• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Augmented Zagreb Index of Molecular Graphs

    2015-12-20 09:13:02DUJianwei杜建偉SHAOYanling邵燕靈SUNXiaoling孫曉玲

    DU Jian-wei (杜建偉) ,SHAO Yan-ling (邵燕靈),SUN Xiao-ling (孫曉玲)

    1 School of Science,North University of China,Taiyuan 030051,China

    2 School of Information and Communication Engineering,North University of China,Taiyuan 030051,China

    Introduction

    Molecular descriptors have found wide applications in QSPR/QSAR studies.Among them,topological indices have a prominent place[1].Topological indices are numbers associated with chemical structures derived from their hydrogen-depleted graphs as a tool for compact and effective description of structural formulas which are used to study and predict the structure-property correlations of organic compounds.

    Let G =(V(G),E(G))be a connected simple graph in which V(G)and E(G)are the vertex set and edge set of G,respectively.Let n= |V(G)| and m= |E(G)|.We use N(u)to denote the set of all neighbors of u∈V(G)in G,and d(u)= |N(u)| to denote the degree of u.A vertex u is called a pendent vertex if d(u)=1.A connected graph G is known as a molecular graph if its maximum degree is at most four.A connected graph G is called a tree if m = n -1.A hexagonal system is a finite connected plane graph with no cut vertex in which every interior region is surrounded by a regular hexagon of side length 1.Hexagonal systems are the natural graph representation of benzenoid hydrocarbons and have considerable importance in chemistry.A hexagonal system without internal vertex is called catacondensed hexagonal system[2-3].

    The augmented Zagreb index (AZI index for short)was firstly introduced by Furtula et al.in Ref.[4],which is defined to be

    It has been shown that this graph invariant is a valuable predictive index in the study of the heat of formation in octanes and heptanes[4],whose prediction power is better than atombond connectivity index (please refer to Refs.[3,5-8]for its research background).In Ref.[4],F(xiàn)urtula et al.obtained some tight upper and lower bounds for the AZI index of a chemical tree,and determined the trees of order n with minimal AZI index.Huang et al.[9]gave some attained upper and lower bounds on the AZI index and characterized the corresponding extremal graphs.Wang et al.[10]obtained some bounds on the AZI index of connected graphs by using different graph parameters, and characterized the corresponding graphs.Moreover,Ali et al.[11]proposed the tight upper bounds for AZI index of chemical bicyclic and unicyclic graphs and gave the Nordhaus-Gaddum-type result for AZI index.

    In this paper,we first characterize the catacondensed hexagonal systems with extreme augmented Zagreb index in Section 1.In Section 2,the lower bound for augmented Zagreb index of molecular trees with fixed numbers of pendent vertices is presented,and the extremal trees are characterized.In Section 3,another proof of a known theorem in Ref.[10]on augmented Zagreb index is given.Our other notations are standard and taken mainly from Ref.[12].

    1 Extreme Augmented Zagreb Index of Catacondensed Hexagonal Systems

    Throughout this section,the following notations and terminology will be used.Let Chbe the set of catacondensed hexagonal systems with h hexagons.For Ch∈Ch,a hexagon s of Chis called a kink of Chif s has exactly two consecutive vertices with degree 2 in Ch,and called a branched hexagon if s has three neighboring hexagons.For a hexagonal system Ch∈Ch,its dualist graph D(Ch)is the graph whose vertex set is the set of hexagons of Ch,and two vertices of which are adjacent if the corresponding hexagons have a common edge.Clearly the dualist graph of a catacondensed hexagonal system is a tree with the maximum degree at most 3.A kink (respectively branched hexagon) of Chcorresponds to a vertex of degree 2(respectively degree 3)in the dualist graph D(Ch)of Ch.Let p(Ch) (respectively q (Ch)) be the number of kinks(respectively branched hexagons)in Ch.

