• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inter-carrier Interference Analysis for MIMO-OFDM Systems in High-Speed Train Environment

    2015-12-20 09:12:52WANGJunhua王軍華JIAOWuchen焦戊臣FANGYong

    WANG Jun-hua (王軍華),JIAO Wu-chen (焦戊臣),F(xiàn)ANG Yong (方 勇)

    School of Communication &Information Engineering,Shanghai University,Shanghai 200444,China

    Introduction

    High-speed train (HST) is a kind of fast orbit transportation tools,and the speed is more than 200 km/h.The communication model of HST is the broadband wireless communication.With the rapid development of HST worldwide,security,convenience and operational efficiency of passenger information services in the HST scenario have been ever-increasing.Moreover,a lot of key technical requirements have been imposed to the systems design of broadband wireless communications.

    As a promising technique to meet those requirements,orthogonal frenquency division multiplexing (OFDM)has been widely recognized as the key physical layer technology for the next generation broadband wireless communications[1].OFDM divides the broadband into many narrow bands for each subcarrier,which has the robustness to the frequency-selective fading multipath channel.Moreover, OFDM presents advantages of high spectrum efficiency,mitigating inter-symbol interference (ISI)by inserting a cyclic prefix (CP).OFDM has become a standard technique for the third-generation partnership project long-term evolution (3GPP LTE)[2]and worldwide interoperability for microwave access (WiMAX)[3]standards.Apart from several advantages,multi-carrier OFDM systems also have some drawbacks.The main drawback is that OFDM requires strict orthogonality between subcarriers.The orthogonality between the subcarriers is destroyed due to the Doppler frequency offset,particularly in the HST environment,which leads to serious ICI,and system performance may be considerably degraded.Therefore,it is necessary and significant to investigate the mechanism and influence factors of ICI.

    There is a large number of literatures about ICI of OFDM systems,but not a lot for HST environment,because the features of HST channel deviate significantly from those in low mobility.The channel of HST is non-stationary because the traversed environments are vary and complex,while the models of existing literatures are almost stationary.Based on the feature of wide sense stationary uncorrelated scattering (WSSUS),Zheng and Wang[4]analyzed the ICI of fractional Fourier transform orthogonal frequency division multiplexing (FRFT-OFDM)systems and discrete Fourier transform OFDM (DFT-OFDM)systems by evaluating the influence of ICI by utilizing the expressions of signal-to-interference ratio (SIR).Wang et al.[5]analyzed the ICI energy based on Jakes's model and gained the conclusion that most of a symbol energy spread over itself and its neighborhood subcarriers for the normalized Doppler frequency offset was small,and Cai and Giannakis[6]also achieved the conclusion for the continuous signal model.Ma et al.[7]explored the channel and interference gains for OFDM subchannel and gave a fact that the ICI was caused by the time-varying channel within one OFDM symbol.Haque et al.[8]analyzed the ICI of aeronautical channel.Assume that the model characteristics are known and the change of channel is relatively slow to an OFDM symbol.Basing on the linear time-varying channel model,Lin et al.[9]analyzed the effect of ICI and proposed a time domain ICI self-cancellation method.Du et al.[10]presented and compensated the ICI by estimating the high doppler shifts in long-term evolution for railway (LTE-R)systems.Shi[11]summarized the ICI problem and proposed the method to mitigate ICI in high mobility.Wang et al.[12]analyzed and explored the correlation property of ICI in the fast channel variation arising from highspeed motion.Chen et al.[13]explored the ICI vector in multipleinput multiple-output (MIMO)-OFDM systems and expressed the ICI gains at a particular subcarrier for channels with ITU-R vehicular channel A (VA)profile.For doubly-selective fading channels,Shu et al.[14]analyzed and deduced the upper bound of ICI power.Based on the additive white Gaussian noise(AWGN)channel,ICI is analyzed[15].The conventional channels of above literatures are WSSUS Rayleigh fading channel,flat fading channel and AWGN channel,which can't be used in HST environment.At present,the communication quality of HST is quite poor and a low data rate is observed[16].Some measurements and models about HST channel are implemented.Liu et al.[17]achieved the related parameter characteristics of HST channel by practical measurements.Gao et al.[18]estimated Ricean factor K by using a moment-based estimator along the Zhengzhou-Xi'an high speed railway.Gesbert et al.[19]presented a new model for MIMO outdoor wireless fading channels and investigated their capacity performance.Ghazal et al.[20]proposed a non-stationary geometry-based stochastic model(GBSM)in continuous domain for MIMO HST channels.Cheng et al.[21]proposed an adaptive GBSM for non-isotropic MIMO mobile-to-mobile (M2M)Ricean fading channels.For the geometrical street model,Chelli et al.[22]derived a nonstationary MIMO vehicle-to-vehicle (V2V)channel model.However,these measurements and models only analyze the channel of HST,there are no joint OFDM systems or MIMOOFDM systems to analyze and test the channel.Therefore,it is crucial to establish an HST channel model and joint MIMOOFDM systems to analyze and test the communication quality of the HST channel.The purpose of this paper is to get this target.

