• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Portfolio Choice under the Mean-Variance Model with Parameter Uncertainty

    2015-12-20 09:13:20HEChaolin何朝林XUQian

    HE Chao-lin (何朝林) ,XU Qian (許 倩)

    School of Management Engineering,Anhui Polytechnic University,Wuhu 241000,China

    Introduction

    The conventional wealth allocation approach suggests choosing portfolio weights by maximizing the investor's expected utility.In the Markowitz[1]framework,the expected utility was maximized in the mean-variance procedure by finding the optimal trade-off between the expected portfolio return and risk associated with future investment outcomes.However,expected return,variance,and covariance are estimated with error,while classical mean-variance portfolio optimization ignores the estimation error.Consequently,the mean-variance portfolio formed using sample moments has extreme portfolio weight that fluctuates substantially over time and the performance of such a portfolio is often poor.So the research on how to effectively reduce the estimation error is very necessary during the process of mean-variance portfolio choice.

    Knight and Berger[2-3]pointed that multi-prior approach could be used to deal with the problem of parameter uncertainty.Moreover,Ellsberg[4]proved that agents were not neutral to the ambiguity arising from having multi priors.Heath and Tversky[5]believed that with the aversion to uncertainty being particularly strong in the case that where people felt the pressure in assessing the relevant probabilities was low.Garleanu and Pedersen[6]gave the closed-form expression of multi-period optimal portfolio and showed that the optimal portfolio policy shrank toward the Markowitz portfolio at a fixed exchange rate in the absence of estimation error.Klein and Bawa[7]and Bawa et al.[8]examined the impact of estimation risk on portfolio allocation in a single-period model.Kandel and Stambaugh[9]allowed the estimation error in a multi-period model,but assumed that the investor only had a single-period horizon.Brennan and Xia[10-11]considered multi-period model where the investment opportunity set was a constant and the parameter was uncertain.Kan and Zhou[12]analytically characterized the utility loss of a mean-variance investor who suffered from parameter uncertainty.DeMiguel et al.[13]studied both portfolio computed from shrinkage estimators of the moments of asset returns as well as shrinkage portfolio obtained by shrinking the portfolio weights directly,carried out a comprehensive investigation of shrinkage estimators for asset allocation,and found that the shrinkage intensity played a significant role in the performance of the resulting optimal portfolio.Meng and He[14]examined the impact of parameter uncertainty and estimation risk on the dynamic portfolio choice of long-time investor.Yang and Chen[15]predicted the presence of estimation error on the perceived risk of investment portfolio and did an empirical analysis.Kourtis et al.[16]proposed a new estimation framework to enhance the portfolio performance,which directly applied the statistical methodology of shrinkage in the inverse covariance matrix.Tu and Zhou[17]considered the optimal trade-off between the sample mean-variance portfolio and the equally-weighted portfolio, while DeMiguel and Nogales[18]studied the empirical performance of a mixture of portfolio obtained as a combination of the sample minimumvariance portfolio and the equally-weighted portfolio.Liu et al.[19]developed a C-V model to minimize the variance of total expected return rate subject to chance constraint and to maximize the chance of achieving a prescribed return level subject to variance constraint,which was compared with meanvariance model.Teller[20]pointed the importance of estimation error from the aspect of portfolio risk management.Takano and Gotoh[21]studied a nonlinear control policy for multi-period portfolio and showed that their strategy not only reduced the estimation error,but also improved the portfolio performance.All these studies point that estimation error affects both the allocation of portfolio and its performance.

    Given the difficulty in estimating moments of risky asset return,it is much more likely that an investor has multiple priors about the moments of risky asset return.In this paper,we introduce a set of constraint constants to measure the uncertainty degree of the expected return,which can be characterized as a set of confidence intervals around the estimated value of expected return.Then,we impose an additional constraint on the mean-variance portfolio optimization program that restricts the expected return to lie within a specified confidence interval of its estimated value,and permit the investor to minimize over the choice of expected return subject to the constraint.So,we build the max-min model of portfolio choice under the meanvariance model with parameter uncertainty and utilize the Lagrange method to obtain the closed-form solution of the multiprior portfolio,which is compared with the mean-variance portfolio and the minimum-variance portfolio; then, an empirical study is done based on the monthly returns for the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index;at last,we analyze the results and obtain the conclusions.

