• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction

    2015-12-20 09:12:58ZHANGMinghui張明輝YINZirui尹子瑞LUHongyang盧紅陽WUJianhua吳建華LIUQiegen劉且根
    關(guān)鍵詞:紅陽建華

    ZHANG Ming-hui (張明輝),YIN Zi-rui (尹子瑞),LU Hong-yang (盧紅陽),WU Jian-hua (吳建華),LIU Qie-gen (劉且根)

    Department of Electronic Information Engineering,Nanchang University,Nanchang 330031,China

    Introduction

    Magnetic Resonance Imaging (MRI)is a crucial medical diagnostic technique which offers clinicians with significant anatomical structure for lack of ionizing.Although MRI enables highly resolution images and distinguished depiction of soft tissues, the imaging speed is limited by physical and physiological constraints.As noted in Ref.[1],increased scan duration may bring in some physiological motion artifacts.Therefore,it is necessary to decrease the acquisition time.Reducing the number of measurements mandated by Nyquist sampling theory is a way to accelerate the data acquisition at the expense of introducing aliasing artifacts in the reconstructed results.In recent years,compressed sensing (CS)theory,as a promising method, has proposed an essential theoretical foundation for data acquisition speed.Particularly, the application of CS to MRI is known as CS-MRI[2-7].

    The compressed sensing has provided a crucial sparsity property that the image which has a sparse representation in certain domain can be recovered from a reduced set of measurements largely below Nyquist sampling rates[2].The traditional CS-MRI usually utilized predefined dictionaries[1,8-9],which may fail to sparsely represent the reconstructed images.By comparison, adaptive dictionary updating in CS-MRI can provide less reconstruction errors since the dictionary is learned from sampled data[10-12].For instance,Lustig[1]employed the Total Variation (TV)penalty and the wavelet transform of Daubechies for MRI reconstruction.Trzasko[6]proposed a homotopic ?0-minimization strategy,instead of ?1-minimization,to reconstruct the MR image.Recently,Ravishankar[10]assumed every image patch had sparse representation,and proposed an outstanding two-step alternating method named dictionary learning based MRI reconstruction(DLMRI).The first step is for adaptively learning the dictionary,another step is for reconstructing image from highly undersampled k-space data.Numerical experiments have indicated that these data-learning approaches obtained considerable improvements compared with previous predefined dictionaries-based methods.Nevertheless,most of existing methods fail to consider the geometrical profit information in the k-space data,which may lead to the fine details loss.

    In this paper,an advanced dictionary learning method for MRI reconstruction is proposed,by employing stronger sparse prior knowledge and efficient iterative procedure.Specifically,in Ref.[13],Zheng et.al.proposed a graph regularized sparse coding method for classification.They built a k-nearest neighbor graph to encode the local structure in video data.Motivated by this idea,a comprehensive method that can better describe structure information and achieve patches discrimination for MRI reconstruction is proposed in this work.Particularly,a two-level Bregman iterative procedure is utilized.The out-level Bregman iterative enforces the data constraints, at the meantime,the inner-level is for updating dictionary and sparse representation of small overlapping image patches.Therefore,a graph regularized sparse coding method for highly undersampled MRI reconstruction (GSCMRI)is presented.Our framework considers the local geometrical structure of the image and automatically updates dictionary from under-sampled reference data.

    The rest of this paper is organized as follows.The proposed formulation for MRI reconstruction based on graph regularized sparse coding is detailed in Section 1.Section 2 presents the performance of the proposed method on numerous examples under a variety of sampling schemes and undersampling ratios.Conclusion is given in Section 3.

    1 Method

    1.1 Reviews of the graph regularized sparse algorithm

    The graph regularized sparse coding works excellently in exploiting the geometrical data by depending on manifold assumption.If two data points xi,xjare close in the intrinsic geometry of the data distribution,the coefficients of αiand αjin the new dictionary are also close to each other.Given the data X,a nearest neighbor graph G with M vertices is constructed,the each vertex represents a data point in X,and W denotes the weight matrix of G.If xiis among the k-nearest neighbors of xjor vice versa,Wij=1,otherwise,let Wij=0.Additionally,the degree of xiis defined ascM),L = C - W.Then mapping the weighted graph G to sparse representation Γ,a rational criterion for choosing a properly map is to minimize the following objective function[13]

    To sum up,the objective function of graph regularized sparse coding is constructed as linear combination of the three terms:empirical loss term,Laplacian regularizer term,and L1-based sparse penalty term

    where parameter λ stands for the level of data-consistency and η determines the weight of graph regularized Laplacian regularizer term.

