• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Augmented Zagreb Index of Molecular Graphs

    2015-12-20 09:13:02DUJianwei杜建偉SHAOYanling邵燕靈SUNXiaoling孫曉玲

    DU Jian-wei (杜建偉) ,SHAO Yan-ling (邵燕靈),SUN Xiao-ling (孫曉玲)

    1 School of Science,North University of China,Taiyuan 030051,China

    2 School of Information and Communication Engineering,North University of China,Taiyuan 030051,China

    Introduction

    Molecular descriptors have found wide applications in QSPR/QSAR studies.Among them,topological indices have a prominent place[1].Topological indices are numbers associated with chemical structures derived from their hydrogen-depleted graphs as a tool for compact and effective description of structural formulas which are used to study and predict the structure-property correlations of organic compounds.

    Let G =(V(G),E(G))be a connected simple graph in which V(G)and E(G)are the vertex set and edge set of G,respectively.Let n= |V(G)| and m= |E(G)|.We use N(u)to denote the set of all neighbors of u∈V(G)in G,and d(u)= |N(u)| to denote the degree of u.A vertex u is called a pendent vertex if d(u)=1.A connected graph G is known as a molecular graph if its maximum degree is at most four.A connected graph G is called a tree if m = n -1.A hexagonal system is a finite connected plane graph with no cut vertex in which every interior region is surrounded by a regular hexagon of side length 1.Hexagonal systems are the natural graph representation of benzenoid hydrocarbons and have considerable importance in chemistry.A hexagonal system without internal vertex is called catacondensed hexagonal system[2-3].

    The augmented Zagreb index (AZI index for short)was firstly introduced by Furtula et al.in Ref.[4],which is defined to be

    It has been shown that this graph invariant is a valuable predictive index in the study of the heat of formation in octanes and heptanes[4],whose prediction power is better than atombond connectivity index (please refer to Refs.[3,5-8]for its research background).In Ref.[4],F(xiàn)urtula et al.obtained some tight upper and lower bounds for the AZI index of a chemical tree,and determined the trees of order n with minimal AZI index.Huang et al.[9]gave some attained upper and lower bounds on the AZI index and characterized the corresponding extremal graphs.Wang et al.[10]obtained some bounds on the AZI index of connected graphs by using different graph parameters, and characterized the corresponding graphs.Moreover,Ali et al.[11]proposed the tight upper bounds for AZI index of chemical bicyclic and unicyclic graphs and gave the Nordhaus-Gaddum-type result for AZI index.

    In this paper,we first characterize the catacondensed hexagonal systems with extreme augmented Zagreb index in Section 1.In Section 2,the lower bound for augmented Zagreb index of molecular trees with fixed numbers of pendent vertices is presented,and the extremal trees are characterized.In Section 3,another proof of a known theorem in Ref.[10]on augmented Zagreb index is given.Our other notations are standard and taken mainly from Ref.[12].

    1 Extreme Augmented Zagreb Index of Catacondensed Hexagonal Systems

    Throughout this section,the following notations and terminology will be used.Let Chbe the set of catacondensed hexagonal systems with h hexagons.For Ch∈Ch,a hexagon s of Chis called a kink of Chif s has exactly two consecutive vertices with degree 2 in Ch,and called a branched hexagon if s has three neighboring hexagons.For a hexagonal system Ch∈Ch,its dualist graph D(Ch)is the graph whose vertex set is the set of hexagons of Ch,and two vertices of which are adjacent if the corresponding hexagons have a common edge.Clearly the dualist graph of a catacondensed hexagonal system is a tree with the maximum degree at most 3.A kink (respectively branched hexagon) of Chcorresponds to a vertex of degree 2(respectively degree 3)in the dualist graph D(Ch)of Ch.Let p(Ch) (respectively q (Ch)) be the number of kinks(respectively branched hexagons)in Ch.

    Theorem 1 Let Ch∈Ch,then

    Proof We prove the result by induction on h.

    If h=1,2,then p(C1)=q(C1)=0.It is easy to check that Eq.(2)holds for h=1,2.