    1 Portfolio Choice Based on Mean-Variance Model

    Assuming investor's initial wealth is unity,he may invest a fraction w in the N risky assets based on the mean-variance model.According to Markowitz[1],the optimization problem of investor's portfolio choice is given by formula (1),

    where μ is the N-vector of the true expected returns,Σ is an N×N covariance matrix,1Nis an N-vector of ones,γ is the risk aversion coefficient.The solution to the above optimization problem is

    A fundamental assumption of the above standard meanvariance portfolio optimum model is that the investor knows the true expected returns.In practice,however,the investor has to estimate the true expected returns.Denoting respectively the estimated value of true expected returns and covariance matrix byand,the actual portfolio weight associated with Eq.(2)is given as follows,

    In reality,the expected returnand covariance matrix Σ∧are notoriously difficult to estimate.As a result,the portfolio weights obtained from Eq.(3)tend to consist of extreme position that swings dramatically over time.At the same time,the optimal portfolio often performs poorly.So,the uncertainty of expected return seriously affects the portfolio choice and its performance,we should deal with the estimation error caused by the uncertainty of expected return during the process of portfolio choice.Next,we apply the multi-prior approach to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model.

    2 Portfolio Choice under the Expected Return with Uncertainty

    2.1 The model of portfolio choice

    Due to the existing of estimation error,the expected return can't be estimated with infinite precision,that is,= μ.Here,we introduce a set of constraint constants to the mean-variance optimization problem in formula (1),which not only measure the different degree of uncertainty about the estimated expected return but also restrict the expected return to lie within a specified confidence interval of its estimated value.These constraint constants imply that the investor recognizes explicitly the possibility of estimation error,that is,the point estimate of the expected return is not the only possible value considered by the investor.According to Gilboa and Schmeidler[22],the investor is allowed to minimize over the choice of expected return subject to the constraint constants.This minimization over expected return,μ,reflects the investor's uncertainty aversion.

    Based on the mean-variance optimization problem in formula (1),the multi-prior model of portfolio choice under the uncertainty about the expected return can take the following form

    where f()· is a vector-valued function,and ∈is a constraint constant that reflects both the investor's uncertainty and his aversion to the uncertainty.In detail,as for the portfolio consisting of N risky asset,we suppose that the expected returns are estimated by their sample meanand the returns are drawn from a normal distribution, then the quantityfollows an F distribution with N and T-N degrees of freedom, where T is the number of observations in the sample for the risky asset.We letand ∈be a chosen quantity for the F distribution.Then the constraint in model (4)can be expressed as The constraint formula (5)can be explained as confidence intervals.In other words,the constraint corresponds to the probability statement- p for some appropriate significance level P.

    As we know,whether the confidence interval or the significance level can be interpreted as a measure of the level of uncertainty associates with the parameters estimated.When it is combined with the max-min problem in formula (4)and is used in an investor's portfolio choice problem,it captures the investor's aversion to uncertainty.If the investor has high uncertainty aversion,he could use a ∈that corresponds to a 99% confidence interval.In other words,by picking the appropriate ∈,the investor can indicate his level of uncertainty about the estimated expected return of the portfolio as well as his level of uncertainty aversion.

    2.2 Solution to the model

    We apply the Lagrange method to solving the model(4)in two steps.According to Gilboa and Schmeidler[22],the investor is allowed to minimize over the choice of expected return subject to the constraint constants.Based on formula (5),we let εand first focus on the inner minimization in the model (4),

    The Lagrange function is

    From the first order conditions with respect to μ in Eq.(7),we obtain the optimal solution of μ,

    Substituting Eq.(8)into Eq.(7),we get

    From the first-order conditions with respect to λ in Eq.(9),we obtain

    Substituting Eq.(10)into Eq.(9),we solve the minimization problem in formula (6),and replacing it in the model (4),the original max-min problem in formula (4)is equivalent to the following maximization problem

    The Lagrange function and its first order conditions with respect to w and λ are given by the following respectively

    Let the variance of the portfolio be,that isFrom the first-order condition with respect to w in formula(12),we obtain

    From the first order condition with respect to λ in formula(12),we obtain

    Replacing Eq.(14)in Eq.(13),we obtain the analytical solution of the model (4)

    Replacing Eq.(15)in the equationwe obtain the following polynomial equation

    On one hand,if ∈→0,then ε→0,the optimal portfolio w*in Eq.(17)converges to

    which is similar with the portfolio choice based on the meanvariance model in Eq.(3);on the other hand,if ∈→∞,then ε→∞,the optimal portfolio w*in Eq.(17)converges to

    which is similar with the portfolio choice based on the minimum-variance model in Kourtis[16].