    1.2 Propsoed GSCMRI method

    Recently,Liu[11]proposed a two-level Bregman iterative method with adaptive dictionary updating[14-15](TBMDU)for highly undersampled MRI reconstruction.Generally, they employed the sparseland model J(u) =as the regularization term to solve the objective function

    The Bregman iterative methodis to transform the constrained problem Eq.(3)into a sequence of unconstrained sub-problems

    where u∈CNrepresents an image to be reconstructed,and f∈CQdenotes the undersampled Fourier measurements.The partially sampled Fourier encoding matrix Fp∈CQ×Nmaps u to f such that Fpu=f,D =[d1,d2,…,dJ]∈CM×Jand Γ= [α1,α2,…,αI]∈CJ×I.The parameter λ balances the sparse level of the image patches and the approximation error in the updating dictionary.For many natural or medical images,the value of λ can be determined empirically with robust performance in our work.J=K·M,K measures the over-completeness factor of the dictionary.

    On the basis of graph regularized sparse coding and the two-level Bregman method for dictionary updating,a Graph regularized Sparse Coding algorithm for MRI reconstruction GSCMRI will be derived.The novel proposed comprehensive framework can automatically update patch-based dictionaries which learn prior information from fully sampled k-space data.Additionally, the hybrid algorithm can get promising improvements in reconstruction and the results can avoid many aliasing artifacts.The graph regularized sparse coding is combined with sparseland model,the objective function Eq.(5)can be gained as follows:

    1.2.1 Dictionary updating

    By utilizing splitting operator to deal with the sub-problem in Eq.(5),an equivalent unconstrained problem is gained by transforming the constrained problem as follows:

    The split Bregman method/Augmented Lagrangian is used to solve problem Eq.(6),namely

    where Y = [y1,y2,…,yI]∈CM×Iis the Lagrange multiplier and β is a positive constant.Z =[z1,z2,…,zI]∈CM×I.The function Eq.(7)can be minimized alternatively with respect to one variable at a time.Taking the derivative of the functionwith respect to D,it yields the following update rule

    where ξ is the iterative stepsize.

    1.2.2 Sparse coding

    Then,substituting Z of Eq.(10)into Eq.(7),it can get

    By taking advantage of the iterative shrinkage/thresholding algorithm (ISTA)[11,16],it solves the solution of αiby the following

    1.2.3 MR image reconstruction

    Updating u by eliminating the constant variables D,Γ,and Z,we obtain the update rule by tackling with the following minimization

    Then,the least squares solution of u is expressed as

    andit yields

    where F ∈CN×Nrepresents the full Fourier encoding matrix,and the normalization is FΤF = 1N.Fu stands for full k - space data,and Ω denotes the subset of data which has been sampled.By averaging the patch results and transforming it into Fourier domain,it has

    2 Experiments and Results

    In this section,the performance of proposed method is evaluated under real-valued images and complex-valued data.Real-valued dictionaries are served for the simulated experiments with real-valued images,and complex-valued dictionaries are served for the actual MR data experiments.The sampling schemes employed in our experiments include the 2D random sampling[6],Cartesian sampling with random phase encodings(1D random)[1,10],and pseudo radial sampling[6,10].The images used in the real-valued experiments are in vivo MR scans of size 512 ×512 (many of which are courtesy of Ref.[17]and used in Ref.[7]).The complex-valued data[11-12,18-19]in Figs.4 and 5 are size of 256 ×256 and 512 ×512,respectively.The nominal values of the various parameters were set as the same in TBMDU method,patch size= 6,the overcompleteness of the dictionary K =1 (corresponding to J=36),the patch overlap r =1 (correspondingly J=36 and the number of data samples L =267 289 for a 512 ×512 image under the wrap around condition).For other unshared parameters,both DLMRI and TBMDU methods are set by default values.In the implementation of our method,the parameter η = 10-3was chosen by our test that will be studied in subsection 2.3.In addition,the peak signal-to-noise ratio (PSNR*)and highfrequency error norm (HFEN)[10]are introduced to quantify the quality of our reconstruction.All experiments are implemented in MATLAB 7.11 on a PC equipped Intel core i7-3632QM and 4 GByte RAM.It is worth noting that,compared with TBMDU,the mainly added computational time of the proposed method GSCMRI is the updating of Laplacian regularized matrix L at each outer-level iteration and its multiplication with coefficientsin Eq.(12)at each innerlevel iteration.Fortunately,the matrix L is a sparse matrix and hence these operations can be efficiently implemented by MATLAB.

    2.1 Reconstruction of Real-valued Image

    Figure 1 illustrates the reconstruction results wit h the pseudo radial sampled k-space at a range of undersampling factors with 2.5,4,6,8,10,and 20.The PSNR and HFEN values for DLMRI,TBMDU,and GSCMRI at a variety of factors are presented in Figs.1 (b)and(c).For the subjective comparison,the construction results and magnitude image of the reconstruction error produced by the three methods at 8-fold undersampling were presented in Figs.1 (d)-(f)and Figs.1(g)-(i),respectively.As can be seen from the edge boundaries in right-bottom region of Fig.1 (i),the magnitude image of the reconstruction error for GSCMRI shows less pixel errors and detail information than those of DLMRI(Fig.1 (g))and TBMDU (Fig.1 (h)).