    Theorem 1 Let Ch∈Ch,then

    Proof We prove the result by induction on h.

    If h=1,2,then p(C1)=q(C1)=0.It is easy to check that Eq.(2)holds for h=1,2.

    If h = 3,then q (C3)= 0.Suppose p (C3)= 0(respectively p(C3)= 1),thenso Eq.(2)holds for h=3.

    Suppose that h≥4 and Eq.(2)holds for all Ch-1∈Ch-1,that is,Let Ch∈Ch,which is obtained by gluing a new hexagon shto some Ch-1.Without loss of generality,suppose the hexagon shis adjacent to some hexagon skin Ch-1.Now in Chthere exist the following three cases.

    Case 1.skis a branched hexagon of Ch.Then p(Ch)= p(Ch-1)- 1 and q(Ch)= q(Ch-1)+1.By the induction hypothesis and direct computation,it can be shown that

    Case 2.skis a kink of Ch.Then p(Ch)=p(Ch-1)+1 and q(Ch)= q(Ch-1).By the induction hypothesis and direct computation,it can be shown that

    Case 3.Otherwise,p(Ch)= p(Ch-1)and q(Ch)=q(Ch-1).By the induction hypothesis and direct computation,it can be shown that

    Therefore,Theorem 1 holds.

    The linear hexagonal chain Lhwith h hexagons is the catacondensed hexagonal systems without kink and branched hexagon.Let Dhbe the set of the catacondensed hexagonal systems with h hexagons for which the dualist graph of any hexagonal systems Ch∈Dhhas at most one vertex of degree 2,and the vertex of degree 2 corresponds to a kink of Ch.It is easy to see that any hexagonal system in Dhhas exactlybranched hexagons.

    Theorem 2 Let Ch∈Ch,Then AZI(Lh)≤AZI(Ch)≤AZI(Dh),where Lhis the linear hexagonal chain with h hexagons and Dh∈Dh.

    Proof Since 0 =p(Lh)≤p(Ch),0 =q(Lh)≤q(Ch),and AZI(Ch)is monotonously increasing in p(Ch)or q(Ch)in Eq.(2),then AZI(Lh)≤AZI(Ch).

    For any Dh∈Dh,if h is even (respectively odd),thenFrom Eq.(2),we have

    Since a branched hexagon (respectively kink)of Chcorresponds to a vertex of degree 3 (respectively degree 2)in the dualist graph D(Ch)of Chand note that a vertex of degree 2 in D(Ch)not necessarily corresponding to a kink of Ch,2p(Ch)+3q(Ch)+ (h - p(Ch)- q(Ch))≤2(h -1),so p(Ch)+ 2q(Ch)≤h -2.It follows thatFrom Eq.(2),we have

    Therefore,Theorem 2 holds.

    2 Lower Bound for Augmented Zagreb Index of Molecular Trees with Fixed Numbers of Pendent Vertices

    For a molecular tree T with n vertices,denoted by ni,the number of vertices in T with degree i for i=1,2,3,4,and xijthe number of edges of T connecting vertices of degree i and j are denoted,where 1≤i≤j≤4 and n≥3.Then

    From Eq.(1),we have

    Let T be a molecular tree of order n with n1pendent vertices.If n1=2,3,4,we can easily check that the minimum AZI index is equal to 8n -8,8n -and 8n -for n≥n1+2,respectively.Next,we consider the case of n1≥5.

    Let ETn,n1be the set of molecular trees which satisfies x14=The structures of trees in ETn,n1are complicated (see Ref.[8]).

    Theorem 3 Let T be a molecular tree with n vertices,and n1(n1≥5)pendent vertices.Then

    with equality if and only if T ∈ETn,n1.