    The rest of this paper is organized as follows.Section 1 describes the system model including discrete channel model and MIMO-OFDM systems model.The CIR and channel coefficients are analyzed in section 2.The simulation results are discussed in section 3 and conclusions are drawn in section 4.

    1 System Model

    1.1 Discrete channel model

    For most of wireless channels,there is more than one path from transmitter to receiver.It occurs multiple paths due to reflection,scattering and refraction from different objects.We consider a high speed railway channel model which is different from traditional channel model.It has a big Doppler frequency offset because of high speed,angles of departure (AoD)and angles of arrival (AoA)are time-variant,which make the HST channel have the character of non-stationary.Ghazal et al.[20]proposed a non-stationary GBSM in continuous domain for MIMO HST channels.We will achieve a discrete HST channel model based on the GBSM for MIMO-OFDM systems.

    In order to achieve discrete-time channel impulse response,we must determine how to sample the channel of GBSM.Let W'be the baseband input signal bandwidth and BDbe the bandwidth of the maximum Doppler spread,then the bandwidth W =W' +BDand the range of bandwidth is set to[-W/2,W/2].If we set the sampling interval ts= 1/W,the Nyquist sampling is achieved.A detailed argument about the sampling rate required for time-varying channels can be found in Médard's literature[23].Therefore,the sampling interval is ts=1/(W' +BD).Ghazal et al.[20]proposed GBSM,and the model was consisted of multiple confocal ellipses with single-bounced (SB)rays and the line-ofsight (LoS)component[24].Considering a tapped delay line(TDL)structure,these confocal ellipses represent the taps.The base station (BS)and train are located at the foci.Then S effective scatterers are distributed on the l th ellipse,where l=1,2,…,L and L is the total number of ellipses or taps.We use the GBSM and consider an MIMO HST communication system with MTtransmitting and MRreceiving omni-directional antenna elements which are at equivalent height.The Tp-Rqlink stands for from the pth (p =1,2,…,MT)element of the BS,Tpto the qth (q =1,2,…,MR)element of the HST,Rq.The Tp-Rqlink is consisted of two parts:the first part is the first path which is a superposition of the LoS component and SB components;the second part is the other paths which are a sum of SB components only.Let t=nts(n=0,1,2,…)and based on the GBSM[20],the time-variant LoS AoA(n)[25]and time-variant scatters AoAis the AoA between link s(nl)-HST and HST direction,where s(nl)is the nlth effective scatterer at the lth ellipse,nl=1,2,…,S)in the GBSM can be described as

    where Dsis the initial distance between BS and HST,Dminis the position of BS to the track-side,and υRis the speed of HST.

    where rRis the direction of HST motion,(0)is the initial distance between scatterer s(nl)and HST,and(0)is the initial AoA.In fact, the AoDand AoAare interdependent for SB rays.The relationship between the AoD and AoA for multiple confocal ellipses model can be expressed as[21]

    where al(n)=| al(0)- υRnts| is the semi-major axis of the lth ellipse,f(n)=| f(0)- υRnts| is the half of the distance between two focal points of ellipses,and bl(n)denotes the semi-minor axis of the lth ellipse and is defined as bl(n)=The εpq(n),εpnl(n)and εnlq(n)are the propagation distances of the waves through the links Tp-Rq,Tp-s(nl)and s(nl)- Rq,respectively.They can be described as follows,

    where kp= (MT-2p +1)/2,kq= (MR-2q +1)/2;=(n)/[al(n)+f(n)cosf2(n) + 2al(n)f(n)cos(n)]/[al(n) + f(n)cos)(n)];δTand δRare the antenna element spaces at the BS and HST;and βT,βRare the multi-element antenna tilt angles.Then the propagation time of the waves through the links Tp-Rqand Tp-s(nl)-Rqcan be expressed as τpq(n)= εpq(n)/c and τpq,nl(n)=(εpnl(n)+εnlq(n))/c,(1≤l≤L),respectively.The c is the velocity of light.Then the complex channel coefficients of link Tp-Rqcan be described as follow.The first path can be expressed as