    * The PSNR is defined as:PNSR=20lg 255/RMSE,where RMSE is the root mean error estimated between the ground truth and the reconstructed image.

    The reconstructions at 7.11-fold undersampling are presented in Fig.2.Three different sampling schemes,namely 2D random sampling,Cartesian sampling,and the pseudo radial sampling pattern are employed respectively.The PSNR and HFEN curves are plotted in Figs.2 (b)and (c)corresponding to DLMRI,TBMDU,and GSCMRI.It can be seen that the more irrelevant the acquisition is,the better reconstruction will be gained,and therefore,the PSNRs obtained by 2D random sampling get more improvements than those of other sampling schemes.The results by applying 2D random sampling are presented in Figs.2 (d)-(f).The magnitude error image for GSCMRI shows that the reconstructed result using the proposed algorithm is more consistent than the other methods.It can be seen that although under the same undersampling rate,the improvements gained by GSCMRI outperform other methods at different trajectories.

    To evaluate the sensitivity of DLMRI,TBMDU,and GSCMRI at different levels of complex white Gaussian noise,the reference image of Fig.3 (a)is applied in the three methods under 2D random sampling at 7.11-fold acceleration.Figure 3 displays the reconstruction results of three methods at different levels of complex white Gaussian noise.The PSNRs of DLMRI,TBMDU,and GSCMRI at different standard deviations (σ =2,5,8,10,14.2)are plotted in Fig.3 (c).Reconstruction results with noise σ=5 are shown in Figs.3 (d)-(f).Particularly,it should be noted that the GSCMRI reconstruction error image(Fig.3 (i))preserves less error information than those of DLMRI and TBMDU.It is revealed that our method enables to achieve more accurate reconstruction of image contrast and sharper anatomical depiction in noisy case.

    2.2 Reconstruction of Complex-valued Data

    For the water phantom data tested in Fig.4 (a),radial sampling trajectory with 4-fold undersampling is employed in this experiment.The reconstruction results of the three methods are shown in Figs.4 (c)-(e).The enlargements of the outputs are displayed in Figs.4 (f)and (g).As can be observed from the enlargements,the proposed method achieves the best resolution among the three reconstructions.

    Fig.4 Reconstruction comparison on water phantom data ((a)is the fully sampled image;(b)is the radial sampling with 4-fold mask data;(c)-(e)are the reconstruction images corresponding to DLMRI,TBMDU,and GSCMRI;(f)and (g)are enlargements of (a)-(e))

    In Fig.5,Cartesian sampling trajectory with 5-fold undersampling is employed to obtain the T2-weighted k-space data of a brain.The full-sampled reconstruction and the 5-fold undersampling mask are displayed in Fig.5 (a)and (b),respectively.The reconstructions of DLMRI,TBMDU,and GSCMRI are presented in Fig.5 (c)-(e),respectively.In order to facilitate the observation,the difference image between reconstruction results of the full-sampling and 5-fold undersampling are shown in Figs.5 (f)-(h).It can be seen from the right-bottom regions of the error image that GSCMRI provides smaller magnitude values.

    Fig.5 Reconstruction comparison on T2-weighted k-space data ((a)is the fully sampled image;(b)is cartesian sampling with 5-fold mask data;(c)-(e)are reconstructed images using DLMRI,TBMDU,and GSCMRI;(f)-(h)are the relative difference images)

    2.3 Parameter Choices of η

    The proposed algorithm GSCMRI introduces the new parameter η which determines the weight of Laplacian regularizer term.In previous experiments,the value of η is empirically set to be η = 10-3.In this subsection,the performances of different values η = (10-1,10-2,10-3,10-4,10-5)are investigated in Fig.6.The PSNR and HFEN versus η are presented in Figs.6 (b)and (c),where the PSNR achieves the highest and HFEN achieves the lowest at the point η = 10-3,indicating that the choice of η= 10-3can achieve promising result than other values of η.Specifically,the reconstruction results and magnitude images of reconstruction error in the case of η = 10-1,10-3,10-5are shown in Figs.6 (d)-(f)and Figs.6(g)-(i),respectively.The error magnitude images have shown that the case of η =10-3has smaller magnitude error than those in η =10-1and η=10-5.Therefore,the case of η=10-3is a wonderful choice for the experiments.

