• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical properties of several ternary nanostructures*

    2021-01-21 02:08:34XiaoLongTang唐小龍XinLuCheng程新路HuaLiangCao曹華亮andHuaDongZeng曾華東
    Chinese Physics B 2021年1期
    關(guān)鍵詞:新路華東小龍

    Xiao-Long Tang(唐小龍), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹華亮), and Hua-Dong Zeng(曾華東)

    Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: optical properties of nanostructures, plasmons on surfaces and interfaces, model and numerical simulation

    1. Introduction

    The optical properties in visible range of nanoparticles have been widely studied,[1–4]especially for TiO2and Au.[5–7]As a crucial material in photocatalysis, TiO2has received extensive attention since Fujishima and Honda demonstrated that TiO2can be used for photocatalysis in 1972.[8]However,the photocatalytic efficiency of TiO2is insufficient for photocatalytic applications. To improve the photocatalytic efficiency,TiO2was coupled with noble metal nanoparticles,[9,10]such as Au,[11]Ag,[12]Cu,[13]Pt,[14]etc. Meanwhile, noble metals have strong ability to transfer electrons, making the separation efficiency of electrons and holes higher,thus increasing the catalytic ability of materials.[15,16]Noble metals were also coupled to many materials to obtain different properties,[17,18]such as Fe3O4–Au (Ag),[19]ZnO–Au(Ag),[20]SiO2–Au(Ag),[21]ZrO2–Au,[22]TiO2–Au(Ag),[23]etc. As an efficiency combination, Janus TiO2–Au nanostructure has attracted more and more interest in photocatalysis. Seh et al. first demonstrated that TiO2–Au asymmetric Janus nanoparticleis possess higher efficiency to generate hydrogen than bare Au and core–shell structure in visible-light photocatalysis.[24]Wang et al. investigated the photocatalyst properties of Au/TiO2/Au nanostructure which exhibits a significant improvement in photocurrent density compared with the bare TiO2nanostructure in visible range.[25]Li and Li reported that an Au/Au3+TiO2photocatalyst can not only extend the light absorption of TiO2-based photocatalyst into visible range but also eliminate the rapid recombination of excited electrons/holes during photoreaction.[26]However, for Au–TiO2nanostructure, TiO2with a wide band gap width of 3.2 eV can provide energetic electrons for photocatalysis but lacks extinction in visible range. Au can excite the extinction of TiO2in visible range, but cannot extend the extinction range. Thus this combination of Au and TiO2possesses an improvement in the light absorption but a narrow extinction range in visible light. This restricts the utilization of visible light which contains the majority of the energy of sun light. Therefore, extending the light extinction range in visible light is vital for photocatalysis of Au and TiO2. Some investigations indicated that narrow band gap materials can sensitize wide band gap materials in visible light.[1–3]Therefore,finding a suitable and applicable material combined with TiO2and Au is a feasible way to improve photocatalysis in visible light.[27,28]Ma et al.[29]and Tada et al.[30]found that the CdS–Au–TiO2three-component nanojunction system exhibits much more photocatalytic activity than single-and twocomponent system. However, most of structures consisting of multiple components are of core–shell or multiple sphere.The core–shell structure can provide a huge interface between different materials, but the incident light cannot radiate inner materials directly,thereby limiting the interaction between materials under the incident irradiation.[31]Multiple-sphere structure can be illuminated directly by the incident light,but the interface between the spheres is very small, which also limits the interaction between materials. With the development of micro-nanometer manufacturing technology, Janus nanodisk has been fabricated,[32]and it is possible to generate the ternary nanodisk. In this structure,three materials are illuminated by the incident light directly,and there is a considerable interface between each two materials.

    In this paper, several ternary nanostructures , each with three equal volume parts, are designed. We calculate the optical properties of several types of ternary nanostructures by the the discrete dipole approximation(DDA)method,and the mechanism of the interaction among three materials is discussed.

    2. Method

    Since Mie calculated the nanospheres of Au by solving Maxwell’s equations,[33]more and more complex and different nanoparticles have been calculated. Benefiting from the fantastic work of Draine[34]and Draine and Flatau,[35]DDSCAT7.3[36]was used to simulate different kinds of nanostructures. DDSCAT is an efficient,open-source and free software package which is based on the theory of DDA. In the DDA method,the object is regarded as N-dipoles and the polarizations of these dipoles are calculated to simulate different materials with arbitrary morphologies and sizes.It can be used to calculate the extinction coefficients and near-field intensities of these nanoparticles.

    The real V is divided into N dipoles,and each dipole possesses volume d3in this soft package,specifically,

    In the simulation, the more the dipoles used, the more accurate the calculation is. Previous work shows a relative accuracy when N 1000.[37,38]In our calculations 157200 dipoles are used to simulate the nanostructure in order to obtain relatively high accurate results.The wavelengths we discussed are all between 300 nm and 750 nm. More computational details can be found in the reference.

