• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction

    2015-12-20 09:12:58ZHANGMinghui張明輝YINZirui尹子瑞LUHongyang盧紅陽WUJianhua吳建華LIUQiegen劉且根
    關(guān)鍵詞:紅陽建華

    ZHANG Ming-hui (張明輝),YIN Zi-rui (尹子瑞),LU Hong-yang (盧紅陽),WU Jian-hua (吳建華),LIU Qie-gen (劉且根)

    Department of Electronic Information Engineering,Nanchang University,Nanchang 330031,China

    Introduction

    Magnetic Resonance Imaging (MRI)is a crucial medical diagnostic technique which offers clinicians with significant anatomical structure for lack of ionizing.Although MRI enables highly resolution images and distinguished depiction of soft tissues, the imaging speed is limited by physical and physiological constraints.As noted in Ref.[1],increased scan duration may bring in some physiological motion artifacts.Therefore,it is necessary to decrease the acquisition time.Reducing the number of measurements mandated by Nyquist sampling theory is a way to accelerate the data acquisition at the expense of introducing aliasing artifacts in the reconstructed results.In recent years,compressed sensing (CS)theory,as a promising method, has proposed an essential theoretical foundation for data acquisition speed.Particularly, the application of CS to MRI is known as CS-MRI[2-7].

    The compressed sensing has provided a crucial sparsity property that the image which has a sparse representation in certain domain can be recovered from a reduced set of measurements largely below Nyquist sampling rates[2].The traditional CS-MRI usually utilized predefined dictionaries[1,8-9],which may fail to sparsely represent the reconstructed images.By comparison, adaptive dictionary updating in CS-MRI can provide less reconstruction errors since the dictionary is learned from sampled data[10-12].For instance,Lustig[1]employed the Total Variation (TV)penalty and the wavelet transform of Daubechies for MRI reconstruction.Trzasko[6]proposed a homotopic ?0-minimization strategy,instead of ?1-minimization,to reconstruct the MR image.Recently,Ravishankar[10]assumed every image patch had sparse representation,and proposed an outstanding two-step alternating method named dictionary learning based MRI reconstruction(DLMRI).The first step is for adaptively learning the dictionary,another step is for reconstructing image from highly undersampled k-space data.Numerical experiments have indicated that these data-learning approaches obtained considerable improvements compared with previous predefined dictionaries-based methods.Nevertheless,most of existing methods fail to consider the geometrical profit information in the k-space data,which may lead to the fine details loss.

    In this paper,an advanced dictionary learning method for MRI reconstruction is proposed,by employing stronger sparse prior knowledge and efficient iterative procedure.Specifically,in Ref.[13],Zheng et.al.proposed a graph regularized sparse coding method for classification.They built a k-nearest neighbor graph to encode the local structure in video data.Motivated by this idea,a comprehensive method that can better describe structure information and achieve patches discrimination for MRI reconstruction is proposed in this work.Particularly,a two-level Bregman iterative procedure is utilized.The out-level Bregman iterative enforces the data constraints, at the meantime,the inner-level is for updating dictionary and sparse representation of small overlapping image patches.Therefore,a graph regularized sparse coding method for highly undersampled MRI reconstruction (GSCMRI)is presented.Our framework considers the local geometrical structure of the image and automatically updates dictionary from under-sampled reference data.

    The rest of this paper is organized as follows.The proposed formulation for MRI reconstruction based on graph regularized sparse coding is detailed in Section 1.Section 2 presents the performance of the proposed method on numerous examples under a variety of sampling schemes and undersampling ratios.Conclusion is given in Section 3.

    1 Method

    1.1 Reviews of the graph regularized sparse algorithm

    The graph regularized sparse coding works excellently in exploiting the geometrical data by depending on manifold assumption.If two data points xi,xjare close in the intrinsic geometry of the data distribution,the coefficients of αiand αjin the new dictionary are also close to each other.Given the data X,a nearest neighbor graph G with M vertices is constructed,the each vertex represents a data point in X,and W denotes the weight matrix of G.If xiis among the k-nearest neighbors of xjor vice versa,Wij=1,otherwise,let Wij=0.Additionally,the degree of xiis defined ascM),L = C - W.Then mapping the weighted graph G to sparse representation Γ,a rational criterion for choosing a properly map is to minimize the following objective function[13]

    To sum up,the objective function of graph regularized sparse coding is constructed as linear combination of the three terms:empirical loss term,Laplacian regularizer term,and L1-based sparse penalty term

    where parameter λ stands for the level of data-consistency and η determines the weight of graph regularized Laplacian regularizer term.