    Fig.6 The performances of varying η((a)is the reference image;(b)and (c)are PSNR and HFEN versus η;(d)-(f)are the reconstructions of η=10 -1,η=10 -3,and η=10 -5;(g)-(i)are the reconstruction errors of (d)-(f))

    3 Conclusions

    In this work,a GSCMRI is proposed.The novel sparse representation explicitly considers the manifold structure of the k-space data,and the adaptive patch-based dictionary updating is employed to specific image instance.Consequently,our graph regularized sparse coding method for MRI reconstruction can efficiently capture local image structures and adaptive dictionary updating can sparsify images better than preconstructed dictionary.Various experimental results demonstrate the superior performance of the method under real-valued image and complex-valued data.The proposed method has highly accurate reconstructions for severely undersampled factors,and significantly improvements in both noiseless and noisy cases.The presented framework can be partially extended to parallel imaging applications in the future work.Besides,replacing ISTA by fast iterative shrinkage/thresholding algorithm(FISTA)[20]to improve the reconstruction speed will be investigated in the forthcoming study.

    [1]Lustig M,Donoho D,Pauly J M.Sparse MRI:The Application of Compressed Sensing for Rapid MR Imaging [J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.

    [2]Donoho D.Compressed Sensing [J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.

    [3]Caballero J,Price A,Rueckert D,et al.Dictionary Learning and Time Sparsity for Dynamic MR Data Reconstruction[J].IEEE Transactions on Medical Imaging,2014,33(4):979-994.

    [4]Lustig M,Donoho D,Pauly J M.k-t SPARSE:High Frame Rate Dynamic MRI Exploiting Spatio-Temporal Sparsity [C].Proceedings of 13th International Society for Magnetic Resonance in Medicine,Seattle,USA,2006.14(1):2420.

    [5]Lingala S,Jacob M.Blind Compressive Sensing Dynamic MRI[J].Medical Imaging,IEEE Transactions on Medical Imaging,2013,32(6):1132-1145.

    [6 ]Trzasko J, Manduca A.Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic l0Minimization[J].IEEE Transactions on Medical Imaging,2009,28(1):106-121.

    [7]Wang Y,Ying L.Compressed Sensing Dynamic Cardiac Cine MRI Using Learned Spatiotemporal Dictionary [J].IEEE Transactions on Biomedical Engineering,2014,61(4):1109-1120.

    [8]Guerquin-Kern M,Haeberlin M,Pruessmann K,et al.A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging[J].IEEE Transactions on Medical Imaging,2011,30(9):1649-1660.

    [9]Dibella E V R,Chen L,Schabel M.Reconstruction of Dynamic Contrast Enhanced Magnetic Resonance Imaging of the Breast with Temporal Constraints[J].Magnetic Resonance Imaging,2010,28(5):637-645.

    [10]Ravishankar S,Bresler Y.MR Image Reconstruction from Highly Undersampled k-space Data by Dictionary Learning [J].IEEE Transactions on Medical Imaging,2011,30(5):1028-1041.

    [11]Liu Q G,Wang S S,Yang K,et al.Highly Undersampled Magnetic Resonance Imaging Reconstruction Using Two-Level Bregman Method with Dictionary Updating [J].IEEE Transactions on Medical Imaging,2013,32(7):1290-1301.

    [12]Qu X B,Guo D,Ning B D,et al.Undersampled MRI Reconstruction with Patch-Based Directional Wavelets [J].Magnetic Resonance Imaging,2012,30(7):964-977.

    [13]Zheng M,Bu J J,Chen C,et al.Graph Regularized Sparse Coding for Image Representation [J].IEEE Transactions on Image Process,2011,20(5):1327-1336.

    [14]Liu Q G,Wang S S,Luo J H.A Novel Predual Dictionary Learning Algorithm[J].Journal of Visual Communication Image Represention,2012,23(1):182-193.

    [15]Liu Q G,Luo J H,Wang S S,et al.An Augmented Lagrangian Multi-scale Dictionary Learning Algorithm [J].EURASIP Journal on Advances in Signal Processing,2011,2011(1):1-16.

    [16]Yin W,Osher S,Goldfarb D,et al.Bregman Iterative Algorithms for ?1-Minimization with Applications to Compressed Sensing[J].SIAM Journal on Imaging Sciences,2008,1(1):143-168.

    [17]American Radiology Services.[DB/OL].(2009)[2014].http://www3.americanradiology.com/pls/web1/wwmain.home,2014.

    [18]Ning B D,Qu X B,Guo D,et al.Magnetic Resonance Image Reconstruction Using Trained Geometric Directions in 2D Redundant Wavelets Domain and Non-convex Optimization[J].Magnetic Resonance Imaging,2013,31(9):1611-1622.

    [19]Qu X B,Hou Y K,Lam F,et al.Magnetic Resonance Image Reconstruction from Undersampled Measurements Using a Patch-Based Nonlocal Operator[J].Medical Image Analysis,2014,18(6):843-856.