    Fig.1. Morphology of(a)ternary core–shell,(b)nanodisk,and(c)three-sphere structure.

    The morphology of the ternary core–shell, nanodisk and three-sphere structures are presented in Fig.1. The core–shell structure is a three-layer sphere structure,with outer layer radius being R3,the core radius R1,and the meddle layer radius R2, the three parts possess equal volume(Fig. 1(a)). In addition, the morphology of the core–shell structure in Fig. 1 is the cross-section diagram of this structure, and the real morphology in calculation of the structure is a complete core–shell structure. The radius of the nanodisk is R, and the thickness is d (Fig. 1(b)). The nanodisk is divided into three parts,M1=M2=M3=1/3 nanodisk. The three-sphere structure is composed of three spheres of equal radius R1. M1,M2,M3are three different materials (Fig. 1(c)). The incident light is linear radiation propagating along the ?xLFaxis. The polarization direction is parallel to ?zLF.[39]The ambient medium is set to be vacuum where the refractive index is 1.

    3. Results and discussion

    The surface plasmon resonance of nanoparticles is dependent on geometry,size,material composition and surrounding medium.[40–43]Among these factors,the geometry and material composition are the key points for studying the surface plasmon resonance of nanoparticles. A kind of ternary nanostructure composed of three different materials is designed and the optical properties are investigated in this work.

    For ternary nanostructures, the core–shell and threesphere structures are widely studied,[44,45]but the nanodisk structure is less concerned. To investigate the optical properties of ternary nanostructures,the extinction spectra of nanodisk, core–shell and three-sphere structures with equal volume of TiO2, Ag, and Au are calculated, in which the nanodisk structure is M1/M2/M3=TiO2/Ag/Au, the radius R of the nanodisk is 50 nm,and the thickness d is 20 nm. And the core–shell structure is of a three-layer sphere, which is composed of the core sphere, middle shell, and outer shell. The core sphere is of Ag with radius R1of 23.21 nm, the middle shell is of TiO2with a thickness of 6.04 nm,and the outer shell is of Au with a thickness of 4.23 nm. The three-sphere structure is composed of three spheres with a radius R1is 23.21 nm,which contact each other. They are composed of three spheres of TiO2, Au, and Ag. The extinction spectrum of nanodisk,core–shell and three-sphere structures are shown in Fig. 2.The extinction properties of nanodisk structure are much better than those of the core–shell structure and three-sphere structure in 300 nm–750 nm. This is due to the interaction among materials and the migration of electrons needing enough energy(incident light)and touching area(interface). The core–shell structure has a large interface among materials, but the incident light cannot directly irradiate the internal materials,which greatly reduces the interaction between the materials.In the three-sphere structure, although the incident light can directly irradiate the three materials, the interface among the three materials is less, also limiting the interaction between the materials. In the nanodisk structure,the incident light can directly irradiate three materials, and there is a considerable interface,so the interaction among materials is promoted.

    Several researches show that narrow band gap materials can sensitize the extinction characteristics of TiO2in the visible light range.[2,46]In order to study the sensitization effect of narrow band gap materials on TiO2under the local surface plasmon resonance excitation of Au,the extinction spectra of the nanodisk consiting of different band gap materials combined with Au and TiO2are calculated and discussed. We select a series of band gap materials to combine with TiO2[47]and Au.[48]The band gap width of these materials possess an approximately equal difference, PbSe (0.165 eV),[49]Ge(0.66 eV),[50]MoS2(1.17 eV),[51]CdSe(1.7 eV),[52]and CdS(2.4 eV).[53]

    Fig.2. Extinction spectrum of core–shell,nanodisk,and three-sphere structures for M1/M2/M3=TiO2/Ag/Au.

    Fig. 3. Extinction spectra of M1/M2/M3 structures, with M1 fixed to Au,M2=M3 being PbSe,Ge,MoS2,CdSe,CdS or TiO2 respectively.