    1.2 Propsoed GSCMRI method

    Recently,Liu[11]proposed a two-level Bregman iterative method with adaptive dictionary updating[14-15](TBMDU)for highly undersampled MRI reconstruction.Generally, they employed the sparseland model J(u) =as the regularization term to solve the objective function

    The Bregman iterative methodis to transform the constrained problem Eq.(3)into a sequence of unconstrained sub-problems

    where u∈CNrepresents an image to be reconstructed,and f∈CQdenotes the undersampled Fourier measurements.The partially sampled Fourier encoding matrix Fp∈CQ×Nmaps u to f such that Fpu=f,D =[d1,d2,…,dJ]∈CM×Jand Γ= [α1,α2,…,αI]∈CJ×I.The parameter λ balances the sparse level of the image patches and the approximation error in the updating dictionary.For many natural or medical images,the value of λ can be determined empirically with robust performance in our work.J=K·M,K measures the over-completeness factor of the dictionary.

    On the basis of graph regularized sparse coding and the two-level Bregman method for dictionary updating,a Graph regularized Sparse Coding algorithm for MRI reconstruction GSCMRI will be derived.The novel proposed comprehensive framework can automatically update patch-based dictionaries which learn prior information from fully sampled k-space data.Additionally, the hybrid algorithm can get promising improvements in reconstruction and the results can avoid many aliasing artifacts.The graph regularized sparse coding is combined with sparseland model,the objective function Eq.(5)can be gained as follows:

    1.2.1 Dictionary updating

    By utilizing splitting operator to deal with the sub-problem in Eq.(5),an equivalent unconstrained problem is gained by transforming the constrained problem as follows:

    The split Bregman method/Augmented Lagrangian is used to solve problem Eq.(6),namely

    where Y = [y1,y2,…,yI]∈CM×Iis the Lagrange multiplier and β is a positive constant.Z =[z1,z2,…,zI]∈CM×I.The function Eq.(7)can be minimized alternatively with respect to one variable at a time.Taking the derivative of the functionwith respect to D,it yields the following update rule

    where ξ is the iterative stepsize.

    1.2.2 Sparse coding

    Then,substituting Z of Eq.(10)into Eq.(7),it can get

    By taking advantage of the iterative shrinkage/thresholding algorithm (ISTA)[11,16],it solves the solution of αiby the following

    1.2.3 MR image reconstruction

    Updating u by eliminating the constant variables D,Γ,and Z,we obtain the update rule by tackling with the following minimization

    Then,the least squares solution of u is expressed as

    andit yields

    where F ∈CN×Nrepresents the full Fourier encoding matrix,and the normalization is FΤF = 1N.Fu stands for full k - space data,and Ω denotes the subset of data which has been sampled.By averaging the patch results and transforming it into Fourier domain,it has

    2 Experiments and Results

    In this section,the performance of proposed method is evaluated under real-valued images and complex-valued data.Real-valued dictionaries are served for the simulated experiments with real-valued images,and complex-valued dictionaries are served for the actual MR data experiments.The sampling schemes employed in our experiments include the 2D random sampling[6],Cartesian sampling with random phase encodings(1D random)[1,10],and pseudo radial sampling[6,10].The images used in the real-valued experiments are in vivo MR scans of size 512 ×512 (many of which are courtesy of Ref.[17]and used in Ref.[7]).The complex-valued data[11-12,18-19]in Figs.4 and 5 are size of 256 ×256 and 512 ×512,respectively.The nominal values of the various parameters were set as the same in TBMDU method,patch size= 6,the overcompleteness of the dictionary K =1 (corresponding to J=36),the patch overlap r =1 (correspondingly J=36 and the number of data samples L =267 289 for a 512 ×512 image under the wrap around condition).For other unshared parameters,both DLMRI and TBMDU methods are set by default values.In the implementation of our method,the parameter η = 10-3was chosen by our test that will be studied in subsection 2.3.In addition,the peak signal-to-noise ratio (PSNR*)and highfrequency error norm (HFEN)[10]are introduced to quantify the quality of our reconstruction.All experiments are implemented in MATLAB 7.11 on a PC equipped Intel core i7-3632QM and 4 GByte RAM.It is worth noting that,compared with TBMDU,the mainly added computational time of the proposed method GSCMRI is the updating of Laplacian regularized matrix L at each outer-level iteration and its multiplication with coefficientsin Eq.(12)at each innerlevel iteration.Fortunately,the matrix L is a sparse matrix and hence these operations can be efficiently implemented by MATLAB.