    [20]Beck A,Teboulle M.A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.

    猜你喜歡
    紅陽建華
    倒立奇奇
    孫紅陽作品選登
    故事作文·低年級(2018年11期)2018-11-19 17:25:58
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    危險的陽臺
    被困電梯
    工地不是游樂場
    欧美3d第一页| 国产精品一及| a级毛片a级免费在线| 久久久成人免费电影| 国产黄a三级三级三级人| 18禁在线无遮挡免费观看视频| 又爽又黄无遮挡网站| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 国产一区二区三区av在线 | 免费黄网站久久成人精品| 欧美日本视频| 人人妻人人澡欧美一区二区| 中国国产av一级| 亚洲成人久久爱视频| 精品久久久久久久久久免费视频| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 久久午夜亚洲精品久久| 精品久久久噜噜| 国产熟女欧美一区二区| 亚洲18禁久久av| 午夜免费激情av| 久久久久久久久久久丰满| 中国美白少妇内射xxxbb| ponron亚洲| 深夜精品福利| 亚洲四区av| 国产亚洲av片在线观看秒播厂 | 成人亚洲精品av一区二区| 99热这里只有是精品50| 免费av观看视频| 欧美日韩国产亚洲二区| 黄色配什么色好看| av天堂中文字幕网| 成年女人看的毛片在线观看| 大型黄色视频在线免费观看| 人人妻人人澡欧美一区二区| 婷婷六月久久综合丁香| 亚洲精品色激情综合| 欧美性猛交黑人性爽| 日韩成人av中文字幕在线观看| 18禁在线无遮挡免费观看视频| 麻豆成人午夜福利视频| 成年免费大片在线观看| 日本在线视频免费播放| 亚洲av中文字字幕乱码综合| 熟妇人妻久久中文字幕3abv| 午夜福利在线观看免费完整高清在 | 国产精品无大码| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 特级一级黄色大片| 久久精品国产亚洲av香蕉五月| 欧美在线一区亚洲| 一本精品99久久精品77| 成人毛片60女人毛片免费| 亚洲国产欧洲综合997久久,| 精品无人区乱码1区二区| 赤兔流量卡办理| 身体一侧抽搐| 亚洲无线在线观看| 性欧美人与动物交配| 日日摸夜夜添夜夜添av毛片| 人人妻人人澡人人爽人人夜夜 | 美女国产视频在线观看| 哪里可以看免费的av片| 狂野欧美激情性xxxx在线观看| 亚洲av一区综合| 一本久久精品| 少妇人妻精品综合一区二区 | 一级黄色大片毛片| 此物有八面人人有两片| 成人国产麻豆网| 色哟哟·www| 日本av手机在线免费观看| 99久久精品国产国产毛片| 少妇人妻精品综合一区二区 | 免费观看在线日韩| 亚洲av中文av极速乱| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 99久久中文字幕三级久久日本| 嫩草影院精品99| 18禁在线无遮挡免费观看视频| 非洲黑人性xxxx精品又粗又长| 国产91av在线免费观看| 亚洲丝袜综合中文字幕| 九草在线视频观看| 午夜福利高清视频| 草草在线视频免费看| 九九热线精品视视频播放| 99国产精品一区二区蜜桃av| 精品人妻熟女av久视频| 日韩一区二区三区影片| 成人亚洲精品av一区二区| 国产成人精品一,二区 | 国产精品,欧美在线| 99九九线精品视频在线观看视频| 欧美zozozo另类| 可以在线观看的亚洲视频| 亚洲av电影不卡..在线观看| 精品久久久久久久久久免费视频| 搞女人的毛片| 成人毛片a级毛片在线播放| www日本黄色视频网| 有码 亚洲区| 中国美女看黄片| 男人狂女人下面高潮的视频| 日韩一区二区视频免费看| 亚洲va在线va天堂va国产| 狠狠狠狠99中文字幕| 午夜爱爱视频在线播放| a级毛色黄片| 国产在线精品亚洲第一网站| 日韩在线高清观看一区二区三区| 日本黄色视频三级网站网址| 精华霜和精华液先用哪个| 日韩中字成人| 国产精品国产三级国产av玫瑰| 国产精品三级大全| 久久韩国三级中文字幕| 一本久久中文字幕| 热99re8久久精品国产| 中文字幕人妻熟人妻熟丝袜美| 91精品一卡2卡3卡4卡| 插逼视频在线观看| 国产三级在线视频| 天堂√8在线中文| 狠狠狠狠99中文字幕| 久99久视频精品免费| 亚洲久久久久久中文字幕| kizo精华| 寂寞人妻少妇视频99o| 草草在线视频免费看| 春色校园在线视频观看| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 久久韩国三级中文字幕| 免费看日本二区| 久久久久网色| 女人十人毛片免费观看3o分钟| 好男人在线观看高清免费视频| 