    For M1=Au, M2=M3=PbSe, Ge, MoS2, CdSe, CdS or TiO2respectively,the extinction spectra of nanodisk structures are shown in Fig.3. By analyzing the band gap width of M2and M3(PbSe=0.165 eV,Ge=0.66 eV,MoS2=1.17 eV,CdSe=1.7 eV, CdS=2.4 eV), the results show that the extinction coefficient is inversely proportional to the band gap for each of M2and M3in 300 nm–600 nm. The narrow band gap width leads to the low electronic transition energy and the high carrier concentration in equilibrium state. Therefore,under the excitation of the near-field energy generated by the local surface plasmon resonance of Au, the valence band electrons are more likely to be excited and transited to the conduction band in narrow band gap material, as a result, the absorption rate and extinction coefficient are both high. At the same time, when M2=M3=PbSe, Ge or MoS2, there is no extinction peak in 600 nm–700 nm, but there is an extinction peak at 676 nm, 652 nm or 658 nm respectively for M2=M3=CdSe,CdS or TiO2. This is due to the strong coupling between the plasmonic near-field produced by Au and the electronic transition energy in semiconductor. The electrons transit from valence band to conduction band under the excitation of plasmonic near-field,and the electron–hole pairs are formed. Since the Fermi energy level of semiconductor is higher than that of metal, when the two materials contact each other,the excited electrons will flow from semiconductor with high Fermi energy level to noble metal with low Fermi energy level,until their Fermi energy levels become the same and reach a static equilibrium. Due to the narrow band gap width of PbSe,Ge and MoS2,the energy values of the transition electrons from the bands are too low to pass through the Schottky barrier between Au and the material.[54–56]It cannot form a path to transfer the electrons from material to Au.[57]The band gap width of CdS, CdSe, and TiO2are wide. The transition electrons generated in CdS, CdSe, and TiO2have enough energy to pass through the Schottky barrier between the material and Au, and flow into Au until their Fermi energy levels reach a balance state, which effectively promotes the charge separation in semiconductor. In this process, the electron–hole pairs produced by electron transition and transfer can produce redox reaction with surrounding oxidants and reducers,thereby completing photocatalysis.

    From the above structures, the M1/M2/M3=Au/PbSe/PbSe structure has the maximum extinction coefficient in 300 nm–600 nm,and the M1/M/M3=Au/TiO2/TiO2structure has a maximum extinction coefficient in 600 nm–750 nm. Based on above results,to investigate how the different materials combined with Au and TiO2structure influence the extinction coefficient,the extinction spectra of the ternary nanodisk structures are calculated.

    Fig.4. Extinction spectra of M1/M2/M3 nanodisk structures with M1 =Au and M3=TiO2,and M2=PbSe,Ge,MoS2,CdSe or CdS respectively.

    The extinction spectra of the ternary nanodisks composed of Au, a semiconductor (PbSe, Ge, MoS2, CdSe or CdS)and TiO2are shown in Fig. 4. The extinction coefficient of M1/M2/M3= Au/PbSe/TiO2structure is always highest in 300 nm–600 nm. In 600 nm–750 nm, the extinction coefficient peak of M1/M2/M3= Au/CdS/TiO2structure is the highest, but the difference in extinction peak between different structures is small. The results show that the structure of M1/M2/M3=Au/PbSe/TiO2has the best extinction performance in the whole range of 300 nm–750 nm. Similarly, the extinction coefficient of the structure is also inversely proportional to the band gap width of M2material in 300 nm–600 nm.Because M1and M3are the same in each structure,the difference is mainly caused by M2material. The band gap width of M2material directly affects the extinction coefficient of this type of structure.

    Figures 5(a)–5(e) show the electric near-field distributions of the two different semiconductors and Au ternary nanodisks at 530 nm.The electric near-field distribution is consistent with the results of above extinction spectra.The near-field intensity outside the M2material is also inversely proportional to the band gap width of the M2material.This is because under the plasmonic near-field excitation,the smaller band gap leads the greater carrier concentration and the smaller transition energy,which makes the occurrence probability of the transition greater,so the absorption is greater. The boundaries of PbSe,Ge, and MoS2are very clear in Fig. 6, and the electric nearfield distributions in the three materials are all small. Due to the fact that at the interface between Au and these materials there exists a Schottky barrier while the transition electrons of these materials are not energetic enough to pass through the Schottky barrier, the electron–hole pairs formed in the material recombine rapidly,which prevents the electron–hole pairs from being continuously produced, leading the internal electric near-field distribution to become small.However,there are some near-field distributions near the interface of CdSe,CdS,TiO2, and Au, indicating that the transition electrons generated in these materials are energetic to cross the Schottky barrier between them and Au, thus further promoting the electrons’ transition and light absorption. The above-mentioned electric near-field distribution verifies the previous Schottky barrier theory discussed in extinction spectra.

    Figures 6(a)–6(e) show the electric near-field distributions of the ternary nanodisks, each of which is composed of two semiconductors and Au for the second peak in 650 nm–690 nm. There are a large number of near-field distributions around the interface between Au and TiO2at the maximum extinction peak,which is due to the strong coupling between the electronic transition in TiO2and the plasmonic near-field of Au.Because of the difference in Fermi energy level,the Fermi energy level of TiO2is higher than that of Au. A large number of electrons from the valence band in TiO2are injected into Au,which slows down the electron–hole pairs recombining in TiO2. It further enhances the efficiency of charge separation in TiO2, until the Fermi energy level of TiO2and Au reach a static balance. Therefore,a strong electric near-field distribution is produced near the interface between TiO2and Au. like the electric near-field distribution near 530 nm,the boundaries of PbSe,Ge,MoS2materials are also very clear for the same reason.