    Proof Since T is a molecular tree,Eq.(3)holds.Use the abbreviations as follows

    It follows that

    This implies that

    Thus,

    Substituting them back into Eq.(4),one can get

    Note that AZI(T)has positive coefficients for x12,x13,x33,x34,and x44.Thus

    with equality if and only if the parameters x12,x13,x33,x34and x44are all equal to zero,or equivalently,x14= n1,x22= n -i.e.,T ∈ETn,n1.

    3 A New Proof of a Theorem in Ref.[10]

    In this section,by using the convexity of function f(x)=x3,we give a new proof of a known Theorem in Ref.[10]on augmented Zagreb index.Sometimes,this method(using the convexity of function f(x)= x3)can be used to obtain some lower bounds on augmented Zagreb index and it is easier than using graph parameters.

    Lemma 1[9]Let f(x,y)=t hen

    2)f(2,y)=2 for y≥2.

    3)If x≥3 is fixed,then f(x,y)is increasing for y≥2.

    Let Φ1be the class of connected graphs whose pendent vertices are adjacent to the maximum degree vertices and all other edges have at least one end-vertex of degree 2.Let Φ2be the class of connected graphs whose vertices are of degree at least two and all the edges have at least one end-vertex of degree 2.Theorem 4[10]Let G be a connected graph of order n≥3 with m edges,p pendent vertices,maximum degree Δ,and minimum non-pendent vertex degree δ1.Then

    with equality if and only if G is isomorphic to a regular graph or G is isomorphic to a (1,Δ)-biregular graph or G∈Φ1or G∈Φ2.

    Now,we give another proof of theTheorem 4 (the Theorem 2.8 in Ref.[10]).

    Proof From Eq.(1),we have

    Since f(x)=x3is a strictly convex function for x >0,then

    and

    Thus,by above inequalities and Lemma 1,we get

    and

    Combining formulas(6)-(8),the result of formula(5)is obtained.

    Now suppose that equality holds in formula (5).Then all inequalities in the above argument must be equalities.Fromin formula (7),we get d(v)= Δ for uv ∈E(G),d(u)= 1.Now consider the following two cases.

    Case1.δ1= 2.From formula (8),we get d(u)= 2,d(v)≥2 for uv∈E(G),d(u),d(v)≠1.

    If p >0,then G∈Φ1.If p =0,then G∈Φ2.

    Case2.δ1>2.From formula (8),we get d(u)=d(v)=δ1,for uv∈E(G),d(u),d(v)≠1.

    If p >0,since G is connected,then Δ =δ1,that is,G is isomorphic to a (1,Δ)-biregular graph.If p =0,then G is isomorphic to a regular graph.

    Conversely,it is easy to see that the equality holds in formula(5)for regular graph or (1,Δ)-biregular graph or Φ1or Φ2.

    Hence the Theorem 4 holds.

    4 Conclusions

    So far,in the field of chemical graph theory,there have been only a few research results about the augmented Zagreb index since its formula is more complicated than most of topological indices.In this paper,we obtained the formula which can be used to compute the augmented Zagreb index of catacondensed hexagonal systems with p kinks and q branched hexagons,and characterized Lhhaving minimal augmented Zagreb index and Dhhaving maximal augmented Zagreb index.We also present the lower bound for augmented Zagreb index of molecular trees with fixed numbers of pendent vertices and characterized the extremal trees.Then by using the convexity of function f(x)=x3,we give a new proof of a known Theorem in Ref.[10]on augmented Zagreb index.Sometimes,this method(using the convexity of function f(x)= x3)can be used to obtain some lower bounds on augmented Zagreb index and it is easier than using graph parameters.

    [1]Todeschini R,Consonni V.Handbook of Molecular Descriptors[M].Weinheim:Wiley-VCH,2000.

    [2]Deogun J S,Guo X F,Wei W D,et al.Catacondensed Hexagonal Systems with Smaller Numbers of Kekulé Structures[J].Journal of Molecular Structure,2003,639(1/2/3):101-108.

    [3]Chen J S,Guo X F.Extreme Atom-bond Connectivity Index of Graphs[J].Match Communications in Mathematical and in Computer Chemistry,2011,658:713-722.