国产69精品久久久久777片| 成年av动漫网址| 国产伦理片在线播放av一区 | 亚洲真实伦在线观看| 99在线人妻在线中文字幕| 18禁在线无遮挡免费观看视频| 啦啦啦啦在线视频资源| 啦啦啦韩国在线观看视频| 夜夜看夜夜爽夜夜摸| 久久精品久久久久久噜噜老黄 | 69av精品久久久久久| 久久精品久久久久久久性| 99久久精品一区二区三区| 国产精品福利在线免费观看| 午夜福利在线观看吧| 黄色欧美视频在线观看| 26uuu在线亚洲综合色| 一本久久中文字幕| 日韩国内少妇激情av| 国产成人91sexporn| 国产精品久久久久久精品电影小说 | 国产成人一区二区在线| 国产成人91sexporn| 午夜爱爱视频在线播放| av天堂中文字幕网| 我要搜黄色片| 国产大屁股一区二区在线视频| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 成人一区二区视频在线观看| 26uuu在线亚洲综合色| 久久午夜亚洲精品久久| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 性欧美人与动物交配| 在线天堂最新版资源| 亚洲精品国产成人久久av| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 日韩高清综合在线| 尾随美女入室| 五月玫瑰六月丁香| 内地一区二区视频在线| 欧美日本亚洲视频在线播放| 亚洲国产色片| 国产毛片a区久久久久| 亚洲熟妇中文字幕五十中出| 精品99又大又爽又粗少妇毛片| 色哟哟哟哟哟哟| 一级二级三级毛片免费看| 国产久久久一区二区三区| 欧美精品一区二区大全| 最近中文字幕高清免费大全6| 国产日韩欧美在线精品| 亚洲美女视频黄频| 免费看av在线观看网站| 国产爱豆传媒在线观看| 一本久久中文字幕| 国产精品.久久久| 国产成人精品婷婷| 国产一级毛片在线| 黄色配什么色好看| 美女脱内裤让男人舔精品视频 | 国产黄片美女视频| 此物有八面人人有两片| 99热只有精品国产| 久久6这里有精品| 久久99热6这里只有精品| 日本一本二区三区精品| .国产精品久久| 久久国产乱子免费精品| 狂野欧美激情性xxxx在线观看| 99riav亚洲国产免费| 国产精品一二三区在线看| 国内精品久久久久精免费| 国产白丝娇喘喷水9色精品| 人人妻人人澡欧美一区二区| 久久精品综合一区二区三区| 久久久国产成人免费| av在线老鸭窝| 高清午夜精品一区二区三区 | 欧美极品一区二区三区四区| 黄色一级大片看看| 91av网一区二区| а√天堂www在线а√下载| 免费看av在线观看网站| 小蜜桃在线观看免费完整版高清| 亚洲激情五月婷婷啪啪| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| 免费人成视频x8x8入口观看| 特级一级黄色大片| 狂野欧美激情性xxxx在线观看| 天堂影院成人在线观看| 国产午夜精品久久久久久一区二区三区| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 欧美最新免费一区二区三区| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 日韩欧美精品v在线| 午夜精品在线福利| 在线观看66精品国产| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 人妻系列 视频| 亚洲第一区二区三区不卡| av在线播放精品| 美女被艹到高潮喷水动态| 久久99热这里只有精品18| 一级黄片播放器| 日本-黄色视频高清免费观看| 久久6这里有精品| 亚洲人成网站在线观看播放| 久久精品影院6| 别揉我奶头 嗯啊视频| 国产精品久久久久久亚洲av鲁大| 亚洲va在线va天堂va国产| 天天一区二区日本电影三级| 偷拍熟女少妇极品色| 日韩大尺度精品在线看网址| 高清日韩中文字幕在线| 欧美高清性xxxxhd video| av在线观看视频网站免费| 99久国产av精品国产电影| 黄色配什么色好看| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 内地一区二区视频在线| 欧美bdsm另类| 国产v大片淫在线免费观看| 男女啪啪激烈高潮av片| 久久国内精品自在自线图片| 一级黄色大片毛片| 亚洲高清免费不卡视频| 成年版毛片免费区| 狠狠狠狠99中文字幕| kizo精华| a级毛片a级免费在线| 久久久精品大字幕| 深夜精品福利| 色尼玛亚洲综合影院| 国产三级在线视频| 麻豆精品久久久久久蜜桃| 成人毛片60女人毛片免费| 最后的刺客免费高清国语| 看免费成人av毛片| 国产黄片视频在线免费观看| 亚洲性久久影院| 国产成人福利小说| 国产高清三级在线| 搡女人真爽免费视频火全软件| 麻豆av噜噜一区二区三区| 一进一出抽搐gif免费好疼| 