    2.1 Reconstruction of Real-valued Image

    Figure 1 illustrates the reconstruction results wit h the pseudo radial sampled k-space at a range of undersampling factors with 2.5,4,6,8,10,and 20.The PSNR and HFEN values for DLMRI,TBMDU,and GSCMRI at a variety of factors are presented in Figs.1 (b)and(c).For the subjective comparison,the construction results and magnitude image of the reconstruction error produced by the three methods at 8-fold undersampling were presented in Figs.1 (d)-(f)and Figs.1(g)-(i),respectively.As can be seen from the edge boundaries in right-bottom region of Fig.1 (i),the magnitude image of the reconstruction error for GSCMRI shows less pixel errors and detail information than those of DLMRI(Fig.1 (g))and TBMDU (Fig.1 (h)).

    * The PSNR is defined as:PNSR=20lg 255/RMSE,where RMSE is the root mean error estimated between the ground truth and the reconstructed image.

    The reconstructions at 7.11-fold undersampling are presented in Fig.2.Three different sampling schemes,namely 2D random sampling,Cartesian sampling,and the pseudo radial sampling pattern are employed respectively.The PSNR and HFEN curves are plotted in Figs.2 (b)and (c)corresponding to DLMRI,TBMDU,and GSCMRI.It can be seen that the more irrelevant the acquisition is,the better reconstruction will be gained,and therefore,the PSNRs obtained by 2D random sampling get more improvements than those of other sampling schemes.The results by applying 2D random sampling are presented in Figs.2 (d)-(f).The magnitude error image for GSCMRI shows that the reconstructed result using the proposed algorithm is more consistent than the other methods.It can be seen that although under the same undersampling rate,the improvements gained by GSCMRI outperform other methods at different trajectories.

    To evaluate the sensitivity of DLMRI,TBMDU,and GSCMRI at different levels of complex white Gaussian noise,the reference image of Fig.3 (a)is applied in the three methods under 2D random sampling at 7.11-fold acceleration.Figure 3 displays the reconstruction results of three methods at different levels of complex white Gaussian noise.The PSNRs of DLMRI,TBMDU,and GSCMRI at different standard deviations (σ =2,5,8,10,14.2)are plotted in Fig.3 (c).Reconstruction results with noise σ=5 are shown in Figs.3 (d)-(f).Particularly,it should be noted that the GSCMRI reconstruction error image(Fig.3 (i))preserves less error information than those of DLMRI and TBMDU.It is revealed that our method enables to achieve more accurate reconstruction of image contrast and sharper anatomical depiction in noisy case.

    2.2 Reconstruction of Complex-valued Data

    For the water phantom data tested in Fig.4 (a),radial sampling trajectory with 4-fold undersampling is employed in this experiment.The reconstruction results of the three methods are shown in Figs.4 (c)-(e).The enlargements of the outputs are displayed in Figs.4 (f)and (g).As can be observed from the enlargements,the proposed method achieves the best resolution among the three reconstructions.

    Fig.4 Reconstruction comparison on water phantom data ((a)is the fully sampled image;(b)is the radial sampling with 4-fold mask data;(c)-(e)are the reconstruction images corresponding to DLMRI,TBMDU,and GSCMRI;(f)and (g)are enlargements of (a)-(e))

    In Fig.5,Cartesian sampling trajectory with 5-fold undersampling is employed to obtain the T2-weighted k-space data of a brain.The full-sampled reconstruction and the 5-fold undersampling mask are displayed in Fig.5 (a)and (b),respectively.The reconstructions of DLMRI,TBMDU,and GSCMRI are presented in Fig.5 (c)-(e),respectively.In order to facilitate the observation,the difference image between reconstruction results of the full-sampling and 5-fold undersampling are shown in Figs.5 (f)-(h).It can be seen from the right-bottom regions of the error image that GSCMRI provides smaller magnitude values.

    Fig.5 Reconstruction comparison on T2-weighted k-space data ((a)is the fully sampled image;(b)is cartesian sampling with 5-fold mask data;(c)-(e)are reconstructed images using DLMRI,TBMDU,and GSCMRI;(f)-(h)are the relative difference images)

    2.3 Parameter Choices of η

    The proposed algorithm GSCMRI introduces the new parameter η which determines the weight of Laplacian regularizer term.In previous experiments,the value of η is empirically set to be η = 10-3.In this subsection,the performances of different values η = (10-1,10-2,10-3,10-4,10-5)are investigated in Fig.6.The PSNR and HFEN versus η are presented in Figs.6 (b)and (c),where the PSNR achieves the highest and HFEN achieves the lowest at the point η = 10-3,indicating that the choice of η= 10-3can achieve promising result than other values of η.Specifically,the reconstruction results and magnitude images of reconstruction error in the case of η = 10-1,10-3,10-5are shown in Figs.6 (d)-(f)and Figs.6(g)-(i),respectively.The error magnitude images have shown that the case of η =10-3has smaller magnitude error than those in η =10-1and η=10-5.Therefore,the case of η=10-3is a wonderful choice for the experiments.