    If h = 3,then q (C3)= 0.Suppose p (C3)= 0(respectively p(C3)= 1),thenso Eq.(2)holds for h=3.

    Suppose that h≥4 and Eq.(2)holds for all Ch-1∈Ch-1,that is,Let Ch∈Ch,which is obtained by gluing a new hexagon shto some Ch-1.Without loss of generality,suppose the hexagon shis adjacent to some hexagon skin Ch-1.Now in Chthere exist the following three cases.

    Case 1.skis a branched hexagon of Ch.Then p(Ch)= p(Ch-1)- 1 and q(Ch)= q(Ch-1)+1.By the induction hypothesis and direct computation,it can be shown that

    Case 2.skis a kink of Ch.Then p(Ch)=p(Ch-1)+1 and q(Ch)= q(Ch-1).By the induction hypothesis and direct computation,it can be shown that

    Case 3.Otherwise,p(Ch)= p(Ch-1)and q(Ch)=q(Ch-1).By the induction hypothesis and direct computation,it can be shown that

    Therefore,Theorem 1 holds.

    The linear hexagonal chain Lhwith h hexagons is the catacondensed hexagonal systems without kink and branched hexagon.Let Dhbe the set of the catacondensed hexagonal systems with h hexagons for which the dualist graph of any hexagonal systems Ch∈Dhhas at most one vertex of degree 2,and the vertex of degree 2 corresponds to a kink of Ch.It is easy to see that any hexagonal system in Dhhas exactlybranched hexagons.

    Theorem 2 Let Ch∈Ch,Then AZI(Lh)≤AZI(Ch)≤AZI(Dh),where Lhis the linear hexagonal chain with h hexagons and Dh∈Dh.

    Proof Since 0 =p(Lh)≤p(Ch),0 =q(Lh)≤q(Ch),and AZI(Ch)is monotonously increasing in p(Ch)or q(Ch)in Eq.(2),then AZI(Lh)≤AZI(Ch).

    For any Dh∈Dh,if h is even (respectively odd),thenFrom Eq.(2),we have

    Since a branched hexagon (respectively kink)of Chcorresponds to a vertex of degree 3 (respectively degree 2)in the dualist graph D(Ch)of Chand note that a vertex of degree 2 in D(Ch)not necessarily corresponding to a kink of Ch,2p(Ch)+3q(Ch)+ (h - p(Ch)- q(Ch))≤2(h -1),so p(Ch)+ 2q(Ch)≤h -2.It follows thatFrom Eq.(2),we have

    Therefore,Theorem 2 holds.

    2 Lower Bound for Augmented Zagreb Index of Molecular Trees with Fixed Numbers of Pendent Vertices

    For a molecular tree T with n vertices,denoted by ni,the number of vertices in T with degree i for i=1,2,3,4,and xijthe number of edges of T connecting vertices of degree i and j are denoted,where 1≤i≤j≤4 and n≥3.Then

    From Eq.(1),we have

    Let T be a molecular tree of order n with n1pendent vertices.If n1=2,3,4,we can easily check that the minimum AZI index is equal to 8n -8,8n -and 8n -for n≥n1+2,respectively.Next,we consider the case of n1≥5.

    Let ETn,n1be the set of molecular trees which satisfies x14=The structures of trees in ETn,n1are complicated (see Ref.[8]).

    Theorem 3 Let T be a molecular tree with n vertices,and n1(n1≥5)pendent vertices.Then

    with equality if and only if T ∈ETn,n1.

    Proof Since T is a molecular tree,Eq.(3)holds.Use the abbreviations as follows

    It follows that

    This implies that

    Thus,

    Substituting them back into Eq.(4),one can get

    Note that AZI(T)has positive coefficients for x12,x13,x33,x34,and x44.Thus

    with equality if and only if the parameters x12,x13,x33,x34and x44are all equal to zero,or equivalently,x14= n1,x22= n -i.e.,T ∈ETn,n1.