    Fig. 5. Electric near-field distribution maps of the peaks at 530 nm for (a) M1/M2/M3 =Au/PbSe/TiO2, (b) Au/Ge/TiO2, (c) Au/MoS2/TiO2, (d)Au/CdSe/TiO2,(e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 structures in x plane.

    Fig.6. Electric near-field distribute maps of the second peak between 650 nm and 690 nm for(a)M1/M2/M3 =Au/PbSe/TiO2, (b)Au/Ge/TiO2, (c)Au/MoS2/TiO2,(d)Au/CdSe/TiO2 (e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 in x plane.

    The extinction spectrum of the ternary nanodisk consisting of two different noble metals and TiO2is calculated. Figure 7 shows the extinction coefficient spectrum of M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt and TiO2/Au/Pt structures. The results show that the M1/M2/M3= TiO2/Ag/Pt structure has the best extinction performance in 300 nm–750 nm. The M1/M2/M3= TiO2/Ag/Au structure has two absorption peaks at 406 nm and 546 nm, respectively. The M1/M2/M3=TiO2/Ag/Pt structure has three extinction peaks at 410 nm, 670 nm, and 694 nm, respectively, and the M1/M2/M3=TiO2/Au/Pt has two extinction peaks at 532 nm and 732 nm, respectively. There is an extinction peak near 400 nm for structure containing Ag,540 nm for structure containing Au,and 700 nm for structure containing Pt.This is due to the fact that the coupling extinction peak of Ag and TiO2is near 400 nm, the coupling extinction peak of Au and TiO2is near 500 nm,and the coupling extinction peak of Pt and TiO2is near 700 nm.[58,59]The difference among the material combinations might be the reason for causing some differences in the location and value of extinction peaks. Based on above results,there is a complementation of extinction efficiency between the TiO2/Ag/Au and TiO2/Ag/Pt structures in visible range.

    Fig. 7. Extinction coefficient spectrum of M1/M2/M3 = TiO2/Ag/Au,TiO2/Ag/Pt,and TiO2/Au/Pt structures.

    The electric near-field distributions of M1/M2/M3=TiO2/Ag/Pt structure at extinction peaks of 410 nm, 670 nm,694 nm are calculated. The electric near-field distribution at 410 nm, 670 nm, and 694 nm in the x plane are shown in Figs. 8(a1), 8(b1), and 8(c1), respectively. And the electric near-field distribution in the y plane at 410 nm, 670 nm, and 694 nm are shown in Figs. 8(a2), 8(b2), and 8(c2), respectively. The electric near-field distribution at 410 nm is mainly concentrated in the part of M2=Ag. The electric near-field distribution at 670 nm is similar to that at 694 nm, which are mainly distributed around M2and M3, and the distribution is larger in M2. It is due to the fact that both Ag and Pt have a coupling effect with TiO2, resulting in two extinction peaks,and that the distance between the two coupling extinction peaks is very close,so the structure has two adjacent extinction peaks at 670 nm and 694 nm.

    Fig.8. Near-field distribution of M1/M2/M3 =TiO2/Ag/Pt structure at(a1)410 nm, (b1)670 nm, (c1)694 nm in x plane and(a2)410 nm,(b2)670 nm,(c2)694 nm y plane.

    4. Conclusions

    We conclude that the ternary nanodisk has better extinction properties than core–shell and three-sphere structures.For the nanodisk structures of M1/M2/M3=Au/(PbSe, Ge,MoS2, CdSe, or CdS)/TiO2, the best extinction performance is obtained for Au/PbSe/TiO2ternary nanodisk in 300 nm–750 nm. And the extinction coefficient is inversely proportional to the band gap of M2in 300 nm–600 nm. When M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt or TiO2/Au/Pt of nanodisk structures,the TiO2/Ag/Pt nanodisk has the best extinction performance. The extinction efficiency and electric nearfield intensity of TiO2/Ag/Pt structure are much higher than those of Au/PbSe/TiO2. The TiO2/Ag/Pt nanodisk structure has two extinction peaks and strong electric near-field in visible range,so it is hopeful to achieve a better efficiency in the field of photocatalysis. The spectrum of TiO2/Ag/Pt structure and the spectrum of TiO2/Ag/Au structure can form a threepeak extinction spectrum in visible range, it provides a reference for extending the extinction range.