    Fig.6 The performances of varying η((a)is the reference image;(b)and (c)are PSNR and HFEN versus η;(d)-(f)are the reconstructions of η=10 -1,η=10 -3,and η=10 -5;(g)-(i)are the reconstruction errors of (d)-(f))

    3 Conclusions

    In this work,a GSCMRI is proposed.The novel sparse representation explicitly considers the manifold structure of the k-space data,and the adaptive patch-based dictionary updating is employed to specific image instance.Consequently,our graph regularized sparse coding method for MRI reconstruction can efficiently capture local image structures and adaptive dictionary updating can sparsify images better than preconstructed dictionary.Various experimental results demonstrate the superior performance of the method under real-valued image and complex-valued data.The proposed method has highly accurate reconstructions for severely undersampled factors,and significantly improvements in both noiseless and noisy cases.The presented framework can be partially extended to parallel imaging applications in the future work.Besides,replacing ISTA by fast iterative shrinkage/thresholding algorithm(FISTA)[20]to improve the reconstruction speed will be investigated in the forthcoming study.

    [1]Lustig M,Donoho D,Pauly J M.Sparse MRI:The Application of Compressed Sensing for Rapid MR Imaging [J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.

    [2]Donoho D.Compressed Sensing [J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.

    [3]Caballero J,Price A,Rueckert D,et al.Dictionary Learning and Time Sparsity for Dynamic MR Data Reconstruction[J].IEEE Transactions on Medical Imaging,2014,33(4):979-994.

    [4]Lustig M,Donoho D,Pauly J M.k-t SPARSE:High Frame Rate Dynamic MRI Exploiting Spatio-Temporal Sparsity [C].Proceedings of 13th International Society for Magnetic Resonance in Medicine,Seattle,USA,2006.14(1):2420.

    [5]Lingala S,Jacob M.Blind Compressive Sensing Dynamic MRI[J].Medical Imaging,IEEE Transactions on Medical Imaging,2013,32(6):1132-1145.

    [6 ]Trzasko J, Manduca A.Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic l0Minimization[J].IEEE Transactions on Medical Imaging,2009,28(1):106-121.

    [7]Wang Y,Ying L.Compressed Sensing Dynamic Cardiac Cine MRI Using Learned Spatiotemporal Dictionary [J].IEEE Transactions on Biomedical Engineering,2014,61(4):1109-1120.

    [8]Guerquin-Kern M,Haeberlin M,Pruessmann K,et al.A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging[J].IEEE Transactions on Medical Imaging,2011,30(9):1649-1660.

    [9]Dibella E V R,Chen L,Schabel M.Reconstruction of Dynamic Contrast Enhanced Magnetic Resonance Imaging of the Breast with Temporal Constraints[J].Magnetic Resonance Imaging,2010,28(5):637-645.

    [10]Ravishankar S,Bresler Y.MR Image Reconstruction from Highly Undersampled k-space Data by Dictionary Learning [J].IEEE Transactions on Medical Imaging,2011,30(5):1028-1041.

    [11]Liu Q G,Wang S S,Yang K,et al.Highly Undersampled Magnetic Resonance Imaging Reconstruction Using Two-Level Bregman Method with Dictionary Updating [J].IEEE Transactions on Medical Imaging,2013,32(7):1290-1301.

    [12]Qu X B,Guo D,Ning B D,et al.Undersampled MRI Reconstruction with Patch-Based Directional Wavelets [J].Magnetic Resonance Imaging,2012,30(7):964-977.

    [13]Zheng M,Bu J J,Chen C,et al.Graph Regularized Sparse Coding for Image Representation [J].IEEE Transactions on Image Process,2011,20(5):1327-1336.

    [14]Liu Q G,Wang S S,Luo J H.A Novel Predual Dictionary Learning Algorithm[J].Journal of Visual Communication Image Represention,2012,23(1):182-193.

    [15]Liu Q G,Luo J H,Wang S S,et al.An Augmented Lagrangian Multi-scale Dictionary Learning Algorithm [J].EURASIP Journal on Advances in Signal Processing,2011,2011(1):1-16.

    [16]Yin W,Osher S,Goldfarb D,et al.Bregman Iterative Algorithms for ?1-Minimization with Applications to Compressed Sensing[J].SIAM Journal on Imaging Sciences,2008,1(1):143-168.

    [17]American Radiology Services.[DB/OL].(2009)[2014].http://www3.americanradiology.com/pls/web1/wwmain.home,2014.

    [18]Ning B D,Qu X B,Guo D,et al.Magnetic Resonance Image Reconstruction Using Trained Geometric Directions in 2D Redundant Wavelets Domain and Non-convex Optimization[J].Magnetic Resonance Imaging,2013,31(9):1611-1622.