    [4]Furtula B,Graovac A,Vukicˇevic' D.Augmented Zagreb Index[J].Journal of Mathematical Chemistry,2010,48(2):370-380.

    [5]Hosseini S A,Ahmadi M B,Gutman I.Kragujevac Trees with Minimal Atom-bond Connectivity Index [J ].Match Communications in Mathematical and in Computer Chemistry,2014,71:5-20.

    [6]Lin W,Gao T,Chen Q,Lin X.On the Minimal ABC Index of Connected Graphs with Given Degree Sequence[J].Match Communications in Mathematical and in Computer Chemistry,2013,69:571-578.

    [7]Dimitrov D.Efficient Computation of Trees with Minimal Atombond Connectivity Index [J].Applied Mathematics and Computation,2013,224:663-670.

    [8]Xing R D,Zhou B,Du Z B.Further Results on Atom-Bond Connectivity Index of Trees[J].Discrete Applied Mathematics,2010,158(14):1536-1545.

    [9]Huang Y F,Liu B L,Gan L.Augmented Zagreb Index of Connected Graphs[J].Match Communications in Mathematical and in Computer Chemistry,2012,67:483-494.

    [10]Wang D,Huang Y F,Liu B L.Bounds on Augmented Zagreb Index[J].Match Communications in Mathematical and in Computer Chemistry,2012,68:209-216.

    [11]Ali A,Raza Z,Bhatti A A.On the Augmented Zagreb Index[J].arXiv:1402.3078v1[math.CO],2014.

    [12]Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:Elsvier,1976.