    From Eqs.(17)-(19),we can conclude that the optimal portfolio choice based on the multi-prior approach is a weighted average of the weights that based on the mean-variance model and the minimum-variance model,that is

    where wMVis the portfolio choice based on the mean-variance model,wMINis the portfolio choice based on the minimumvariance model,and φ is the weighted coefficient and is given by

    3 Empirical Study

    Based on the optimal solution of multi-prior portfolio in Eq.(17),we chose eight kinds of stocks in Shanghai Exchange 50 Index as the study sample and gave the weights,mean,variance,and performance of optimal portfolio under the investor's different degrees of risk-aversion,then,compared them with those based on the mean-variance model and the minimum-variance model.

    3.1 Study sample selection

    We select the monthly returns of eight stocks in Shanghai 50 index as the study sample,and their names and codes are:Shanghai Pudong Development Bank (60000), CITIC Securities (60030),China Shipping Development (60026),Chinese Unicom (60050),Shenergy (60642),Shanghai Petrochemical (60688),China Merchants Bank (60036),and Tianjin Port (600717).Their returns are the continuous composite monthly returns from June 2011 to May 2014,so T =36,N = 8.Their return serial is ri,ri= ln(Pi+1/Pi),i = 1,2,…,T,where Piis the closing price of the first trading day monthly about the selected eight stocks,which can be obtained from the data source at HuaTai Securities (The Second Professional Edition).

    3.2 Empirical results

    Based on the return serial of eight stocks,Table 1 gives the weights of optimal portfolio according to Eqs.(17)-(19)under different risk aversion coefficient (γ = 2,3,5).According to the weights in Table 1,Table 2 gives the mean and variance of optimal portfolio based on different method.At last,F(xiàn)ig.1 gives the performance of optimal portfolio by Sharpe ratio.The above calculation process is done by MATLAB software.

    Table 1 The weights of optimal portfolio based on different methods

    Table 2 The mean and variance of optimal portfolio based on different methods

    3.3 Analysis of the results

    Table 1 demonstrates that the portfolio based on multi-prior approach moves from the portfolio on account of mean-variance model to the portfolio which is based on the minimum-variance model with the increasing of the constraint constant ∈,specially,the case of ∈= 0 corresponds to the mean-variance portfolio while the case of ∈→∞corresponds to the minimumvariance portfolio.This can be explained by Eq.(20),where the case of ∈= 0 corresponds to φ = 0 while the case of ∈→∞corresponds to φ = 1.Intuitively,when constraint constant ∈equals zero,the uncertainty-aversion investor thinks that the portfolio expected return is estimated with infinite precision,that is μ∧= μ,and puts a higher weight coefficient on the meanvariance portfolio.Conversely,the portfolio expected return is estimated extreme imprecisely, and the investor strongly recognizes the existing of estimation error and puts a higher weight coefficient on the minimum-variance portfolio.The above result is also demonstrated by Table 2 from the aspect of portfolio's mean and variance under different method.So,we conclude that the optimal portfolio choice based on the multiprior approach is a weighted average of the weights that based on the mean-variance model and the minimum-variance model,with the mean-variance portfolio shrinking toward the minimumvariance portfolio as the increasing of uncertainty about estimated expected return.

    Table 1 also demonstrates that the optimal holding in a stock decreases with the increasing of the uncertainty about estimated expected return in that stock,and the decreasing speed is also smaller and smaller.As a result,the range of portfolio weight decreases with the increasing of the constraint constant∈,that is,the multi-prior portfolio weight is less unbalanced and varies much less over time compared with the meanvariance portfolio weight.Intuitively, because of the constrained minimization over expected return, when the constraint constant ∈is large for a stock,that is,the mean is estimated imprecisely,then the investor relies less on the estimated mean,and hence,reduces the weight invested in that stock.Conversely,when the constraint constant ∈is small for a stock,the minimization is constrained more tightly,and hence,the stock weight is closer to the standard weight given by the mean-variance model that ignores the estimation error of expected return,in the limit,when the constraint constant ∈is zero,the optimal weight come from the classic mean-variance model.So,the steady of multi-prior portfolio is strengthened compared with the mean-variance portfolio.

    Figure 1 demonstrates that the Sharpe ratio curve firstly increases,and then decreases with the increasing of constraint constant ∈,that is,the Sharpe ratio of multi-prior portfolio is strongly greater than that of minimum-variance portfolio,and sometimes greater than that of mean-variance portfolio.In future,the varying trend of Sharpe ratio depends on risk aversion coefficient γ,that is,the smaller is the risk aversion coefficient,the more obvious is the varying trend.For the case of γ = 2,the Sharpe ratio arrives its maximization when the constraint constant is between 6 and 7;the case of γ = 3,the maximum Sharpe ratio corresponds to that the constraint constant is between 5 and 6;the case of γ = 5,the maximum Sharpe ratio corresponds to that the constraint constant is between 3 and 4.We can also find the above phenomena from the mean and variance of different portfolios in Table 2.Intuitively,estimation error on the expected return is also a kind of risk,the smaller is the risk aversion coefficient,the more is the fraction of estimation risk considered by the uncertaintyaversion investor,the bigger is the constraint constant,and this means that averting the uncertainty about expected return is equal to the increasing of investor's risk aversion degree.So the performance of multi-prior portfolio is strongly greater than that of minimum-variance portfolio,and sometimes greater than that of mean-variance portfolio.Combining with the analysis of the above two sections,the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants ∈.