一区二区三区免费毛片| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 欧美潮喷喷水| 亚洲内射少妇av| 精品久久久久久久久久免费视频| 97超视频在线观看视频| av黄色大香蕉| 日日撸夜夜添| 国产精品久久电影中文字幕| 久久精品久久久久久噜噜老黄 | 不卡视频在线观看欧美| 噜噜噜噜噜久久久久久91| 黄色欧美视频在线观看| 国产成年人精品一区二区| 日本在线视频免费播放| 亚洲欧洲国产日韩| 内地一区二区视频在线| 最新中文字幕久久久久| 成人鲁丝片一二三区免费| 大型黄色视频在线免费观看| 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 亚洲国产色片| 22中文网久久字幕| 51国产日韩欧美| 国产高潮美女av| 免费观看的影片在线观看| 在线a可以看的网站| 欧美zozozo另类| 熟妇人妻久久中文字幕3abv| 亚洲av第一区精品v没综合| 日韩在线高清观看一区二区三区| 中国国产av一级| 少妇的逼水好多| 国产黄a三级三级三级人| 成人美女网站在线观看视频| 国产一区亚洲一区在线观看| 久久久精品大字幕| 亚洲内射少妇av| 成人综合一区亚洲| 欧美精品国产亚洲| 青春草视频在线免费观看| 亚洲精品色激情综合| 国产大屁股一区二区在线视频| 久久99热这里只有精品18| 国产精品久久电影中文字幕| 久久99热这里只有精品18| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 国产91av在线免费观看| 九九久久精品国产亚洲av麻豆| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 人妻久久中文字幕网| 国产真实伦视频高清在线观看| 日本撒尿小便嘘嘘汇集6| 久久久午夜欧美精品| 一级黄片播放器| 男人舔奶头视频| 午夜激情欧美在线| 亚洲乱码一区二区免费版| 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| a级毛色黄片| 国产极品天堂在线| 99热6这里只有精品| 波多野结衣高清无吗| 中文字幕精品亚洲无线码一区| 日韩人妻高清精品专区| 秋霞在线观看毛片| 国产精品福利在线免费观看| 极品教师在线视频| 搡女人真爽免费视频火全软件| 亚洲美女搞黄在线观看| av免费在线看不卡| 久久久精品大字幕| 国产一区二区亚洲精品在线观看| 日韩在线高清观看一区二区三区| 日本免费a在线| 欧美人与善性xxx| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 亚洲欧洲日产国产| 精品人妻一区二区三区麻豆| 人人妻人人澡欧美一区二区| 18禁裸乳无遮挡免费网站照片| 国产日韩欧美在线精品| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 国产单亲对白刺激| 高清午夜精品一区二区三区 | 国产大屁股一区二区在线视频| 欧美+亚洲+日韩+国产| 校园人妻丝袜中文字幕| 国产色婷婷99| 日韩欧美精品v在线| 99riav亚洲国产免费| 亚洲,欧美,日韩| 久久精品影院6| 高清在线视频一区二区三区 | 婷婷精品国产亚洲av| 亚洲无线在线观看| 老师上课跳d突然被开到最大视频| 黄片无遮挡物在线观看| 99在线视频只有这里精品首页| 国产精品.久久久| 中国国产av一级| 国内精品久久久久精免费| 草草在线视频免费看| 国产69精品久久久久777片| 91久久精品电影网| 精品久久久久久久末码| 亚洲在久久综合| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 波多野结衣高清作品| 国产av麻豆久久久久久久| 91久久精品国产一区二区三区| 久久亚洲国产成人精品v| 日本av手机在线免费观看| 国产精品.久久久| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 在线免费观看不下载黄p国产| 亚洲自拍偷在线| 午夜精品国产一区二区电影 | 国产精品伦人一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 欧美日本视频| 日韩av在线大香蕉| 成年女人看的毛片在线观看| 成人性生交大片免费视频hd| 久久人人精品亚洲av| 欧美另类亚洲清纯唯美| 日韩三级伦理在线观看| 久久久精品大字幕| 青春草亚洲视频在线观看| 亚洲在久久综合| 性插视频无遮挡在线免费观看| 三级男女做爰猛烈吃奶摸视频| 麻豆乱淫一区二区| 2021天堂中文幕一二区在线观| 亚洲精品456在线播放app| www日本黄色视频网| 欧美高清性xxxxhd video| 日日撸夜夜添| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看| 