    亚洲国产欧美日韩在线播放| 久久九九热精品免费| 十八禁高潮呻吟视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品av麻豆狂野| 色综合欧美亚洲国产小说| 午夜老司机福利片| 亚洲人成电影免费在线| 亚洲一区二区三区欧美精品| 国产三级黄色录像| 深夜精品福利| 国产精品国产av在线观看| 涩涩av久久男人的天堂| 久久精品国产a三级三级三级| 成年版毛片免费区| 美国免费a级毛片| 免费一级毛片在线播放高清视频 | 不卡av一区二区三区| 热re99久久国产66热| 两个人看的免费小视频| 亚洲国产中文字幕在线视频| 免费不卡黄色视频| 一级作爱视频免费观看| 免费一级毛片在线播放高清视频 | 国产av精品麻豆| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区免费欧美| a级毛片在线看网站| 国产xxxxx性猛交| av电影中文网址| 日韩三级视频一区二区三区| 久久精品成人免费网站| 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 美女午夜性视频免费| 日本欧美视频一区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久成人av| 黑人操中国人逼视频| 色在线成人网| 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 妹子高潮喷水视频| 人妻丰满熟妇av一区二区三区 | 黑人欧美特级aaaaaa片| 精品欧美一区二区三区在线| 99精品久久久久人妻精品| 最近最新免费中文字幕在线| 国产精品成人在线| 一进一出抽搐动态| 操出白浆在线播放| aaaaa片日本免费| 极品人妻少妇av视频| 国产成人一区二区三区免费视频网站| 亚洲人成伊人成综合网2020| 免费在线观看亚洲国产| 首页视频小说图片口味搜索| 熟女少妇亚洲综合色aaa.| 国产成人免费观看mmmm| 欧美人与性动交α欧美精品济南到| 高清黄色对白视频在线免费看| 美女高潮喷水抽搐中文字幕| 亚洲第一av免费看| 黄网站色视频无遮挡免费观看| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美软件| 亚洲午夜理论影院| 成人精品一区二区免费| 免费观看精品视频网站| 人妻丰满熟妇av一区二区三区 | 成年版毛片免费区| 国产精品99久久99久久久不卡| 中文字幕精品免费在线观看视频| 9热在线视频观看99| av天堂在线播放| 亚洲av美国av| 中文欧美无线码| 免费久久久久久久精品成人欧美视频| 9色porny在线观看| 伦理电影免费视频| 成人18禁高潮啪啪吃奶动态图| 搡老乐熟女国产| 三级毛片av免费| 国产欧美日韩一区二区精品| 欧美日韩成人在线一区二区| 露出奶头的视频| 亚洲视频免费观看视频| 丰满的人妻完整版| av视频免费观看在线观看| 精品国产美女av久久久久小说| 在线永久观看黄色视频| 久久中文看片网| 日韩欧美三级三区| 人人妻人人爽人人添夜夜欢视频| 国产不卡av网站在线观看| av线在线观看网站| 精品一区二区三区视频在线观看免费 | 麻豆av在线久日| 嫁个100分男人电影在线观看| 一边摸一边抽搐一进一小说 | 亚洲国产中文字幕在线视频| 久久久国产欧美日韩av| 国产欧美日韩一区二区三区在线| 欧美日韩av久久| 亚洲三区欧美一区| 侵犯人妻中文字幕一二三四区| 亚洲中文日韩欧美视频| 精品欧美一区二区三区在线| 中亚洲国语对白在线视频| 人妻一区二区av| 国产在线一区二区三区精| 一二三四在线观看免费中文在| 中文字幕高清在线视频| 夜夜躁狠狠躁天天躁| 亚洲一区高清亚洲精品| 国产欧美日韩综合在线一区二区| 欧美日韩成人在线一区二区| 午夜精品久久久久久毛片777| 午夜老司机福利片| 女人精品久久久久毛片| 色尼玛亚洲综合影院| 人妻丰满熟妇av一区二区三区 | 一边摸一边抽搐一进一出视频| 国产亚洲av高清不卡| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区三区在线| 新久久久久国产一级毛片| 午夜福利欧美成人| 18禁裸乳无遮挡免费网站照片 | 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 日韩有码中文字幕| 国产免费男女视频| 他把我摸到了高潮在线观看| av福利片在线| 成人永久免费在线观看视频| 午夜福利欧美成人| 高清毛片免费观看视频网站 | 看黄色毛片网站| 亚洲伊人色综图| 免费高清在线观看日韩| 校园春色视频在线观看| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 色婷婷av一区二区三区视频| 成年人午夜在线观看视频| 啦啦啦免费观看视频1| 亚洲aⅴ乱码一区二区在线播放 | 日本黄色视频三级网站网址 | 中文字幕高清在线视频| 国产一区有黄有色的免费视频| 亚洲av第一区精品v没综合| av网站在线播放免费| 欧美不卡视频在线免费观看 | 