    The other paths can be expressed as

    Here,

    fcis the carrier frequency,Kpqis the Ricean factor,the phases ψn1and ψnlare independent and identically distributed random variables with uniform distributions over[-π,π),and fmaxis the maximum Doppler frequency offset.

    Through the above description,we have achieved the discrete channel impulse response hl,pq(n).Let hp,q(n,l):=hl,pq(n),(1 ≤l ≤L),and hp,q(n,l)represents the lth channel tap at time n between the pth transmitting antenna and the qth receiving antenna.We will use the discrete channel impulse response hp,q(n,l)in MIMO-OFDM systems.

    1.2 MIMO-OFDM systems model

    We consider MIMO-OFDM systems with MTtransmitting antennas and MRreceiving antennas.One OFDM block contains N subcarriers.Xp(k),(0≤k≤N -1)denotes the data signal sent by the transmitting antenna p at the subcarrier k,and the power of all the data signals are equal to each other.Then the transmitted signal xp(n)in the time domain through IFFT is given by

    CP is inserted into each OFDM block and transmitted signal xp(n)through the discrete non-stationary GBSM channel to the receiver.When CP is removed,the received signal of the qth antenna at time n can be expressed in the following tappeddelay-line model[26].

    where l is the number of multipath,hp,q(n,l)represents the lth channel tap at time n between the pth transmitting antenna and the qth receiving antenna,and wq(n)is the AWGN with zero mean and variance σ2w.

    Performing the FFT on the received signal,the signal of the qth antenna at the kth subcarrier can be expressed as

    Let Gp,q(k,k)=then Yq(k)can be rewritten as

    We can gain the expression from Eq.(11)thatk)·Xp(k) is the desired term, and the expression of(m,k)·Xp(m)is the ICI term.ICI term will be analyzed in section 2.

    2 ICI Analysis

    In order to analyze the ICI on one subcarrier (such as let the kth subcarrier be the desired subcarrier),the carrier-tointerference power ratio (CIR)can be used to evaluate the system ICI power level.The expression of CIR is the ratio of the desired received signal power on the kth subcarrier and the ICI received signal power on the other subcarriers.The expression of·Xp(k)is the desired term and the expression ofXp(m)is the ICI term for the qth receiving antenna.The additive noise is omitted.The desired signal power of the qth receiving antenna at the kth subcarrier can be represented as

    The ICI power of the qth receiving antenna at the kth subcarrier is

    Then the CIR of the qth receiving antenna at the kth subcarrier can be described as

    where |Gp,q(k,k)| and |Gp,q(m,k)| are the amplitudes of channel coefficients between the pth transmitting antenna and the qth receiving antenna.The |Gp,q(m,k)| can be described as

    where

    Let m=k,and |Gp,q(k,k)| can be achieved.The derivations of |Gp,q(m,k)| and |Gp,q(k,k)| are given in the appendix.

    We can achieve the fact from Eqs.(13),(15),and (16)that the mainly influence factors of ICI are Kpq,the multipath number L,and the time-variant Doppler frequency offsets fd(fd=fmaxcos α,α is an angle).Therefore,we can analyze the influence of ICI via investigating the channel parameters Kpq,the multipath number L and the normalized Doppler frequency offsets ε (ε=fdNts).For Eqs.(14)and (15),we will simulate and analyze the channel coefficients | Gp,q(m,k)| and CIR by investigating Kpq,the multipath number L and the normalized Doppler frequency offset ε,respectively in section 3.