    3 A New Proof of a Theorem in Ref.[10]

    In this section,by using the convexity of function f(x)=x3,we give a new proof of a known Theorem in Ref.[10]on augmented Zagreb index.Sometimes,this method(using the convexity of function f(x)= x3)can be used to obtain some lower bounds on augmented Zagreb index and it is easier than using graph parameters.

    Lemma 1[9]Let f(x,y)=t hen

    2)f(2,y)=2 for y≥2.

    3)If x≥3 is fixed,then f(x,y)is increasing for y≥2.

    Let Φ1be the class of connected graphs whose pendent vertices are adjacent to the maximum degree vertices and all other edges have at least one end-vertex of degree 2.Let Φ2be the class of connected graphs whose vertices are of degree at least two and all the edges have at least one end-vertex of degree 2.Theorem 4[10]Let G be a connected graph of order n≥3 with m edges,p pendent vertices,maximum degree Δ,and minimum non-pendent vertex degree δ1.Then

    with equality if and only if G is isomorphic to a regular graph or G is isomorphic to a (1,Δ)-biregular graph or G∈Φ1or G∈Φ2.

    Now,we give another proof of theTheorem 4 (the Theorem 2.8 in Ref.[10]).

    Proof From Eq.(1),we have

    Since f(x)=x3is a strictly convex function for x >0,then

    and

    Thus,by above inequalities and Lemma 1,we get

    and

    Combining formulas(6)-(8),the result of formula(5)is obtained.

    Now suppose that equality holds in formula (5).Then all inequalities in the above argument must be equalities.Fromin formula (7),we get d(v)= Δ for uv ∈E(G),d(u)= 1.Now consider the following two cases.

    Case1.δ1= 2.From formula (8),we get d(u)= 2,d(v)≥2 for uv∈E(G),d(u),d(v)≠1.

    If p >0,then G∈Φ1.If p =0,then G∈Φ2.

    Case2.δ1>2.From formula (8),we get d(u)=d(v)=δ1,for uv∈E(G),d(u),d(v)≠1.

    If p >0,since G is connected,then Δ =δ1,that is,G is isomorphic to a (1,Δ)-biregular graph.If p =0,then G is isomorphic to a regular graph.

    Conversely,it is easy to see that the equality holds in formula(5)for regular graph or (1,Δ)-biregular graph or Φ1or Φ2.

    Hence the Theorem 4 holds.

    4 Conclusions

    So far,in the field of chemical graph theory,there have been only a few research results about the augmented Zagreb index since its formula is more complicated than most of topological indices.In this paper,we obtained the formula which can be used to compute the augmented Zagreb index of catacondensed hexagonal systems with p kinks and q branched hexagons,and characterized Lhhaving minimal augmented Zagreb index and Dhhaving maximal augmented Zagreb index.We also present the lower bound for augmented Zagreb index of molecular trees with fixed numbers of pendent vertices and characterized the extremal trees.Then by using the convexity of function f(x)=x3,we give a new proof of a known Theorem in Ref.[10]on augmented Zagreb index.Sometimes,this method(using the convexity of function f(x)= x3)can be used to obtain some lower bounds on augmented Zagreb index and it is easier than using graph parameters.

    [1]Todeschini R,Consonni V.Handbook of Molecular Descriptors[M].Weinheim:Wiley-VCH,2000.

    [2]Deogun J S,Guo X F,Wei W D,et al.Catacondensed Hexagonal Systems with Smaller Numbers of Kekulé Structures[J].Journal of Molecular Structure,2003,639(1/2/3):101-108.

    [3]Chen J S,Guo X F.Extreme Atom-bond Connectivity Index of Graphs[J].Match Communications in Mathematical and in Computer Chemistry,2011,658:713-722.

    [4]Furtula B,Graovac A,Vukicˇevic' D.Augmented Zagreb Index[J].Journal of Mathematical Chemistry,2010,48(2):370-380.