    Fig.1 The performance of optimal portfolio based on multi-prior approach

    4 Conclusions

    The classical mean-variance portfolio optimization assumes that the expected return of risky asset is known with perfect precision.In practice,it is difficult to estimate the expected return precisely.Due to the existing of estimation error,the mean-variance portfolio weight has extreme value,fluctuates dramatically over time,and its performance is relatively poor.This paper utilizes the multi-prior approach to deal with the estimation error on the estimated expected return.The multiprior approach relies on imposing a set of constraint constants on the mean-variance portfolio optimization program, which restricts the expected return to lie within a specified confidence interval of its estimated value.This constraint recognizes the possibility of estimation error.So,in addition to the standard maximization of mean-variance objective function over the choice of weight,the investor also minimizes over the choice of expected return value subject to the constraint.Then,we utilize the Lagrange method to obtain the closed-form solution of multiprior portfolio,which is compared with the mean-variance portfolio and the minimum-variance portfolio;at last,an empirical study is done based on the monthly returns for the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index.The results show,multi-prior portfolio is a weighted average of the mean-variance portfolio and the minimum-variance portfolio;the steady of multi-prior portfolio is strengthened compared with the mean-variance portfolio;the performance of multi-prior portfolio is greater than that of minimum-variance portfolio.The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.

    Finally,market transaction friction,such as transaction cost,also plays an important role during the process of portfolio choice.In the research, market transaction friction is demonstrated as a function of model parameter,and is affected by the uncertainty of model parameter.This should be studied in the future.

    [1]Markowitz H M.Portfolio Selection[J].Journal of Finance,1952,7(1):77-91.

    [2]Knight F.Risk,Uncertainty and Profit[M].Boston:Houghton Mifflin,1921.

    [3]Berger J O.Minimax Estimator of a Multivariate Normal Mean under Polynomial Loss [J].Journal of Multivariate Analysis,1978,8(2):173-180.

    [4]Ellsberg D.Risk,Ambiguity,and the Savage Axioms[J].The Quarterly Journal of Economics,1961,75(4):643-669.

    [5]Heath C,Tversky A.Preferences and Beliefs:Ambiguity and Competence in Choice under Uncertainty [J].Journal of Risk and Uncertainty,1991,4(1):5-28.

    [6]Garleanu N,Pedersen L H.Dynamic Trading with Predictable Returns and Transaction Costs [J].The Journal of Finance,2013(68):2309-2340.

    [7]Klein R W,Bawa V S.The Effect of Estimation Risk on Optimal Portfolio Choice[J].Journal of Financial Economics,1976,3(3):215-231.

    [8]Bawa V,Brown S,Klein R.Estimation Risk and Optimal Portfolio Choice[M].North Holland:Amsterdam,1979.

    [9]Kandel S,Stambaugh R F.On the Predictability of Stock Returns:an Asset-Allocation Perspective [J].The Journal of Finance,1996,51(1):385-424.

    [10]Brennan M J.The Role of Learning in Dynamic Portfolio Decisions[J].European Finance Review,1998,1(3):295-306.

    [11]Brennan M J,Xia Y H.Stock Price Volatility and Equity Premium[J].Journal of Monetary Economics,2001,47(2):249-283.

    [12]Kan R,Zhou G F.Optimal Estimation for Economic Gains:Portfolio Choice with Parameter Uncertainty [J].Journal of Financial and Quantitative Analysis,2007,42(3):621-656.

    [13]DeMiguel V,Martin-Utrera A,Nogales F J.Size Matters:Optimal Calibration of Shrinkage Estimators for Portfolio Selection[J].Journal of Banking and Finance,2013,37(8):3018-3034.

    [14]Meng W D,He C L.The Choice of Dynamic Portfolio based on the Learning Behavior [J].Systems Engineering-Theory and Practice,2007,27(9):38-46.

    [15]Yang C J,Chen H W.Parameter Uncertainty and Investor's Portfolio Choice:Evident from China Stock Market[J].Chinese journal of management science,2008,16(3):37-43.