狠狠婷婷综合久久久久久88av| 久久草成人影院| 激情在线观看视频在线高清 | 不卡av一区二区三区| 亚洲成人免费av在线播放| 91av网站免费观看| 亚洲国产中文字幕在线视频| 国产一区二区三区视频了| 99在线人妻在线中文字幕 | 亚洲精品久久成人aⅴ小说| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3 | 最近最新中文字幕大全免费视频| 婷婷丁香在线五月| 亚洲欧美精品综合一区二区三区| 高清视频免费观看一区二区| av片东京热男人的天堂| 美女国产高潮福利片在线看| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 日韩免费高清中文字幕av| av在线播放免费不卡| 国产精品久久视频播放| 亚洲精品久久午夜乱码| 亚洲第一av免费看| 波多野结衣一区麻豆| 免费一级毛片在线播放高清视频 | 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 免费不卡黄色视频| 亚洲专区国产一区二区| 国产精品九九99| 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 1024香蕉在线观看| 午夜精品在线福利| av网站在线播放免费| 日韩大码丰满熟妇| 欧美+亚洲+日韩+国产| 12—13女人毛片做爰片一| 日韩精品免费视频一区二区三区| 免费在线观看完整版高清| 51午夜福利影视在线观看| 黑丝袜美女国产一区| 老司机影院毛片| 久久国产精品大桥未久av| 99国产精品一区二区蜜桃av | 日日夜夜操网爽| 欧美日韩瑟瑟在线播放| 午夜视频精品福利| 国产又色又爽无遮挡免费看| 国产欧美亚洲国产| a级毛片在线看网站| 精品无人区乱码1区二区| 久久ye,这里只有精品| 一本大道久久a久久精品| 精品一区二区三区视频在线观看免费 | 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区在线不卡| 精品亚洲成国产av| 黄片大片在线免费观看| 香蕉久久夜色| 99国产精品免费福利视频| 久久这里只有精品19| 成年人午夜在线观看视频| 欧美老熟妇乱子伦牲交| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 黄色视频不卡| 国产男女内射视频| 日本五十路高清| 母亲3免费完整高清在线观看| 9色porny在线观看| 天天影视国产精品| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 久久精品国产清高在天天线| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| 久久久水蜜桃国产精品网| 国产单亲对白刺激| 国产成人欧美| 交换朋友夫妻互换小说| 丝袜美足系列| 人妻一区二区av| 成人国语在线视频| 日韩免费av在线播放| cao死你这个sao货| 亚洲国产欧美网| 国产av一区二区精品久久| 女警被强在线播放| 麻豆乱淫一区二区| а√天堂www在线а√下载 | 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 在线观看免费视频网站a站| 国产熟女午夜一区二区三区| av免费在线观看网站| 久久香蕉国产精品| 在线播放国产精品三级| 丁香欧美五月| 操出白浆在线播放| 国产亚洲一区二区精品| 亚洲aⅴ乱码一区二区在线播放 | 激情视频va一区二区三区| 亚洲精品美女久久av网站| 免费在线观看亚洲国产| 国产99白浆流出| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费 | 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9 | 91av网站免费观看| 成人18禁在线播放| 国产亚洲av高清不卡| 国产欧美亚洲国产| svipshipincom国产片| 国产精品综合久久久久久久免费 | 香蕉久久夜色| 精品视频人人做人人爽| 国产精品 国内视频| 国产精品电影一区二区三区 | 久久ye,这里只有精品| 99国产极品粉嫩在线观看| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| videosex国产| 精品久久久久久久久久免费视频 | 首页视频小说图片口味搜索| 下体分泌物呈黄色| 国产精品av久久久久免费| 久久ye,这里只有精品| 亚洲专区中文字幕在线| 黄片大片在线免费观看| 欧美不卡视频在线免费观看 | 嫁个100分男人电影在线观看| 亚洲一区二区三区不卡视频| 久久香蕉国产精品| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 日本vs欧美在线观看视频| 建设人人有责人人尽责人人享有的| 大陆偷拍与自拍| 人人澡人人妻人| 啦啦啦免费观看视频1| 久99久视频精品免费| 九色亚洲精品在线播放| 亚洲九九香蕉| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 