    [19]Qu X B,Hou Y K,Lam F,et al.Magnetic Resonance Image Reconstruction from Undersampled Measurements Using a Patch-Based Nonlocal Operator[J].Medical Image Analysis,2014,18(6):843-856.

    [20]Beck A,Teboulle M.A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.

    猜你喜歡
    紅陽建華
    倒立奇奇
    孫紅陽作品選登
    故事作文·低年級(2018年11期)2018-11-19 17:25:58
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    危險的陽臺
    被困電梯
    工地不是游樂場
    国产精品一区二区在线不卡| 国产区一区二久久| 欧美日韩亚洲综合一区二区三区_| 国产精品九九99| 国产成人系列免费观看| 国产伦一二天堂av在线观看| 波多野结衣巨乳人妻| 国产在线精品亚洲第一网站| 国产单亲对白刺激| tocl精华| 国产成人精品在线电影| 午夜福利欧美成人| 亚洲精品在线观看二区| 精品电影一区二区在线| 看片在线看免费视频| 精品一区二区三区四区五区乱码| 欧美日韩乱码在线| 国产精品久久久av美女十八| 女人爽到高潮嗷嗷叫在线视频| 成年女人毛片免费观看观看9| 日本免费a在线| 久久亚洲精品不卡| 一区二区三区激情视频| 国产成人免费无遮挡视频| 97超级碰碰碰精品色视频在线观看| 丝袜美腿诱惑在线| av欧美777| 激情视频va一区二区三区| 国产成人精品久久二区二区免费| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久视频播放| 久久精品人人爽人人爽视色| 国产精品九九99| 91精品三级在线观看| 久久欧美精品欧美久久欧美| 久久国产精品影院| 一本大道久久a久久精品| 久久 成人 亚洲| 高潮久久久久久久久久久不卡| 亚洲欧洲精品一区二区精品久久久| 亚洲av熟女| 久久人妻熟女aⅴ| 国产高清videossex| 国产区一区二久久| 国产国语露脸激情在线看| 无人区码免费观看不卡| 国产区一区二久久| 色av中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区高清亚洲精品| 免费不卡黄色视频| 日本撒尿小便嘘嘘汇集6| 香蕉国产在线看| 久久香蕉激情| 两性夫妻黄色片| 真人一进一出gif抽搐免费| 99riav亚洲国产免费| 精品欧美国产一区二区三| 欧美成狂野欧美在线观看| 国产精品久久久久久人妻精品电影| 欧美日本中文国产一区发布| 宅男免费午夜| 在线天堂中文资源库| 亚洲中文av在线| 成人免费观看视频高清| 国产精品香港三级国产av潘金莲| 身体一侧抽搐| 亚洲熟女毛片儿| 久久久久国产精品人妻aⅴ院| 91精品国产国语对白视频| 最新美女视频免费是黄的| www.精华液| 大码成人一级视频| 午夜福利成人在线免费观看| 日本vs欧美在线观看视频| 久久精品成人免费网站| 亚洲人成77777在线视频| 欧美黄色片欧美黄色片| 成年版毛片免费区| 国产片内射在线| 高清黄色对白视频在线免费看| 中文字幕人妻丝袜一区二区| 国产精品香港三级国产av潘金莲| 日韩免费av在线播放| 免费无遮挡裸体视频| 一本大道久久a久久精品| 丝袜美足系列| 久久午夜综合久久蜜桃| 怎么达到女性高潮| 在线观看舔阴道视频| 男男h啪啪无遮挡| 成年女人毛片免费观看观看9| bbb黄色大片| 可以在线观看的亚洲视频| 欧美丝袜亚洲另类 | 亚洲国产精品久久男人天堂| 人妻久久中文字幕网| 老司机福利观看| 成熟少妇高潮喷水视频| 欧美丝袜亚洲另类 | 女人高潮潮喷娇喘18禁视频| 伊人久久大香线蕉亚洲五| 色婷婷久久久亚洲欧美| 午夜久久久久精精品| 亚洲第一青青草原| 美女国产高潮福利片在线看| 亚洲国产欧美网| 色av中文字幕| 99久久精品国产亚洲精品| 男人的好看免费观看在线视频 | 首页视频小说图片口味搜索| 婷婷丁香在线五月| 法律面前人人平等表现在哪些方面| www.精华液| av天堂久久9| 成熟少妇高潮喷水视频| 熟女少妇亚洲综合色aaa.