    [5]Hosseini S A,Ahmadi M B,Gutman I.Kragujevac Trees with Minimal Atom-bond Connectivity Index [J ].Match Communications in Mathematical and in Computer Chemistry,2014,71:5-20.

    [6]Lin W,Gao T,Chen Q,Lin X.On the Minimal ABC Index of Connected Graphs with Given Degree Sequence[J].Match Communications in Mathematical and in Computer Chemistry,2013,69:571-578.

    [7]Dimitrov D.Efficient Computation of Trees with Minimal Atombond Connectivity Index [J].Applied Mathematics and Computation,2013,224:663-670.

    [8]Xing R D,Zhou B,Du Z B.Further Results on Atom-Bond Connectivity Index of Trees[J].Discrete Applied Mathematics,2010,158(14):1536-1545.

    [9]Huang Y F,Liu B L,Gan L.Augmented Zagreb Index of Connected Graphs[J].Match Communications in Mathematical and in Computer Chemistry,2012,67:483-494.

    [10]Wang D,Huang Y F,Liu B L.Bounds on Augmented Zagreb Index[J].Match Communications in Mathematical and in Computer Chemistry,2012,68:209-216.

    [11]Ali A,Raza Z,Bhatti A A.On the Augmented Zagreb Index[J].arXiv:1402.3078v1[math.CO],2014.

    [12]Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:Elsvier,1976.