成人av一区二区三区在线看| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 国产男女超爽视频在线观看| 国产99久久九九免费精品| 国产免费av片在线观看野外av| 超色免费av| 久久香蕉国产精品| 91在线观看av| 久久午夜综合久久蜜桃| 成人黄色视频免费在线看| 69精品国产乱码久久久| 精品久久久久久电影网| 成年女人毛片免费观看观看9 | а√天堂www在线а√下载 | 9色porny在线观看| 99国产精品99久久久久| 天天躁日日躁夜夜躁夜夜| 精品国产一区二区三区久久久樱花| 动漫黄色视频在线观看| 亚洲精品在线美女| 色在线成人网| 亚洲av美国av| 国产免费现黄频在线看| 午夜亚洲福利在线播放| 日本a在线网址| 在线观看午夜福利视频| 国产成人av教育| 午夜久久久在线观看| 中文字幕av电影在线播放| 新久久久久国产一级毛片| 18禁美女被吸乳视频| 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影| 99精品欧美一区二区三区四区| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 亚洲中文字幕日韩| 岛国毛片在线播放| 国产成人欧美在线观看 | 99国产综合亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 久久精品aⅴ一区二区三区四区| 亚洲欧美激情综合另类| 嫩草影视91久久| 嫁个100分男人电影在线观看| 色老头精品视频在线观看| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 国产91精品成人一区二区三区| 老司机福利观看| 老熟女久久久| 热99re8久久精品国产| 一区二区三区激情视频| 男女下面插进去视频免费观看| 韩国av一区二区三区四区| 在线天堂中文资源库| 国产人伦9x9x在线观看| 一级a爱片免费观看的视频| 亚洲欧美激情综合另类| av线在线观看网站| 国产欧美日韩综合在线一区二区| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 欧美乱色亚洲激情| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频 | 国产野战对白在线观看| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 国产精品成人在线| 国产免费男女视频| 美女高潮喷水抽搐中文字幕| 欧美精品高潮呻吟av久久| 久久香蕉国产精品| aaaaa片日本免费| 一区二区三区国产精品乱码| 国产野战对白在线观看| 免费人成视频x8x8入口观看| 美女午夜性视频免费| 欧美乱色亚洲激情| 村上凉子中文字幕在线| 日韩欧美免费精品| 欧美国产精品一级二级三级| 成人特级黄色片久久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品一区二区在线不卡| 国产精品98久久久久久宅男小说| 国产一卡二卡三卡精品| 在线观看日韩欧美| 亚洲av成人一区二区三| 久久国产精品男人的天堂亚洲| 天天操日日干夜夜撸| 久久热在线av| 亚洲精品在线观看二区| 大型av网站在线播放| 午夜老司机福利片| 久久 成人 亚洲| 热re99久久精品国产66热6| 国产xxxxx性猛交| 久久中文字幕人妻熟女| 18禁黄网站禁片午夜丰满| 人人澡人人妻人| 中文亚洲av片在线观看爽 | 欧美乱妇无乱码| 午夜久久久在线观看| 757午夜福利合集在线观看| 99re在线观看精品视频| 久久99一区二区三区| 91麻豆av在线| 手机成人av网站| 亚洲第一av免费看| 亚洲av熟女| 国产亚洲欧美98| 久久精品国产综合久久久| 精品电影一区二区在线| 欧美激情 高清一区二区三区| 免费看十八禁软件| av一本久久久久| 妹子高潮喷水视频| 亚洲aⅴ乱码一区二区在线播放 | 国产97色在线日韩免费| 亚洲精品av麻豆狂野| 国产不卡一卡二| 热99re8久久精品国产| 精品国产亚洲在线| 51午夜福利影视在线观看| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 狂野欧美激情性xxxx| 美女视频免费永久观看网站| 国产成人精品久久二区二区91| 色综合婷婷激情| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 国产亚洲精品第一综合不卡| 欧美色视频一区免费| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区三区久久久樱花| 精品国产乱子伦一区二区三区| 黄色女人牲交| 中出人妻视频一区二区| 天天躁夜夜躁狠狠躁躁| 后天国语完整版免费观看| 少妇 在线观看| 亚洲av欧美aⅴ国产| 一本综合久久免费| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 老司机午夜十八禁免费视频| 