| 很黄的视频免费| 大码成人一级视频| 久久伊人香网站| 国产成人免费无遮挡视频| 成人国产综合亚洲| 大型黄色视频在线免费观看| 女同久久另类99精品国产91| 无限看片的www在线观看| 欧美最黄视频在线播放免费| 正在播放国产对白刺激| 欧美一级a爱片免费观看看 | 一区二区日韩欧美中文字幕| 一二三四社区在线视频社区8| 久久天堂一区二区三区四区| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 色综合站精品国产| 日韩三级视频一区二区三区| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区黑人| 男人的好看免费观看在线视频 | 亚洲国产日韩欧美精品在线观看 | 久久人妻熟女aⅴ| 国产成人精品在线电影| 日韩三级视频一区二区三区| 国产精品二区激情视频| 黄片小视频在线播放| 在线免费观看的www视频| 一进一出好大好爽视频| 日韩三级视频一区二区三区| 香蕉丝袜av| 久久中文字幕一级| 女生性感内裤真人,穿戴方法视频| 欧美黑人欧美精品刺激| 1024香蕉在线观看| 宅男免费午夜| 免费av毛片视频| 国产蜜桃级精品一区二区三区| 国产一区在线观看成人免费| 最好的美女福利视频网| 村上凉子中文字幕在线| 国产av在哪里看| 欧美一区二区精品小视频在线| 成人av一区二区三区在线看| 妹子高潮喷水视频| 亚洲精品国产区一区二| 夜夜看夜夜爽夜夜摸| 在线观看免费视频日本深夜| 女同久久另类99精品国产91| 在线观看免费视频日本深夜| 亚洲五月色婷婷综合| 在线观看66精品国产| 亚洲专区国产一区二区| 女同久久另类99精品国产91| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产区一区二| 好男人电影高清在线观看| 日韩欧美一区视频在线观看| 啦啦啦 在线观看视频| 18禁美女被吸乳视频| 制服丝袜大香蕉在线| 日韩欧美免费精品| 免费看十八禁软件| 亚洲色图 男人天堂 中文字幕| 在线av久久热| 精品久久久久久久久久免费视频| 咕卡用的链子| 可以在线观看毛片的网站| 国产成+人综合+亚洲专区| 999精品在线视频| 男女下面进入的视频免费午夜 | 热re99久久国产66热| 精品高清国产在线一区| 一级毛片女人18水好多| 搞女人的毛片| 亚洲精品国产区一区二| 亚洲av成人不卡在线观看播放网| 国产午夜福利久久久久久| 欧美亚洲日本最大视频资源| 最好的美女福利视频网| 久久久久亚洲av毛片大全| 日韩精品免费视频一区二区三区| 老汉色av国产亚洲站长工具| 两个人视频免费观看高清| 亚洲国产欧美一区二区综合| a级毛片在线看网站| 欧美乱妇无乱码| 大码成人一级视频| 久久久久久久久中文| 国产精品1区2区在线观看.| 日本欧美视频一区| av有码第一页| 精品国产乱码久久久久久男人| 18禁美女被吸乳视频| 免费看十八禁软件| 日韩有码中文字幕| 91麻豆av在线| 久久青草综合色| 黄色成人免费大全| 国产成人系列免费观看| 久久久国产精品麻豆| 久久午夜亚洲精品久久| 亚洲第一电影网av| 国产黄a三级三级三级人| 成在线人永久免费视频| 久久天躁狠狠躁夜夜2o2o| 免费在线观看亚洲国产| 50天的宝宝边吃奶边哭怎么回事| 国产熟女xx| 亚洲一区二区三区色噜噜| 国产男靠女视频免费网站| 国产精品二区激情视频| 母亲3免费完整高清在线观看| 国产成人av教育| 久久久久精品国产欧美久久久| 国产1区2区3区精品| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 午夜a级毛片| 免费看美女性在线毛片视频| 国产亚洲精品久久久久5区| 亚洲人成电影观看| 中文字幕人妻熟女乱码| 色av中文字幕| 窝窝影院91人妻| 欧美精品啪啪一区二区三区| 12—13女人毛片做爰片一| 亚洲国产精品999在线| 久久久久久国产a免费观看| 中国美女看黄片| 别揉我奶头~嗯~啊~动态视频| tocl精华| 精品久久蜜臀av无| 国产片内射在线| 精品久久久久久久人妻蜜臀av | 动漫黄色视频在线观看| av天堂在线播放| 日本 av在线| 欧美日本中文国产一区发布| 精品国产乱码久久久久久男人| 1024视频免费在线观看| 日本一区二区免费在线视频| 熟女少妇亚洲综合色aaa.| 啦啦啦观看免费观看视频高清 | 国产黄a三级三级三级人| 老鸭窝网址在线观看| 禁无遮挡网站| 91麻豆av在线| 中文字幕高清在线视频| 999精品在线视频| 国产私拍福利视频在线观看| 十八禁网站免费在线| 亚洲性夜色夜夜综合| 中国美女看黄片| 午夜福利成人在线免费观看| 天天一区二区日本电影三级 | 久久九九热精品免费| 国产成人欧美在线观看| 日本三级黄在线观看| 中文字幕高清在线视频| 大型黄色视频在线免费观看| 男女床上黄色一级片免费看| 一本久久中文字幕| 午夜成年电影在线免费观看| 91精品国产国语对白视频| 变态另类成人亚洲欧美熟女 | 18美女黄网站色大片免费观看| 制服诱惑二区| 黄片播放在线免费| netflix在线观看网站| 97人妻天天添夜夜摸| 午夜精品国产一区二区电影| 在线观看免费视频网站a站| 19禁男女啪啪无遮挡网站| 免费观看人在逋| 一级片免费观看大全| 无人区码免费观看不卡| 久久伊人香网站| 亚洲国产欧美网| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 日韩欧美免费精品| 精品国产一区二区久久| 日日夜夜操网爽| 亚洲欧美日韩另类电影网站| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 嫩草影院精品99| 一进一出抽搐动态| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 99re在线观看精品视频| 中文字幕另类日韩欧美亚洲嫩草| 