    国产色婷婷99| 日本黄色片子视频| 青春草国产在线视频| 一本大道久久a久久精品| 国产高清有码在线观看视频| 黑人猛操日本美女一级片| 丰满人妻一区二区三区视频av| av福利片在线| 日韩中字成人| 26uuu在线亚洲综合色| 黄片无遮挡物在线观看| 日产精品乱码卡一卡2卡三| 亚洲一区二区三区欧美精品| 伊人亚洲综合成人网| 你懂的网址亚洲精品在线观看| 国产精品久久久久久久电影| 99视频精品全部免费 在线| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜添av毛片| 精品少妇黑人巨大在线播放| 久久久久国产网址| 在线播放无遮挡| 国产精品不卡视频一区二区| 国产探花极品一区二区| 国产成人精品福利久久| 国产成人一区二区在线| 97超碰精品成人国产| 人人妻人人看人人澡| 日韩成人伦理影院| 不卡视频在线观看欧美| 日韩熟女老妇一区二区性免费视频| 性高湖久久久久久久久免费观看| 波野结衣二区三区在线| 18+在线观看网站| 国产伦在线观看视频一区| 亚洲,欧美,日韩| 午夜福利,免费看| kizo精华| 亚洲国产精品999| 国产伦理片在线播放av一区| 人妻一区二区av| 国产一区二区三区综合在线观看 | 久久久午夜欧美精品| 日韩一本色道免费dvd| 亚洲真实伦在线观看| 亚洲激情五月婷婷啪啪| 日韩中字成人| 一本色道久久久久久精品综合| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| a级毛片免费高清观看在线播放| 久久ye,这里只有精品| 国产高清国产精品国产三级| 国产视频首页在线观看| 亚洲av电影在线观看一区二区三区| 9色porny在线观看| 美女xxoo啪啪120秒动态图| 有码 亚洲区| 精品久久国产蜜桃| 国产精品欧美亚洲77777| 日本猛色少妇xxxxx猛交久久| 国产亚洲最大av| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品,欧美精品| 成人黄色视频免费在线看| 午夜av观看不卡| 一区二区av电影网| 国产成人免费观看mmmm| 成人国产av品久久久| 欧美另类一区| 夫妻午夜视频| 国产高清国产精品国产三级| 国产黄片视频在线免费观看| 一区二区三区免费毛片| av国产久精品久网站免费入址| 一本大道久久a久久精品| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 一级黄片播放器| 免费看av在线观看网站| 狠狠精品人妻久久久久久综合| 亚洲国产精品国产精品| 国产日韩欧美亚洲二区| 国产色婷婷99| 亚洲久久久国产精品| 精品国产一区二区三区久久久樱花| av.在线天堂| 亚洲精品日韩在线中文字幕| 只有这里有精品99| 精华霜和精华液先用哪个| 精品久久久久久电影网| 少妇的逼好多水| 青青草视频在线视频观看| 热re99久久国产66热| 2021少妇久久久久久久久久久| 免费黄色在线免费观看| 亚洲精品中文字幕在线视频 | 在线精品无人区一区二区三| h日本视频在线播放| 中文字幕人妻丝袜制服| 国产极品天堂在线| 日韩不卡一区二区三区视频在线| 我的女老师完整版在线观看| 亚洲欧洲日产国产| 久久 成人 亚洲| 欧美精品亚洲一区二区| 亚洲不卡免费看| 国产欧美日韩精品一区二区| 在线精品无人区一区二区三| 久久女婷五月综合色啪小说| 美女大奶头黄色视频| 国产精品福利在线免费观看| 少妇人妻 视频| 日韩av免费高清视频| 国产精品女同一区二区软件| 一级毛片我不卡| 熟女人妻精品中文字幕| 久久久久久久大尺度免费视频| 国产一区有黄有色的免费视频| 国产在线男女| 女性生殖器流出的白浆| 国产成人精品久久久久久| 2022亚洲国产成人精品| 色婷婷av一区二区三区视频| 一级毛片电影观看| av国产精品久久久久影院| 亚洲欧美清纯卡通| 建设人人有责人人尽责人人享有的| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 伦精品一区二区三区| 免费观看av网站的网址| 男人舔奶头视频| 日本wwww免费看| 男女国产视频网站| 嫩草影院入口| 亚洲国产精品成人久久小说| a级毛色黄片| 欧美 日韩 精品 国产| 国产在线一区二区三区精| 精品一区二区三卡| 麻豆成人av视频| 99精国产麻豆久久婷婷| 国产精品国产三级专区第一集| 免费播放大片免费观看视频在线观看| 中文精品一卡2卡3卡4更新| 少妇裸体淫交视频免费看高清| 日韩欧美精品免费久久| 欧美3d第一页| 黄色欧美视频在线观看| 99久久精品一区二区三区| 伦精品一区二区三区| 两个人的视频大全免费| 国产熟女午夜一区二区三区 | 欧美日韩精品成人综合77777| 