    [16]Kourtis A,Dotisis G,Markellos R N.Parameter Uncertainty in Portfolio Selection:Shrinking the Inverse Covariance Matrix[J].Journal of Banking and Finance,2012,36(9):2522-2531.

    [17]Tu J,Zhou G F.Markowitz Meets Talmud:A Combination of Sophisticated and Naive Diversification Strategies[J].Journal of Financial Economics,2011,99(1):204-215.

    [18]DeMiguel V,Nogales F J.Portfolio Selection with Robust Estimation[J].Operations Research,2009,57(3):560-577.

    [19]Liu Y K,Wu X L,Hao F F.A New Chance-Variance Optimization Criterion for Portfolio Selection in Uncertain Decision Systems[J].Expert Systems with Applications,2012,7(39):6514-6526.

    [20]Teller J.Portfolio Risk Management and Its Contribution to Project Portfolio Success:An Investigation of Organization,Process,and Culture[J].Project Management Institute,2013,44(2):36-51.

    [21]Takano Y,Gotoh J.Multi-period Portfolio Selection Using Kernel-Based Control Policy with Dimensionality Reduction[J].Expert Systems with Applications,2014,8(41):3901-3914.

    [22]Gilboa I,Schmeidler D.Maxmin Expected Utility Theory with Non-unique Prior [J].Journal of Mathematical Economics,1989(18):141-153.