    猜你喜歡
    新路華東小龍
    El regreso del dragón
    華東銷售在一線
    水土保持探新路 三十九年寫春秋
    相華東:走在欣欣向榮的田野上
    華人時刊(2022年21期)2022-02-15 03:42:36
    小小小小龍
    蔬果種植走新路
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    多絲量新品種華東×春晨的引進(jìn)推廣
    蠶桑通報(2015年2期)2015-12-15 00:41:56
    民國時期無“華東”稱渭
    城鄉(xiāng)一體化走出的新路
    成人国语在线视频| 一进一出抽搐gif免费好疼| 免费观看精品视频网站| 国产精品 欧美亚洲| 精品日产1卡2卡| 欧美中文日本在线观看视频| 欧美又色又爽又黄视频| 老司机靠b影院| 国产精品98久久久久久宅男小说| 国产激情久久老熟女| 亚洲成a人片在线一区二区| 三级毛片av免费| 欧美乱妇无乱码| www.www免费av| 两个人视频免费观看高清| 国产精品自产拍在线观看55亚洲| 欧美黄色片欧美黄色片| 欧美在线黄色| 美女大奶头视频| 日韩欧美精品v在线| 在线视频色国产色| 日韩精品青青久久久久久| 每晚都被弄得嗷嗷叫到高潮| 黑人巨大精品欧美一区二区mp4| 成人精品一区二区免费| 国产激情欧美一区二区| 亚洲在线自拍视频| 日本三级黄在线观看| 女人被狂操c到高潮| 99热6这里只有精品| 在线观看免费午夜福利视频| 给我免费播放毛片高清在线观看| 午夜免费激情av| 亚洲精品久久国产高清桃花| 亚洲一码二码三码区别大吗| 一个人免费在线观看电影 | 欧美日韩国产亚洲二区| 脱女人内裤的视频| 精品国内亚洲2022精品成人| 午夜精品一区二区三区免费看| 亚洲av成人精品一区久久| 久久久精品大字幕| 真人做人爱边吃奶动态| 精品国产乱子伦一区二区三区| 亚洲人成网站高清观看| 级片在线观看| 国产片内射在线| 特大巨黑吊av在线直播| aaaaa片日本免费| 国产亚洲欧美98| 免费在线观看成人毛片| 在线观看免费日韩欧美大片| av在线天堂中文字幕| 18禁美女被吸乳视频| 岛国在线免费视频观看| 久久久久国内视频| 99riav亚洲国产免费| 国产精品久久视频播放| 亚洲精华国产精华精| 高清毛片免费观看视频网站| 最近在线观看免费完整版| 别揉我奶头~嗯~啊~动态视频| 久久香蕉激情| 欧美日韩福利视频一区二区| 好男人在线观看高清免费视频| 欧美人与性动交α欧美精品济南到| 久久久国产成人免费| 免费在线观看黄色视频的| 国产精品亚洲av一区麻豆| 一卡2卡三卡四卡精品乱码亚洲| 蜜桃久久精品国产亚洲av| 成人18禁在线播放| 国产高清videossex| 亚洲av成人精品一区久久| 久久午夜综合久久蜜桃| 精品国产乱子伦一区二区三区| 免费在线观看日本一区| 精品高清国产在线一区| 国产午夜精品论理片| 欧美性长视频在线观看| 变态另类成人亚洲欧美熟女| 精品一区二区三区视频在线观看免费| 久热爱精品视频在线9| 全区人妻精品视频| 少妇粗大呻吟视频| 此物有八面人人有两片| 久久久国产欧美日韩av| 亚洲成人精品中文字幕电影| 黄色女人牲交| 久久久久久久久久黄片| 国产高清视频在线观看网站| videosex国产| 18禁美女被吸乳视频| 国产精品久久视频播放| 国产av又大| av片东京热男人的天堂| 亚洲男人的天堂狠狠| 日韩大尺度精品在线看网址| 成人高潮视频无遮挡免费网站| 欧美激情久久久久久爽电影| 亚洲午夜精品一区,二区,三区| 白带黄色成豆腐渣| 我的老师免费观看完整版| 欧美一区二区精品小视频在线| 欧美又色又爽又黄视频| 国产真人三级小视频在线观看| 宅男免费午夜| 日韩欧美三级三区| www日本黄色视频网| 色综合亚洲欧美另类图片| 哪里可以看免费的av片| 我要搜黄色片| 亚洲精品久久国产高清桃花| 免费在线观看黄色视频的| 99久久精品国产亚洲精品| 女人被狂操c到高潮| 黄色丝袜av网址大全| 成人欧美大片| 亚洲国产欧美网| 国产精品电影一区二区三区| 精品久久久久久久人妻蜜臀av| 国产午夜精品论理片| 久久精品亚洲精品国产色婷小说| 亚洲午夜精品一区,二区,三区| 亚洲成人免费电影在线观看| 国产三级中文精品| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av | 麻豆国产av国片精品| 亚洲成a人片在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 欧美中文综合在线视频| 成人18禁高潮啪啪吃奶动态图| 国产av麻豆久久久久久久| 久久精品国产综合久久久| 一级黄色大片毛片| 国产高清视频在线播放一区| 国产av在哪里看| 久久99热这里只有精品18| 哪里可以看免费的av片| 18禁美女被吸乳视频| 