久99久视频精品免费| 国产成人av激情在线播放| 国产免费男女视频| 亚洲电影在线观看av| 中文字幕人成人乱码亚洲影| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 99国产精品99久久久久| 黑人巨大精品欧美一区二区蜜桃| 琪琪午夜伦伦电影理论片6080| 日韩有码中文字幕| 日日夜夜操网爽| 日韩精品中文字幕看吧| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 丁香六月欧美| 一区二区三区高清视频在线| 免费高清视频大片| 69精品国产乱码久久久| 午夜免费鲁丝| 免费在线观看影片大全网站| 天堂动漫精品| 国产成人影院久久av| 亚洲成国产人片在线观看| 亚洲精品中文字幕在线视频| 国产三级在线视频| 黄色女人牲交| 一夜夜www| 中文字幕色久视频| 美国免费a级毛片| 色哟哟哟哟哟哟| av天堂在线播放| 女生性感内裤真人,穿戴方法视频| 桃红色精品国产亚洲av| 成人亚洲精品av一区二区| 一本大道久久a久久精品| 亚洲av成人不卡在线观看播放网| 国产一区二区在线av高清观看| 1024视频免费在线观看| 多毛熟女@视频| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱 | 十分钟在线观看高清视频www| 一级毛片女人18水好多| 国产精品亚洲一级av第二区| 国产在线观看jvid| 亚洲人成77777在线视频| 亚洲成av人片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区字幕在线| 日韩欧美国产一区二区入口| 人人妻人人爽人人添夜夜欢视频| 久久久久久久精品吃奶| av片东京热男人的天堂| 窝窝影院91人妻| 亚洲精品在线美女| av视频免费观看在线观看| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合久久99| 91精品国产国语对白视频| 妹子高潮喷水视频| 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 夜夜躁狠狠躁天天躁| 天天躁夜夜躁狠狠躁躁| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片 | 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 亚洲欧美日韩另类电影网站| 日本 av在线| 亚洲熟妇熟女久久| 一本久久中文字幕| 久久这里只有精品19| 怎么达到女性高潮| 成人三级黄色视频| 欧美在线一区亚洲| 午夜久久久久精精品| 丝袜在线中文字幕| 88av欧美| 亚洲色图 男人天堂 中文字幕| 日本三级黄在线观看| 色老头精品视频在线观看| 国产高清激情床上av| 色播亚洲综合网| 国产激情久久老熟女| 一进一出抽搐gif免费好疼| 亚洲成人国产一区在线观看| 给我免费播放毛片高清在线观看| √禁漫天堂资源中文www| 超碰成人久久| 亚洲成人精品中文字幕电影| 亚洲九九香蕉| e午夜精品久久久久久久| 在线观看舔阴道视频| 乱人伦中国视频| 色综合站精品国产| 国产麻豆69| 91九色精品人成在线观看| 午夜福利18| 日日干狠狠操夜夜爽| 大码成人一级视频| 美女国产高潮福利片在线看| 久久亚洲精品不卡| 色播亚洲综合网| 亚洲第一电影网av| 一区二区三区激情视频| 国产精品一区二区三区四区久久 | 午夜免费成人在线视频| 嫩草影院精品99| 国产成人欧美在线观看| 美女国产高潮福利片在线看| 啦啦啦免费观看视频1| а√天堂www在线а√下载| 法律面前人人平等表现在哪些方面| 亚洲中文字幕日韩| 久久久久久久午夜电影| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av高清不卡| 丰满的人妻完整版| 亚洲精华国产精华精| 在线av久久热| 岛国在线观看网站| 国产91精品成人一区二区三区| 日本一区二区免费在线视频| 日韩精品中文字幕看吧| 国产精品,欧美在线| 精品熟女少妇八av免费久了| 看黄色毛片网站| 91成人精品电影| 最近最新中文字幕大全免费视频| www.精华液| 午夜福利高清视频| 亚洲一码二码三码区别大吗| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 一级片免费观看大全| 91老司机精品| 97人妻精品一区二区三区麻豆 | 亚洲 国产 在线| 18美女黄网站色大片免费观看| 中文字幕最新亚洲高清| 999久久久精品免费观看国产| 免费看十八禁软件| 久久久国产欧美日韩av| 91国产中文字幕| 欧美激情久久久久久爽电影 | 国产麻豆69| 亚洲 欧美 日韩 在线 免费| 久久久久久久精品吃奶| 精品久久久精品久久久| 99在线人妻在线中文字幕| 日韩欧美在线二视频| 嫩草影视91久久| 午夜福利视频1000在线观看 | 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 欧美不卡视频在线免费观看 | 