    3 ICI Simulation Analysis

    3.1 Channel coefficients simulation

    During detecting the kth subcarrier of the pth transmitting antenna,channel coefficients |Gp,q(m,k)| are the weights of each subcarrier and determine the influence degree of the mth(m ≠k) subcarrier to the kth subcarrier.The operating frequency fcis set to 2.4 GHz,and the transmission bandwidth W' =1 MHz.Specifically,we consider a 2 ×2 MIMO-OFDM system.Figures 1-3 show the amplitudes of channel coefficients|Gp,q(m,k)| when k =32 and N =64.We obtain the fact from Figs.1-3 that most of a signal energy spreads on itself and its several neighborhood subcarriers,namely,the ICI on one subcarrier mainly comes from several neighborhood subcarriers.Figure 1 shows the amplitude of channel coefficient |Gp,q(m,k)| when K =5 dB and 10 dB.The desired signal part |Gp,q(k,k)| (k=32)for K =5 dB is less than that for K =10 dB,but the ICI signal parts |Gp,q(m,k)| almost are opposite.Figure 2 shows the | Gp,q(m,k)| with L = 2 and 6.The desired signal part |Gp,q(k,k)| (k =32)for L =2 is bigger than that for L = 6,but the ICI signal parts |Gp,q(m,k)|almost are opposite.The more number of multipaths are,the bigger interference of ICI is.Figure 3 shows the |Gp,q(m,k)|with ε=0.07 and ε=0.2.|Gp,q(k,k)| (k=32)decreases and|Gp,q(m,k)| increases as ε becomes larger.Besides,we can find from Figs.1-3 that the desired signal part |Gp,q(k,k)| is much bigger than the ICI signal part |Gp,q(m,k)|.

    Fig.1 The change of |Gp,q(m,k)| with K,L =6,υR =500 km/h

    Fig.2 The change of |Gp,q(m,k)| with L,K =10 dB,υR =500 km/h

    Fig.3 The change of |Gp,q(m,k)| with ε,K =10 dB,L =6

    3.2 CIR and bit error rate (BER)simulations

    Fig.4 The change of CIR with K,L =6,υR =500 km/h

    Fig.5 The change of CIR with L,K =10 dB,υR =500 km/h

    Fig.6 The change of CIR with ε,K =10 dB,L =6

    The CIR is used to evaluate the ICI power level.Let the desired subcarrier k=1,the total number of subcarriers N=512,the operating frequency fc= 2.4 GHz,and the transmission bandwidth W' = 1.5 MHz.Specifically,we consider a 2 × 2 MIMO-OFDM system.Figures 4-6 show the CIR as a function of K,the multipath number L and the normalized Doppler frequency offset ε,respectively.The modulation of bit source is QPSK.We can gain the fact from Figs.4-6 that CIR increases as K becomes larger,decreases as L and ε become larger,namely,the rate which ICI components power takes the total power decreases as K becomes larger,increases as L and ε become larger.Furthermore,note that the biggest impact factor for CIR is the multipath number L and the minimum impact factor for CIR is K.For Fig.5,CIR =8.2 when L =2,while CIR <1 when L =8.For Fig.4,CIR=2.0 when K =4 dB,and CIR = 3.75 when K = 20 dB.For Fig.6,the impact of normalized Doppler frequency offset ε for CIR is not significant,but CIR=1 when ε=0.18,namely,the power of desired signal is equal to the power of ICI components.When the train speed υR>400 km/h,the normalized Doppler frequency offset ε >0.35,CIR tends to zero,and the quality of communication is very poor at this condition.

    Finally,the BER performance is achieved after analyzing the ICI and its influence factors.Here,a specific condition of HST channel parameters is considered.The SNR is set to 30 dB,the Ricean factor K =10 dB,and the multipath number L =6.Random trials are performed 10 times.When the train speed υR,varying from 50 to 500 km/h,the desired signal power is degraded and the ICI power is increased,as shown in Fig.7.Correspondingly,the BER performance is shown in Fig.8.The conclusion can be found from Figs.7 and 8 that the BER performance will deteriorate as the ICI power level increases.The BER is very high without any measures taken at the receiver.Therefore,the ICI mitigation and cancellation are necessary if good communication quality wants to be achieved.

    Fig.7 The change of desired signal power and ICI power with train speed

    Fig.8 The change of BER performance with train speed

    4 Conclusions

    In this paper,by using a discrete-time non-stationary GBSM, we have analyzed the channel coefficient|Gp,q(m,k)| and CIR of one desired subcarrier and other interference subcarriers.We verify the fact that the ICI on one subcarrier mainly comes from its several neighborhood subcarriers.CIR is investigated by changing K,the multipath number L and the normalized Doppler frequency offset ε.Note that the biggest impact factor for CIR is the multipath number L and the minimum impact factor is K,and when the train speed υR>400 km/h,the normalized Doppler frequency offset ε >0.35,the CIR will tend to zero.Finally,BER is investigated by simulating a specific channel environment.Without any processing to the received signal,the BER is very high.The communication quality is very poor.Therefore,we should take some efficient measures to mitigate ICI next step.