桃红色精品国产亚洲av| 日本一区二区免费在线视频| 色综合欧美亚洲国产小说| 天堂av国产一区二区熟女人妻 | 精品人妻1区二区| 久久这里只有精品中国| 90打野战视频偷拍视频| 黄片大片在线免费观看| 最新在线观看一区二区三区| 亚洲在线自拍视频| 日本熟妇午夜| 成人特级黄色片久久久久久久| 欧美+亚洲+日韩+国产| 久久性视频一级片| 精品欧美一区二区三区在线| 日韩大尺度精品在线看网址| 国语自产精品视频在线第100页| 伊人久久大香线蕉亚洲五| 国产高清激情床上av| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全免费视频| 麻豆国产av国片精品| 国产精品久久电影中文字幕| 久久精品国产综合久久久| 亚洲中文字幕日韩| 搡老岳熟女国产| 琪琪午夜伦伦电影理论片6080| 精品免费久久久久久久清纯| 91国产中文字幕| 成人亚洲精品av一区二区| 欧美一级a爱片免费观看看 | 亚洲精品中文字幕在线视频| 男人舔奶头视频| 老汉色∧v一级毛片| 一a级毛片在线观看| videosex国产| 18禁裸乳无遮挡免费网站照片| 国产区一区二久久| 在线播放国产精品三级| 久久久久免费精品人妻一区二区| 麻豆成人av在线观看| 亚洲全国av大片| 久久这里只有精品中国| av在线天堂中文字幕| 毛片女人毛片| 久久精品国产99精品国产亚洲性色| 久久久国产成人精品二区| 亚洲精品av麻豆狂野| 变态另类成人亚洲欧美熟女| 大型黄色视频在线免费观看| 黄片小视频在线播放| 日本免费a在线| 亚洲成人久久爱视频| 蜜桃久久精品国产亚洲av| 亚洲自偷自拍图片 自拍| 日本免费一区二区三区高清不卡| 国产精品av视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 高清毛片免费观看视频网站| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 亚洲黑人精品在线| 久久久久久亚洲精品国产蜜桃av| 国产99久久九九免费精品| 精品少妇一区二区三区视频日本电影| 久久人人精品亚洲av| 亚洲国产精品999在线| 日韩欧美三级三区| 亚洲国产欧美一区二区综合| 国产区一区二久久| 免费一级毛片在线播放高清视频| 色哟哟哟哟哟哟| 午夜免费观看网址| 国产成人精品久久二区二区91| 日本一二三区视频观看| e午夜精品久久久久久久| 黄色a级毛片大全视频| 小说图片视频综合网站| 亚洲乱码一区二区免费版| 国产精品一区二区三区四区久久| 日日干狠狠操夜夜爽| 国产成人一区二区三区免费视频网站| 久久午夜综合久久蜜桃| 精品福利观看| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区不卡视频| 日本免费一区二区三区高清不卡| 亚洲男人天堂网一区| 中亚洲国语对白在线视频| xxxwww97欧美| 一区二区三区国产精品乱码| 亚洲成人久久性| 五月玫瑰六月丁香| 一级片免费观看大全| 久久精品国产99精品国产亚洲性色| 久久久久久久久中文| 不卡一级毛片| 国产欧美日韩一区二区三| 亚洲精华国产精华精| 欧美成人免费av一区二区三区| 黄色毛片三级朝国网站| 不卡一级毛片| 日韩欧美三级三区| 日韩高清综合在线| 国产单亲对白刺激| 香蕉久久夜色| 午夜福利在线在线| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 日韩欧美国产在线观看| 午夜激情av网站| 黄色女人牲交| 在线观看午夜福利视频| svipshipincom国产片| 岛国在线观看网站| 一级a爱片免费观看的视频| 亚洲av电影在线进入| 欧美日韩一级在线毛片| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 日韩精品免费视频一区二区三区| 90打野战视频偷拍视频| 一级作爱视频免费观看| 欧美久久黑人一区二区| 亚洲欧美精品综合一区二区三区| 午夜a级毛片| 99久久无色码亚洲精品果冻| 国产黄色小视频在线观看| 中亚洲国语对白在线视频| 亚洲第一欧美日韩一区二区三区| 一本大道久久a久久精品| 亚洲自拍偷在线| 欧美性猛交╳xxx乱大交人| 在线看三级毛片| 在线国产一区二区在线| 亚洲 国产 在线| 亚洲国产精品合色在线| 18禁观看日本| 草草在线视频免费看| 男女视频在线观看网站免费 | ponron亚洲| 99在线人妻在线中文字幕| 一进一出抽搐动态| 看片在线看免费视频| 男人舔女人的私密视频| 极品教师在线免费播放| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 国产av在哪里看| 亚洲七黄色美女视频| 校园春色视频在线观看| 欧美精品亚洲一区二区| 国产精品免费一区二区三区在线| 男人的好看免费观看在线视频 | 五月伊人婷婷丁香| 