日本在线视频免费播放| 欧美av亚洲av综合av国产av| 精品国产一区二区久久| 好男人电影高清在线观看| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 母亲3免费完整高清在线观看| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 国产亚洲精品综合一区在线观看 | 人人澡人人妻人| 国产在线观看jvid| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 琪琪午夜伦伦电影理论片6080| 国产精品永久免费网站| 97碰自拍视频| 99riav亚洲国产免费| 免费在线观看视频国产中文字幕亚洲| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 成年版毛片免费区| 少妇裸体淫交视频免费看高清 | 美女免费视频网站| 性少妇av在线| 亚洲成人精品中文字幕电影| 两人在一起打扑克的视频| 午夜精品国产一区二区电影| av网站免费在线观看视频| 午夜成年电影在线免费观看| 精品电影一区二区在线| 中文字幕另类日韩欧美亚洲嫩草| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 久久久久久久久久久久大奶| 丝袜美足系列| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 神马国产精品三级电影在线观看 | 757午夜福利合集在线观看| 在线天堂中文资源库| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 91成人精品电影| 18美女黄网站色大片免费观看| 国产熟女xx| 日韩欧美一区视频在线观看| 免费高清在线观看日韩| 久久久久精品国产欧美久久久| 久久婷婷成人综合色麻豆| 叶爱在线成人免费视频播放| 色av中文字幕| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 精品国产乱子伦一区二区三区| 国产精品久久久久久亚洲av鲁大| av超薄肉色丝袜交足视频| 国产精品乱码一区二三区的特点 | 精品一区二区三区四区五区乱码| 国产乱人伦免费视频| 免费观看人在逋| 高潮久久久久久久久久久不卡| 色综合亚洲欧美另类图片| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| 99热只有精品国产| 亚洲成a人片在线一区二区| 激情视频va一区二区三区| tocl精华| 久久精品亚洲熟妇少妇任你| 他把我摸到了高潮在线观看| 免费久久久久久久精品成人欧美视频| 午夜视频精品福利| 中亚洲国语对白在线视频| 曰老女人黄片| 成人免费观看视频高清| 法律面前人人平等表现在哪些方面| 91字幕亚洲| 亚洲人成电影免费在线| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 国产激情欧美一区二区| 他把我摸到了高潮在线观看| bbb黄色大片| 又紧又爽又黄一区二区| 亚洲熟妇熟女久久| 正在播放国产对白刺激| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 99国产精品99久久久久| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 午夜福利欧美成人| 久久久久国产一级毛片高清牌| 91字幕亚洲| 午夜福利视频1000在线观看 | 国产精品二区激情视频| 国产成人啪精品午夜网站| 国产不卡一卡二| 亚洲欧美激情综合另类| 精品国产亚洲在线| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 国产精品日韩av在线免费观看 | 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清 | 久久热在线av| 成人三级黄色视频| 国产亚洲欧美98| 99久久久亚洲精品蜜臀av| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 欧美在线一区亚洲| 九色国产91popny在线| 亚洲男人天堂网一区| 制服人妻中文乱码| 18禁国产床啪视频网站| 精品久久蜜臀av无| 国产精品久久久av美女十八| 亚洲av第一区精品v没综合| 欧美大码av| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 在线观看66精品国产| 岛国视频午夜一区免费看| 精品日产1卡2卡| 国产高清视频在线播放一区| 一本久久中文字幕| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 国产亚洲精品第一综合不卡| 操出白浆在线播放| 日韩免费av在线播放| 这个男人来自地球电影免费观看| 黄色成人免费大全| 日韩大码丰满熟妇| 久热爱精品视频在线9| 大陆偷拍与自拍| av电影中文网址| 女生性感内裤真人,穿戴方法视频| 50天的宝宝边吃奶边哭怎么回事|