    免费一级毛片在线播放高清视频 | 午夜福利在线观看吧| 国产麻豆69| 国产在线精品亚洲第一网站| 国产视频一区二区在线看| 欧美精品高潮呻吟av久久| 国产精品二区激情视频| 久久性视频一级片| 高潮久久久久久久久久久不卡| 下体分泌物呈黄色| 精品一区二区三卡| 亚洲五月天丁香| 亚洲综合色网址| 好看av亚洲va欧美ⅴa在| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 一区二区三区精品91| 多毛熟女@视频| www日本在线高清视频| 国产日韩欧美亚洲二区| 香蕉丝袜av| 亚洲熟女精品中文字幕| 99精品在免费线老司机午夜| 老汉色∧v一级毛片| 久久中文看片网| 1024视频免费在线观看| 国产精品一区二区在线不卡| 激情视频va一区二区三区| av视频免费观看在线观看| 69av精品久久久久久| 亚洲精品乱久久久久久| av不卡在线播放| 免费在线观看完整版高清| 亚洲av日韩在线播放| 极品人妻少妇av视频| 亚洲中文日韩欧美视频| 亚洲成人免费av在线播放| 亚洲av电影在线进入| 日韩有码中文字幕| 亚洲色图综合在线观看| 男人舔女人的私密视频| 极品教师在线免费播放| 极品人妻少妇av视频| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 久久香蕉国产精品| 夜夜夜夜夜久久久久| netflix在线观看网站| 黑人操中国人逼视频| 国产欧美日韩一区二区三区在线| 欧美+亚洲+日韩+国产| 91字幕亚洲| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出 | 久久久久久亚洲精品国产蜜桃av| 岛国在线观看网站| 久久久精品免费免费高清| 啪啪无遮挡十八禁网站| 久久热在线av| 亚洲精品中文字幕在线视频| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 窝窝影院91人妻| 老熟妇仑乱视频hdxx| 亚洲中文av在线| tocl精华| 精品国产国语对白av| 亚洲美女黄片视频| 老鸭窝网址在线观看| 免费av中文字幕在线| 麻豆成人av在线观看| 国产一卡二卡三卡精品| 亚洲人成电影免费在线| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美亚洲二区| 大型av网站在线播放| 高清av免费在线| 九色亚洲精品在线播放| 十八禁网站免费在线| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | 国产亚洲一区二区精品| 久久久国产精品麻豆| 久久久精品国产亚洲av高清涩受| 757午夜福利合集在线观看| 亚洲片人在线观看| 午夜精品在线福利| 亚洲中文日韩欧美视频| 一a级毛片在线观看| 久久亚洲真实| aaaaa片日本免费| 亚洲国产毛片av蜜桃av| 伦理电影免费视频| 欧美色视频一区免费| 久久婷婷成人综合色麻豆| 18禁观看日本| 黄色女人牲交| 成年人免费黄色播放视频| 成年人黄色毛片网站| 亚洲avbb在线观看| 757午夜福利合集在线观看| 嫩草影视91久久| 成年动漫av网址| 男女床上黄色一级片免费看| 久久中文字幕一级| 视频在线观看一区二区三区| 午夜精品久久久久久毛片777| 在线观看免费日韩欧美大片| 男人的好看免费观看在线视频 | 免费在线观看影片大全网站| av欧美777| 成年人免费黄色播放视频| 日韩人妻精品一区2区三区| 免费在线观看亚洲国产| 成人影院久久| 色老头精品视频在线观看| 午夜精品国产一区二区电影| 久久天堂一区二区三区四区| 少妇裸体淫交视频免费看高清 | 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 午夜精品国产一区二区电影| 狠狠婷婷综合久久久久久88av| 高清av免费在线| 国产亚洲精品久久久久久毛片 | 亚洲欧美一区二区三区久久| 亚洲视频免费观看视频| 精品国产一区二区久久| 亚洲一区中文字幕在线| 免费在线观看完整版高清| 久99久视频精品免费| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 精品福利永久在线观看| 正在播放国产对白刺激| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 中文字幕最新亚洲高清| 精品电影一区二区在线| 国产精品 国内视频| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 亚洲aⅴ乱码一区二区在线播放 | 自线自在国产av| 欧美日韩乱码在线| 精品少妇久久久久久888优播| 日韩制服丝袜自拍偷拍| 亚洲一区二区三区欧美精品| 黄色a级毛片大全视频| 老熟女久久久| 精品福利永久在线观看| 中文字幕av电影在线播放| videos熟女内射| 一级,二级,三级黄色视频| 一级毛片女人18水好多| 丁香欧美五月| 亚洲人成电影观看| 一本综合久久免费| 日本精品一区二区三区蜜桃| 中出人妻视频一区二区| 亚洲国产欧美日韩在线播放| 久久久久久久久久久久大奶| 亚洲av成人一区二区三| 国产精品免费一区二区三区在线 | 久热爱精品视频在线9| 十八禁网站免费在线| 女人精品久久久久毛片| 老汉色∧v一级毛片| 91成年电影在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品国产区一区二| 亚洲av熟女| 9色porny在线观看| 欧美在线黄色| 欧美人与性动交α欧美精品济南到| 搡老熟女国产l中国老女人| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 九色亚洲精品在线播放| 叶爱在线成人免费视频播放| 黄色丝袜av网址大全| 久久久久久人人人人人| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 国产淫语在线视频| 99热国产这里只有精品6| 久久久久国产精品人妻aⅴ院 | 精品久久久精品久久久| 他把我摸到了高潮在线观看| 无人区码免费观看不卡| 一级a爱视频在线免费观看| 久久久水蜜桃国产精品网| 久久草成人影院| 一级黄色大片毛片| 亚洲av电影在线进入| √禁漫天堂资源中文www| 亚洲专区中文字幕在线| 99riav亚洲国产免费| 91在线观看av| 天堂√8在线中文| 久久久国产成人精品二区 | 午夜福利,免费看| 亚洲一区高清亚洲精品| 男人舔女人的私密视频| 国产精品偷伦视频观看了| 午夜91福利影院| 他把我摸到了高潮在线观看| 