欧美精品国产亚洲| 在线观看美女被高潮喷水网站| 91精品伊人久久大香线蕉| 美女视频免费永久观看网站| 91精品国产九色| 青春草视频在线免费观看| 国产伦在线观看视频一区| 女人久久www免费人成看片| 日本黄大片高清| 26uuu在线亚洲综合色| 男女边吃奶边做爰视频| 久久97久久精品| 亚洲精品日本国产第一区| 三上悠亚av全集在线观看 | 免费播放大片免费观看视频在线观看| 久久久国产一区二区| 校园人妻丝袜中文字幕| 下体分泌物呈黄色| 高清毛片免费看| 国产欧美日韩精品一区二区| 精品酒店卫生间| 天天躁夜夜躁狠狠久久av| 国产欧美日韩综合在线一区二区 | 国产亚洲精品久久久com| 国产精品伦人一区二区| av视频免费观看在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av中文av极速乱| 女人精品久久久久毛片| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 欧美丝袜亚洲另类| 99热这里只有是精品50| 亚洲在久久综合| 在线观看av片永久免费下载| 最黄视频免费看| 国产精品女同一区二区软件| 国产在视频线精品| 国产日韩欧美视频二区| 99热这里只有是精品50| 亚洲欧美日韩东京热| 伊人亚洲综合成人网| 少妇人妻 视频| 日韩强制内射视频| 在线 av 中文字幕| 日日啪夜夜爽| 中文资源天堂在线| 亚洲欧美精品自产自拍| 免费高清在线观看视频在线观看| xxx大片免费视频| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 久久这里有精品视频免费| 欧美区成人在线视频| 这个男人来自地球电影免费观看 | 伊人久久精品亚洲午夜| 亚洲欧美精品自产自拍| 搡女人真爽免费视频火全软件| 国产亚洲最大av| 日韩亚洲欧美综合| 久久久久久久国产电影| 日韩在线高清观看一区二区三区| 一级毛片黄色毛片免费观看视频| 精品久久久久久久久亚洲| 9色porny在线观看| 人妻少妇偷人精品九色| 中文字幕人妻熟人妻熟丝袜美| 国产伦理片在线播放av一区| 国产免费一级a男人的天堂| 最新中文字幕久久久久| 成人免费观看视频高清| 男人添女人高潮全过程视频| 少妇高潮的动态图| 亚洲av欧美aⅴ国产| 国产极品粉嫩免费观看在线 | 日日摸夜夜添夜夜添av毛片| 高清在线视频一区二区三区| 丁香六月天网| 欧美+日韩+精品| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 韩国av在线不卡| 人妻一区二区av| 亚洲天堂av无毛| 一二三四中文在线观看免费高清| 国产精品久久久久久久久免| 午夜影院在线不卡| 尾随美女入室| 交换朋友夫妻互换小说| 日韩av免费高清视频| 亚洲av综合色区一区| 国产欧美日韩一区二区三区在线 | 亚洲美女搞黄在线观看| 久久av网站| 日韩av不卡免费在线播放| 久久久久视频综合| 精品久久久精品久久久| av线在线观看网站| 人人妻人人澡人人爽人人夜夜| 深夜a级毛片| 偷拍熟女少妇极品色| 婷婷色av中文字幕| 成人毛片60女人毛片免费| 国产免费视频播放在线视频| 十八禁网站网址无遮挡 | 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 亚洲av成人精品一区久久| 婷婷色综合大香蕉| 国产视频内射| 日韩av在线免费看完整版不卡| 插阴视频在线观看视频| 黄色日韩在线| av国产精品久久久久影院| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 18禁动态无遮挡网站| 午夜日本视频在线| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费高清a一片| 国产精品不卡视频一区二区| 97在线视频观看| 精品人妻一区二区三区麻豆| 少妇人妻 视频| 色视频www国产| 交换朋友夫妻互换小说| 国产精品嫩草影院av在线观看| 亚洲经典国产精华液单| 啦啦啦视频在线资源免费观看| 日韩欧美一区视频在线观看 | 久久久欧美国产精品| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 日本午夜av视频| 一级黄片播放器| 高清黄色对白视频在线免费看 | 精品人妻偷拍中文字幕| 麻豆成人午夜福利视频| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 国产亚洲欧美精品永久| 少妇人妻精品综合一区二区| 欧美精品高潮呻吟av久久| 亚洲欧美成人精品一区二区| av网站免费在线观看视频| 一本色道久久久久久精品综合| 亚洲国产精品一区三区| 