 欧美人与性动交α欧美精品济南到 | 日本av手机在线免费观看| 国产精品 国内视频| 国产日韩欧美亚洲二区|