久久久欧美国产精品| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 一本一本综合久久| 只有这里有精品99| 亚洲国产精品久久男人天堂| 国产高清视频在线观看网站| 91精品一卡2卡3卡4卡| 女人十人毛片免费观看3o分钟| 国产免费男女视频| 国产精品爽爽va在线观看网站| 欧美潮喷喷水| 国产成年人精品一区二区| 久久精品国产亚洲av天美| 国产一区二区三区av在线 | ponron亚洲| 精品一区二区三区视频在线| 12—13女人毛片做爰片一| 国产亚洲精品久久久com| 精品熟女少妇av免费看| 性色avwww在线观看| 欧美三级亚洲精品| 日韩亚洲欧美综合| 亚洲欧美精品自产自拍| 高清毛片免费观看视频网站| 黄色日韩在线| 欧美激情在线99| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 大又大粗又爽又黄少妇毛片口| avwww免费| 在线免费观看不下载黄p国产| 亚洲av二区三区四区| 一级毛片久久久久久久久女| 看片在线看免费视频| 波多野结衣高清作品| 老女人水多毛片| 久久精品国产清高在天天线| 亚洲图色成人| 国产不卡一卡二| 中文字幕制服av| 亚洲成人精品中文字幕电影| 欧美色欧美亚洲另类二区| 亚洲av中文av极速乱| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 国产亚洲精品久久久久久毛片| 亚洲人与动物交配视频| 在线观看一区二区三区| 国产精品电影一区二区三区| 亚洲欧美日韩卡通动漫| 我的老师免费观看完整版| 麻豆av噜噜一区二区三区| 亚洲综合色惰| 国产精品人妻久久久久久| 性插视频无遮挡在线免费观看| 日韩欧美 国产精品| 欧美3d第一页| 爱豆传媒免费全集在线观看| 91精品一卡2卡3卡4卡| 午夜福利在线观看吧| 天天躁夜夜躁狠狠久久av| 欧美极品一区二区三区四区| 少妇的逼好多水| 不卡视频在线观看欧美| 久久久色成人| 日本色播在线视频| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件| 国产熟女欧美一区二区| 色视频www国产| 亚洲av.av天堂| 亚洲成av人片在线播放无| 成人无遮挡网站| 国产精品久久久久久亚洲av鲁大| 久久精品国产鲁丝片午夜精品| 欧美一区二区国产精品久久精品| 国语自产精品视频在线第100页| 久99久视频精品免费| 在线观看一区二区三区| 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 精品人妻偷拍中文字幕| 欧美高清性xxxxhd video| 亚洲国产欧美人成| 黄色日韩在线| 秋霞在线观看毛片| 国产精品一及| 伦精品一区二区三区| 国产亚洲精品久久久com| 日韩欧美精品v在线| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 亚洲成人久久性| 精品日产1卡2卡| 国产一区二区在线av高清观看| 白带黄色成豆腐渣| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 啦啦啦韩国在线观看视频| 91久久精品国产一区二区成人| 精品人妻偷拍中文字幕| 国产av一区在线观看免费| 嫩草影院精品99| 欧美日韩一区二区视频在线观看视频在线 | 国产av麻豆久久久久久久| 一个人观看的视频www高清免费观看| 日韩一本色道免费dvd| 国产精品永久免费网站| 欧美性猛交╳xxx乱大交人| 久久精品91蜜桃| 晚上一个人看的免费电影| 国产一区二区激情短视频| 黄色日韩在线| 久久99热6这里只有精品| 黑人高潮一二区| 熟妇人妻久久中文字幕3abv| 麻豆成人午夜福利视频| 婷婷六月久久综合丁香| 欧美日本视频| 男人和女人高潮做爰伦理| 国产不卡一卡二| 国产午夜精品一二区理论片| 一级毛片我不卡| 2021天堂中文幕一二区在线观| 国产日韩欧美在线精品| 91久久精品国产一区二区成人| 国产三级中文精品| 真实男女啪啪啪动态图| av在线播放精品| 久久精品人妻少妇| 国产又黄又爽又无遮挡在线| 一个人免费在线观看电影| 一进一出抽搐gif免费好疼| 99久久人妻综合| 乱人视频在线观看| 国内精品美女久久久久久| 99热这里只有精品一区| 亚洲最大成人av| 国产极品精品免费视频能看的| 99久国产av精品| 一级毛片电影观看 | 亚洲av中文av极速乱| 国产高清三级在线| 日日摸夜夜添夜夜爱| 亚洲精品久久久久久婷婷小说 | 国产伦在线观看视频一区| 久久午夜亚洲精品久久| 亚洲欧美成人综合另类久久久 | 亚洲乱码一区二区免费版| 青春草视频在线免费观看| 美女内射精品一级片tv| 久久人人精品亚洲av| 可以在线观看毛片的网站| 中国美女看黄片| 久久国产乱子免费精品| 看片在线看免费视频| 亚洲欧美清纯卡通| 最新中文字幕久久久久| 久久久久免费精品人妻一区二区| 国产淫片久久久久久久久|