91成年电影在线观看| 一级作爱视频免费观看| 国产亚洲精品综合一区在线观看 | 一进一出抽搐动态| 中文字幕高清在线视频| 国产三级中文精品| 国产精品九九99| 久99久视频精品免费| 91在线观看av| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 精品久久久久久久久久久久久| 国产亚洲精品久久久久久毛片| 99精品欧美一区二区三区四区| 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 老司机午夜十八禁免费视频| 成人高潮视频无遮挡免费网站| 欧美黑人精品巨大| 成年人黄色毛片网站| 黄色a级毛片大全视频| 午夜福利18| 久久亚洲真实| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 亚洲狠狠婷婷综合久久图片| 亚洲av电影不卡..在线观看| 在线观看免费视频日本深夜| 宅男免费午夜| 可以在线观看的亚洲视频| 一本综合久久免费| 国产精品一及| bbb黄色大片| 欧美日本视频| av在线播放免费不卡| 桃红色精品国产亚洲av| 99国产精品99久久久久| 国产野战对白在线观看| 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 国内少妇人妻偷人精品xxx网站 | 动漫黄色视频在线观看| 九九热线精品视视频播放| 中出人妻视频一区二区| 又黄又粗又硬又大视频| 久久亚洲精品不卡| 十八禁人妻一区二区| 窝窝影院91人妻| 亚洲自拍偷在线| 中亚洲国语对白在线视频| 国产又黄又爽又无遮挡在线| 国产高清视频在线播放一区| 欧美成人性av电影在线观看| 淫妇啪啪啪对白视频| 亚洲乱码一区二区免费版| 久久久久久久精品吃奶| 免费在线观看日本一区| 99re在线观看精品视频| 毛片女人毛片| 精品高清国产在线一区| 国产不卡一卡二| 麻豆国产av国片精品| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 90打野战视频偷拍视频| 亚洲国产精品久久男人天堂| 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 亚洲欧美日韩高清在线视频| 精华霜和精华液先用哪个| 成年人黄色毛片网站| 欧美高清成人免费视频www| 国产成人系列免费观看| 一本久久中文字幕| 一区二区三区国产精品乱码| 丁香欧美五月| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 黄片小视频在线播放| x7x7x7水蜜桃| 一级黄色大片毛片| 亚洲av电影在线进入| 国产高清videossex| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 国产精品亚洲美女久久久| 在线免费观看的www视频| 最新在线观看一区二区三区| 久久精品91蜜桃| 最近视频中文字幕2019在线8| 国内久久婷婷六月综合欲色啪| 波多野结衣高清无吗| 免费看十八禁软件| 久久精品国产综合久久久| 99热只有精品国产| 亚洲欧美精品综合久久99| 身体一侧抽搐| 精品免费久久久久久久清纯| 精品久久久久久久久久免费视频| 欧美av亚洲av综合av国产av| 国产av又大| 亚洲国产精品合色在线| 亚洲男人天堂网一区| 麻豆av在线久日| 99久久综合精品五月天人人| 成人三级做爰电影| 亚洲成人久久爱视频| 制服丝袜大香蕉在线| 国产午夜精品久久久久久| 亚洲av成人av| 久久久久亚洲av毛片大全| 亚洲精品美女久久av网站| 亚洲欧美精品综合久久99| 国产爱豆传媒在线观看 | 亚洲国产欧美网| 国产欧美日韩一区二区三| 亚洲成a人片在线一区二区| 妹子高潮喷水视频| 香蕉丝袜av| 国产亚洲精品综合一区在线观看 | 日韩欧美在线二视频| 久久久国产欧美日韩av| 俺也久久电影网| 国产亚洲精品av在线| 亚洲男人天堂网一区| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 久久久久国内视频| 搞女人的毛片| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 黄色 视频免费看| 18美女黄网站色大片免费观看| 国产亚洲精品av在线| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 国产av在哪里看| 亚洲色图 男人天堂 中文字幕| 国产激情偷乱视频一区二区| 国产亚洲av高清不卡| 亚洲精品久久国产高清桃花| 别揉我奶头~嗯~啊~动态视频| 国语自产精品视频在线第100页| 中文字幕熟女人妻在线| 最新美女视频免费是黄的| 99re在线观看精品视频| 成年免费大片在线观看| 两个人的视频大全免费| 亚洲五月婷婷丁香| 