成年人午夜在线观看视频| 99热这里只有精品一区| 国产色爽女视频免费观看| 国产在线视频一区二区| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 一级毛片电影观看| 能在线免费看毛片的网站| 亚洲精品456在线播放app| 国产成人精品一,二区| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区 | 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| 777米奇影视久久| 99热全是精品| 亚洲中文av在线| 一级毛片 在线播放| 日本爱情动作片www.在线观看| 亚洲精品中文字幕在线视频 | 大香蕉久久网| 国产精品国产三级专区第一集| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av成人精品| 欧美97在线视频| 汤姆久久久久久久影院中文字幕| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av综合色区一区| 女性生殖器流出的白浆| 久久久久久久久大av| 日韩一区二区三区影片| 男人舔奶头视频| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 欧美 亚洲 国产 日韩一| 夫妻性生交免费视频一级片| 六月丁香七月| av天堂中文字幕网| 一区二区三区乱码不卡18| 免费av不卡在线播放| 在线观看免费高清a一片| 成年人免费黄色播放视频 | 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区在线不卡| 日韩成人伦理影院| 观看美女的网站| 色5月婷婷丁香| 99九九线精品视频在线观看视频| 欧美激情国产日韩精品一区| 免费观看性生交大片5| 国产伦在线观看视频一区| 一级二级三级毛片免费看| 少妇的逼水好多| 激情五月婷婷亚洲| kizo精华| 日本av手机在线免费观看| 久久av网站| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 久久ye,这里只有精品| 高清毛片免费看| 男女无遮挡免费网站观看| 纯流量卡能插随身wifi吗| 人妻一区二区av| 各种免费的搞黄视频| 在线观看免费高清a一片| 晚上一个人看的免费电影| 国产毛片在线视频| 欧美精品一区二区大全| 亚洲综合色惰| 国产av国产精品国产| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| 纵有疾风起免费观看全集完整版| 亚洲av成人精品一二三区| 中国国产av一级| 天堂俺去俺来也www色官网| 99久久精品一区二区三区| 老司机影院毛片| 黄片无遮挡物在线观看| 九色成人免费人妻av| 国模一区二区三区四区视频| 国产91av在线免费观看| 午夜福利,免费看| 2022亚洲国产成人精品| 欧美另类一区| 成人无遮挡网站| 欧美3d第一页| h视频一区二区三区| 亚洲天堂av无毛| 国产美女午夜福利| 免费少妇av软件| 亚洲av二区三区四区| 日韩av免费高清视频| 一个人免费看片子| 亚洲欧洲国产日韩| 极品教师在线视频| 亚洲av欧美aⅴ国产| 国产免费视频播放在线视频| 国产伦在线观看视频一区| 精品久久国产蜜桃| 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| 狂野欧美白嫩少妇大欣赏| 高清午夜精品一区二区三区| 青春草亚洲视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩综合在线一区二区 | 亚洲精品中文字幕在线视频 | 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| 精品一区二区免费观看| 免费观看的影片在线观看| 亚洲av成人精品一区久久| av网站免费在线观看视频| av天堂久久9| 97精品久久久久久久久久精品| 尾随美女入室| 精品久久久久久久久av| 高清毛片免费看| 最新的欧美精品一区二区| 成人漫画全彩无遮挡| 建设人人有责人人尽责人人享有的| 永久网站在线| 日韩欧美精品免费久久| 久久久国产精品麻豆| 国产黄片视频在线免费观看| 亚洲无线观看免费| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区三区久久久樱花| 欧美精品国产亚洲| 亚洲精品第二区| 久久鲁丝午夜福利片| 18禁裸乳无遮挡动漫免费视频| 狠狠精品人妻久久久久久综合| 亚洲天堂av无毛| 亚洲欧美中文字幕日韩二区| 国产精品.