下体分泌物呈黄色| 叶爱在线成人免费视频播放| 国产aⅴ精品一区二区三区波| av中文乱码字幕在线| 中文字幕人妻熟女乱码| 精品少妇久久久久久888优播| 亚洲自偷自拍图片 自拍| 国产91精品成人一区二区三区| 国产97色在线日韩免费| 飞空精品影院首页| 日本a在线网址| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 一区二区日韩欧美中文字幕| 三级毛片av免费| 黑人巨大精品欧美一区二区mp4| 成人免费观看视频高清| 欧美国产精品一级二级三级| 亚洲成人免费av在线播放| 两性夫妻黄色片| 亚洲精品成人av观看孕妇| 亚洲七黄色美女视频| 香蕉久久夜色| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 人妻一区二区av| 国产精品一区二区在线不卡| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 欧美乱妇无乱码| 天堂俺去俺来也www色官网| 一级片免费观看大全| 欧美性长视频在线观看| 黄色视频,在线免费观看| 看片在线看免费视频| 男女床上黄色一级片免费看| 国产高清videossex| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 久久国产乱子伦精品免费另类| 国产精品永久免费网站| 亚洲精品国产精品久久久不卡| 国产精品久久久久成人av| 久久精品成人免费网站| 日韩免费av在线播放| 久久久久国产一级毛片高清牌| 在线永久观看黄色视频| 在线观看免费高清a一片| 亚洲国产精品一区二区三区在线| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 男人操女人黄网站| 搡老乐熟女国产| 午夜福利视频在线观看免费| 国产精品 国内视频| 久久精品亚洲熟妇少妇任你| 人人妻人人爽人人添夜夜欢视频| 欧美一级毛片孕妇| av中文乱码字幕在线| 久久国产亚洲av麻豆专区| 精品第一国产精品| 在线观看www视频免费| 亚洲av日韩精品久久久久久密| 怎么达到女性高潮| 亚洲精品av麻豆狂野| 一二三四在线观看免费中文在| 成年动漫av网址| 一进一出抽搐动态| 亚洲色图av天堂| 香蕉丝袜av| 国产高清国产精品国产三级| 精品人妻1区二区| 99久久国产精品久久久| 欧美成人午夜精品| 一边摸一边抽搐一进一小说 | 999久久久国产精品视频| 天天操日日干夜夜撸| 无限看片的www在线观看| 丝袜美腿诱惑在线| 久久青草综合色| 国产亚洲欧美在线一区二区| 欧美最黄视频在线播放免费 | 一本综合久久免费| 欧美日韩亚洲综合一区二区三区_| 国产aⅴ精品一区二区三区波| 在线永久观看黄色视频| 国产精品 欧美亚洲| av有码第一页| 欧美不卡视频在线免费观看 | 免费高清在线观看日韩| 国产单亲对白刺激| 欧美日韩一级在线毛片| 咕卡用的链子| 无遮挡黄片免费观看| 国产成人欧美在线观看 | 999久久久精品免费观看国产| 欧美成人午夜精品| 91成年电影在线观看| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 国产伦人伦偷精品视频| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 天堂√8在线中文| 一级毛片女人18水好多| 欧美日韩亚洲国产一区二区在线观看 | 99久久人妻综合| 老鸭窝网址在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美激情极品国产一区二区三区| 99久久国产精品久久久| 久久久久国产精品人妻aⅴ院 | 91在线观看av| 岛国毛片在线播放| 国产亚洲精品一区二区www | 亚洲免费av在线视频| 美女午夜性视频免费| 老司机午夜福利在线观看视频| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片 | 国产成人欧美| 99久久精品国产亚洲精品| 亚洲国产精品sss在线观看 | 成人免费观看视频高清| 国精品久久久久久国模美| 久久久久久久午夜电影 | 亚洲男人天堂网一区| 男男h啪啪无遮挡| 久久中文字幕一级| 黄色a级毛片大全视频| 五月开心婷婷网| 日韩免费高清中文字幕av| 国产精品一区二区在线观看99| 咕卡用的链子| 免费高清在线观看日韩| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 久久午夜亚洲精品久久| 18禁观看日本| 在线观看日韩欧美| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 色在线成人网| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦免费观看视频1| 欧美国产精品一级二级三级| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 国产精品影院久久| 亚洲成a人片在线一区二区| 好男人电影高清在线观看|