女人被狂操c到高潮| 中文亚洲av片在线观看爽 | 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 午夜91福利影院| 宅男免费午夜| 欧美另类亚洲清纯唯美| 精品亚洲成国产av| 久久九九热精品免费| 一本大道久久a久久精品| 亚洲成人国产一区在线观看| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 亚洲一区二区三区欧美精品| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 成人18禁高潮啪啪吃奶动态图| 乱人伦中国视频| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 午夜视频精品福利| 国产精华一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 91九色精品人成在线观看| 欧美激情 高清一区二区三区| 欧美丝袜亚洲另类 | 王馨瑶露胸无遮挡在线观看| 日本精品一区二区三区蜜桃| 在线播放国产精品三级| 国产精品久久久av美女十八| 国产成人一区二区三区免费视频网站| 一级a爱视频在线免费观看| 国产免费现黄频在线看| 国产激情久久老熟女| 亚洲全国av大片| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区久久| 国产一区二区激情短视频| 色尼玛亚洲综合影院| 十八禁高潮呻吟视频| 国产精品成人在线| 少妇 在线观看| 久久中文字幕人妻熟女| 真人做人爱边吃奶动态| 在线免费观看的www视频| 大码成人一级视频| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 免费在线观看影片大全网站| 久久性视频一级片| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 啦啦啦视频在线资源免费观看| 精品人妻在线不人妻| 国产亚洲欧美98| 欧美 日韩 精品 国产| 啪啪无遮挡十八禁网站| 老司机亚洲免费影院| 女性生殖器流出的白浆| 精品久久久久久久久久免费视频 | 成年人免费黄色播放视频| 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 不卡一级毛片| 欧美日韩成人在线一区二区| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 一级毛片高清免费大全| 大香蕉久久网| 国产成人av激情在线播放| 久久久精品免费免费高清| 18禁裸乳无遮挡动漫免费视频| 18禁观看日本| 99热国产这里只有精品6| 建设人人有责人人尽责人人享有的| 亚洲国产精品一区二区三区在线| 看黄色毛片网站| 深夜精品福利| 国产精品一区二区免费欧美| 国产精品免费一区二区三区在线 | 无遮挡黄片免费观看| 一进一出抽搐动态| 免费在线观看影片大全网站| 国产成人影院久久av| www日本在线高清视频| 精品久久久久久久毛片微露脸| 50天的宝宝边吃奶边哭怎么回事| 美女高潮喷水抽搐中文字幕| www.精华液| tube8黄色片| 精品久久久久久电影网| 18禁观看日本| 99久久国产精品久久久| 少妇粗大呻吟视频| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 免费观看a级毛片全部| 又紧又爽又黄一区二区| 国产黄色免费在线视频| 少妇 在线观看| 男女下面插进去视频免费观看| 一本综合久久免费| 免费观看人在逋| 脱女人内裤的视频| 亚洲av成人av| 窝窝影院91人妻| 国产精品免费一区二区三区在线 | 国产在线观看jvid| 中出人妻视频一区二区| 巨乳人妻的诱惑在线观看| 日本vs欧美在线观看视频| 18禁观看日本| 美女 人体艺术 gogo| 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 免费在线观看影片大全网站| 欧美乱妇无乱码| 侵犯人妻中文字幕一二三四区| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 成人免费观看视频高清| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 在线永久观看黄色视频| 国产色视频综合| 亚洲成人手机| 久久天堂一区二区三区四区| av一本久久久久| av在线播放免费不卡| 极品人妻少妇av视频| 自线自在国产av| 国产极品粉嫩免费观看在线| 亚洲全国av大片| 亚洲熟女精品中文字幕| ponron亚洲| 国产欧美日韩一区二区精品| 午夜精品国产一区二区电影| 午夜老司机福利片| 新久久久久国产一级毛片| 精品国产一区二区久久| 男女午夜视频在线观看| 国产97色在线日韩免费| 男女午夜视频在线观看| 精品久久蜜臀av无| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 国产淫语在线视频| 黄色丝袜av网址大全| 国产免费av片在线观看野外av| svipshipincom国产片| 两个人免费观看高清视频| 午夜成年电影在线免费观看| 国产蜜桃级精品一区二区三区 | 亚洲熟妇熟女久久| 丝袜美足系列| 极品教师在线免费播放| 欧美性长视频在线观看| 一夜夜www| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 成人精品一区二区免费| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 老鸭窝网址在线观看| 水蜜桃什么品种好| 一区二区三区精品91| 亚洲精品在线美女| 操出白浆在线播放| 亚洲精品在线观看二区| 亚洲一区高清亚洲精品| 日本欧美视频一区| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久| 欧美中文综合在线视频| 在线免费观看的www视频| 亚洲情色 制服丝袜| 91精品三级在线观看| 窝窝影院91人妻| videosex国产| av电影中文网址| 免费观看人在逋| 色婷婷久久久亚洲欧美| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 三级毛片av免费| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 在线视频色国产色| 夫妻午夜视频| 日本黄色视频三级网站网址 | 在线视频色国产色| 中文字幕色久视频| 