久久久| 亚洲欧美成人精品一区二区| 亚洲欧美成人综合另类久久久| 久久99热6这里只有精品| 边亲边吃奶的免费视频| 性色avwww在线观看| 亚洲在久久综合| 久久影院123| 久久久欧美国产精品| 色视频在线一区二区三区| 波野结衣二区三区在线| 丝袜脚勾引网站| 91aial.com中文字幕在线观看| 亚洲不卡免费看| 黑人高潮一二区| 久久久欧美国产精品| 亚洲色图综合在线观看| 午夜福利在线观看免费完整高清在| 少妇 在线观看| 欧美日韩精品成人综合77777| 中文字幕人妻熟人妻熟丝袜美| 日本猛色少妇xxxxx猛交久久| 人人妻人人爽人人添夜夜欢视频 | 久久av网站| 热re99久久国产66热| 国产精品一区二区性色av| 韩国高清视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 夜夜爽夜夜爽视频| 观看美女的网站| 99精国产麻豆久久婷婷| 免费黄色在线免费观看| 人人妻人人澡人人看| 成人综合一区亚洲| 午夜免费鲁丝| 亚洲电影在线观看av| 99热全是精品| 亚洲欧洲国产日韩| 国产欧美日韩精品一区二区| 久久97久久精品| 天堂中文最新版在线下载| a级毛色黄片| 日本wwww免费看| 久久精品熟女亚洲av麻豆精品| 国产综合精华液| 九九在线视频观看精品| 少妇熟女欧美另类| 亚洲伊人久久精品综合| 另类亚洲欧美激情| 卡戴珊不雅视频在线播放| 寂寞人妻少妇视频99o| 日本黄色片子视频| 日韩大片免费观看网站| 蜜桃在线观看..| 大片免费播放器 马上看| 久久99一区二区三区| 久久精品久久久久久久性| 99热网站在线观看| 欧美高清成人免费视频www| 国产成人免费无遮挡视频| 亚洲av日韩在线播放| 亚洲成人一二三区av| 十分钟在线观看高清视频www | 大片电影免费在线观看免费| 国产在线视频一区二区| 国产老妇伦熟女老妇高清| 久久国产乱子免费精品| 一个人免费看片子| 欧美日韩视频高清一区二区三区二| 黑丝袜美女国产一区| 亚洲人与动物交配视频| 日本wwww免费看| 午夜视频国产福利| 精品少妇内射三级| 男人舔奶头视频| 久久精品国产a三级三级三级| 免费av中文字幕在线| 成人免费观看视频高清| 日韩 亚洲 欧美在线| 搡女人真爽免费视频火全软件| 日韩一区二区视频免费看| 一二三四中文在线观看免费高清| av网站免费在线观看视频| 久久久久久久国产电影| 夫妻午夜视频| 免费av不卡在线播放| 99热6这里只有精品| 九九久久精品国产亚洲av麻豆| 亚洲人成网站在线观看播放| 好男人视频免费观看在线| 亚洲av国产av综合av卡| videos熟女内射| 18禁在线播放成人免费| 久久人妻熟女aⅴ| 一级av片app| 中文精品一卡2卡3卡4更新| 国产在线视频一区二区| 亚洲国产色片| 亚洲欧美成人综合另类久久久| 午夜视频国产福利| 午夜91福利影院| 在线观看免费日韩欧美大片 | 亚洲国产精品一区二区三区在线| 欧美 日韩 精品 国产| 九色成人免费人妻av| 国产精品一区二区三区四区免费观看| 乱系列少妇在线播放| 亚洲美女黄色视频免费看| 免费黄频网站在线观看国产| 观看美女的网站| 国产免费一级a男人的天堂| 午夜精品国产一区二区电影| 一级毛片电影观看| 九九在线视频观看精品| 亚洲精品中文字幕在线视频 | av在线app专区| 一级毛片久久久久久久久女| 亚洲国产精品一区二区三区在线| 亚洲av不卡在线观看| 午夜久久久在线观看| 女性生殖器流出的白浆| 久久人人爽人人片av| 一本—道久久a久久精品蜜桃钙片| 在线精品无人区一区二区三| av女优亚洲男人天堂| 搡女人真爽免费视频火全软件| 国产精品人妻久久久久久| 丰满少妇做爰视频| 国产一区二区三区av在线| 久久狼人影院| 毛片一级片免费看久久久久| 免费高清在线观看视频在线观看| 在线观看一区二区三区激情| 最近中文字幕高清免费大全6| 22中文网久久字幕| 涩涩av久久男人的天堂| 嫩草影院新地址| 日韩人妻高清精品专区| 丁香六月天网| 久久青草综合色| 男女边摸边吃奶| 观看免费一级毛片| 高清不卡的av网站| 日日啪夜夜撸| 日韩视频在线欧美| 亚洲高清免费不卡视频| 亚洲欧美精品专区久久| 免费人成在线观看视频色| 国产免费一区二区三区四区乱码| 中文欧美无线码| 国产欧美日韩精品一区二区| 成人无遮挡网站| 亚洲精品日韩av片在线观看| 成人午夜精彩视频在线观看| 性色avwww在线观看| 五月伊人婷婷丁香| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频 | 国产精品偷伦视频观看了| 欧美97在线视频| videossex国产| av免费观看日本| 亚洲人成网站在线观看播放| 国产亚洲精品久久久com| 日韩不卡一区二区三区视频在线| 久久av网站|