国内精品一区二区在线观看| 久久久久久大精品| 99热这里只有是精品50| 久久婷婷人人爽人人干人人爱| av片东京热男人的天堂| 日韩免费av在线播放| 成年人黄色毛片网站| 一二三四在线观看免费中文在| 国产黄色小视频在线观看| 一区二区三区国产精品乱码| 天堂动漫精品| 精品久久久久久久久久久久久| 美女午夜性视频免费| av福利片在线| 999久久久精品免费观看国产| av视频在线观看入口| 在线观看舔阴道视频| 亚洲国产欧美人成| 99热这里只有是精品50| 99久久精品热视频| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色成人免费大全| 国产高清有码在线观看视频 | 动漫黄色视频在线观看| 老鸭窝网址在线观看| 色老头精品视频在线观看| 国产精品av久久久久免费| 可以在线观看毛片的网站| 亚洲精品色激情综合| 正在播放国产对白刺激| 中文字幕人成人乱码亚洲影| 欧美3d第一页| 国产三级中文精品| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 国产亚洲精品一区二区www| 亚洲av电影在线进入| 看片在线看免费视频| www.999成人在线观看| 最近最新中文字幕大全电影3| 久久精品aⅴ一区二区三区四区| 欧美中文日本在线观看视频| 亚洲真实伦在线观看| 免费在线观看亚洲国产| 男人舔女人的私密视频| 欧美色视频一区免费| 国产一区二区三区视频了| 日本一二三区视频观看| 色老头精品视频在线观看| а√天堂www在线а√下载| 精品高清国产在线一区| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 伦理电影免费视频| 草草在线视频免费看| 91麻豆av在线| 啦啦啦免费观看视频1| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 又大又爽又粗| 又黄又粗又硬又大视频| 五月玫瑰六月丁香| 正在播放国产对白刺激| 亚洲片人在线观看| 99久久综合精品五月天人人| av中文乱码字幕在线| 国产av又大| 曰老女人黄片| 久久中文字幕一级| 日日爽夜夜爽网站| 亚洲18禁久久av| 日韩欧美在线二视频| 天天躁夜夜躁狠狠躁躁| 最近最新免费中文字幕在线| 亚洲成av人片在线播放无| 亚洲中文av在线| 国产在线精品亚洲第一网站| 国产一区在线观看成人免费| 亚洲欧美激情综合另类| 国产爱豆传媒在线观看 | 国产熟女xx| 国产三级黄色录像| 成人一区二区视频在线观看| 一进一出好大好爽视频| 国产亚洲欧美98| 嫩草影视91久久| 国产精品美女特级片免费视频播放器 | 天天躁狠狠躁夜夜躁狠狠躁| 很黄的视频免费| 欧美一区二区精品小视频在线| 亚洲成av人片免费观看| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 国产成+人综合+亚洲专区| 亚洲无线在线观看| 亚洲欧美日韩高清在线视频| 88av欧美| 亚洲在线自拍视频| avwww免费| 成年女人毛片免费观看观看9| 午夜视频精品福利| 老鸭窝网址在线观看| 国产精品一区二区三区四区免费观看 | 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| av福利片在线| 日韩免费av在线播放| bbb黄色大片| 日韩欧美国产一区二区入口| 女警被强在线播放| 日本成人三级电影网站| 欧美黑人巨大hd| 手机成人av网站| 两个人视频免费观看高清| 在线观看舔阴道视频| or卡值多少钱| 中文资源天堂在线| 女生性感内裤真人,穿戴方法视频| 长腿黑丝高跟| 日韩欧美在线二视频| 精华霜和精华液先用哪个| 精品欧美一区二区三区在线| 18禁观看日本| 一本久久中文字幕| 欧美精品亚洲一区二区| 黄频高清免费视频| 亚洲国产欧美网| 午夜福利免费观看在线| 亚洲av片天天在线观看| videosex国产| 男男h啪啪无遮挡| 亚洲人成77777在线视频| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 亚洲av成人精品一区久久| 日韩精品免费视频一区二区三区| 91麻豆av在线| 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 超碰成人久久| 99国产综合亚洲精品| 亚洲av片天天在线观看| 九色成人免费人妻av| 99精品在免费线老司机午夜| 哪里可以看免费的av片| 国产探花在线观看一区二区| 亚洲,欧美精品.| 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 91老司机精品| 亚洲男人天堂网一区| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 天堂影院成人在线观看|