国产主播在线观看一区二区| 9色porny在线观看| 久久久国产精品麻豆| 91九色精品人成在线观看| 黄频高清免费视频| 老司机深夜福利视频在线观看| 男女之事视频高清在线观看| 黄色成人免费大全| 亚洲熟女精品中文字幕| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 怎么达到女性高潮| 99精国产麻豆久久婷婷| 又黄又爽又免费观看的视频| 国产成人影院久久av| 午夜两性在线视频| 久9热在线精品视频| 亚洲av成人不卡在线观看播放网| 狂野欧美激情性xxxx| 午夜福利欧美成人| xxx96com| 一个人免费在线观看的高清视频| 国产在线精品亚洲第一网站| 黄色女人牲交| 免费观看a级毛片全部| 国产成人精品久久二区二区91| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 国产激情久久老熟女| 美女午夜性视频免费| 精品久久蜜臀av无| 国产精品久久久av美女十八| 1024视频免费在线观看| av不卡在线播放| 男女之事视频高清在线观看| 在线观看免费高清a一片| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 91成人精品电影| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲 | 91成人精品电影| 国产成人影院久久av| 在线观看免费高清a一片| 波多野结衣av一区二区av| 嫁个100分男人电影在线观看| 啦啦啦视频在线资源免费观看| 日本五十路高清| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 一区福利在线观看| 后天国语完整版免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 他把我摸到了高潮在线观看| 1024视频免费在线观看| 色尼玛亚洲综合影院| 日韩制服丝袜自拍偷拍| 亚洲五月天丁香| 王馨瑶露胸无遮挡在线观看| 他把我摸到了高潮在线观看| 亚洲欧美激情综合另类| 麻豆成人av在线观看| 天天添夜夜摸| 最新美女视频免费是黄的| 精品亚洲成国产av| 中文欧美无线码| 两性午夜刺激爽爽歪歪视频在线观看 | 99riav亚洲国产免费| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 国产区一区二久久| 动漫黄色视频在线观看| 久久精品国产亚洲av高清一级| 国产99久久九九免费精品| 欧美黑人精品巨大| 色婷婷av一区二区三区视频| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| 在线播放国产精品三级| 涩涩av久久男人的天堂| 男人操女人黄网站| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 50天的宝宝边吃奶边哭怎么回事| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 在线观看66精品国产| 国产精品自产拍在线观看55亚洲 | 久久精品aⅴ一区二区三区四区| x7x7x7水蜜桃| 亚洲三区欧美一区| 中文欧美无线码| 丝袜在线中文字幕| 精品熟女少妇八av免费久了| 纯流量卡能插随身wifi吗| 日本一区二区免费在线视频| 欧美日韩黄片免| 麻豆国产av国片精品| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| 三上悠亚av全集在线观看| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av在线 | 精品亚洲成a人片在线观看| 99热网站在线观看| 国产在线观看jvid| 午夜久久久在线观看| av在线播放免费不卡| 国产高清videossex| 亚洲男人天堂网一区| 国产激情欧美一区二区| 久久香蕉国产精品| 99久久99久久久精品蜜桃| 欧美日韩乱码在线| 亚洲午夜精品一区,二区,三区| 久久精品成人免费网站| 国产99白浆流出| 国产欧美日韩综合在线一区二区| 久久久久久久国产电影| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 国产亚洲欧美98| 精品视频人人做人人爽| 欧美精品av麻豆av| 中文字幕人妻丝袜一区二区| 国产激情欧美一区二区| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| 国产亚洲精品久久久久久毛片| 青草久久国产| 又粗又爽又猛毛片免费看| 女人被狂操c到高潮| 亚洲美女视频黄频| 国产精品一区二区免费欧美| 久久久久久大精品| 国产精品国产高清国产av| www.www免费av| 国内少妇人妻偷人精品xxx网站| 桃色一区二区三区在线观看| 男女午夜视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费一区二区三区在线| 看免费av毛片| 偷拍熟女少妇极品色| 精品福利观看| 亚洲av第一区精品v没综合| 成人国产综合亚洲| 成年人黄色毛片网站| 午夜福利在线在线| 老司机福利观看| 深夜精品福利| 99久久99久久久精品蜜桃| 成人午夜高清在线视频| 日韩中文字幕欧美一区二区| 亚洲成人久久爱视频| 男人舔奶头视频| 色av中文字幕| 亚洲av美国av| 中文字幕高清在线视频| 两个人视频免费观看高清| 一区二区三区激情视频| 精品一区二区三区视频在线 | 久久久久九九精品影院| 在线观看av片永久免费下载| 91麻豆av在线| 国产成年人精品一区二区| 亚洲成av人片在线播放无| 成人午夜高清在线视频| 欧美日韩瑟瑟在线播放| 69av精品久久久久久| 黄色日韩在线| 成人av在线播放网站| 亚洲国产精品sss在线观看| 国产 一区 欧美 日韩| 国产av不卡久久| 欧美日韩国产亚洲二区| 免费人成视频x8x8入口观看| 国产黄片美女视频| 久久九九热精品免费| 精品人妻1区二区| 高清在线国产一区| 久久香蕉国产精品| 亚洲欧美日韩东京热| 青草久久国产| 最好的美女福利视频网| 国产在视频线在精品| 亚洲av日韩精品久久久久久密| 免费看光身美女| 男插女下体视频免费在线播放| 午夜免费成人在线视频| 日本在线视频免费播放| 有码 亚洲区| 日本熟妇午夜| 在线观看午夜福利视频| 三级国产精品欧美在线观看| 国产美女午夜福利| 欧美在线黄色| 淫妇啪啪啪对白视频| 亚洲av一区综合| 网址你懂的国产日韩在线| av女优亚洲男人天堂| 午夜福利欧美成人|