    [1]Adachi F,Kudoh E.New Direction of Broadband Wireless Technology [J].Wireless Communications and Mobile Computing,2007,7(8):969-983.

    [2]3GPP.TR 25.814,Rev.7.1.0,Physical Layer Aspects for Evolved UTRA (Release 7)[S].3GPP Organizational Partners(ARIB,ATIS,CCSA,ETSI,TTA,TTC),2006.

    [3]IEEE Std.802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2:Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[S].New York:IEEE Computer Society and the IEEE Microwave Theory and Techniques Society,2006.

    [4]Zheng J,Wang Z L.ICI Analysis for FRFT-OFDM Systems to Frequency Offset in Time-Frequency Selective Fading Channels[J].IEEE Communications Letters,2010,14(10):888-890.

    [5]Wang H M,Chen X,Zhou S D,et al.Low-Complexity ICI Cancellation in Frequency Domain for OFDM Systems in Time-Varying Multipath Channels [J].IEICE Transactions on Communications,2006,89(3):1020-1023.

    [6]Cai X D,Giannakis G B.Bounding Performance and Suppressing Intercarrier Interference in Wireless Mobile OFDM [J].IEEE Transactions on Communications,2003,51(12):2047-2056.

    [7]Ma J,Orlik P V,Zhang J Y,et al.Reduced-Rate OFDM Transmission for Inter-subchannel Interference Self-cancellation over High-Mobility Fading Channels[J].IEEE Transactions on Wireless Communications,2012,11(6):2013-2023.

    [8]Haque J,Erturk M C,Arslan H.Aeronautical ICI Analysis and Doppler Estimation[J].IEEE Communications Letters,2011,15(9):906-909.

    [9]Lin K Y,Lin H P,Tseng M C.An Equivalent Channel Time Variation Mitigation Schefme for ICI Reduction in High-Mobility OFDM Systems[J].IEEE Transactions on Broadcasting,2012,58(3):472-479.

    [10]Du Q,Wu G,Yu Q L,et al.ICI Mitigation by Doppler Frequency Shift Estimation and Pre-compensation in LTE-R Systems [C].Wireless Communication Systems (WCS),China,2012:469-474.

    [11]Shi Q.ICI Mitigation for OFDM Using PEKF[J].IEEE Signal Processing Letters,2010,17(12):981-984.

    [12]Wang H W,Lin D W,Sang T H.OFDM Signal Detection in Doubly Selective Channels with Blockwise Whitening of Residual Intercarrier Interference and Noise[J].IEEE Journal on Selected Areas in Communications,2012,30(4):684-694.

    [13]Chen C Y,Lan Y Y,Chiueh T D.Turbo Receiver with ICIAware Dual-List Detection for Mobile MIMO-OFDM Systems[J].IEEE Transactions on Wireless Communications,2013,12(1):100-111.

    [14]Shu F,Hlaing M,Liang Y,et al.PIC-Based Iterative SDR Detector for OFDM Systems in Doubly-Selective Fading Channels[J].IEEE Transactions on Wireless Communications,2010,9(1):86-91.

    [15]Bishnu A,Jain A,Shrivastava A.A New Scheme of ICI Selfcancellation in OFDM System[C].International Conference on Communication Systems and Network Technologies,Gwalior,India,2013:120-123.

    [16]Yao J,Kanhere S S,Hassan M.Mobile Broadband Performance Measured from High-Speed Regional Trains [C].Vehicular Technology Conference (VTC Fall),San Francisco,CA,USA,2011:1-5.

    [17]Liu L,Tao C,Qiu J H,et al.Position-Based Modeling for Wireless Channel on High-Speed Railway under a Viaduct at 2.35 GHz[J].IEEE Journal on Selected Areas in Communications,2012,30(4):834-845.

    [18]Gao L Y,Zhong Z D,Ai B,et al.Estimation of the Ricean K Factor in the High Speed Railway Scenarios[C].International Conference on Communications and Networking,Beijing,China,2010:1-5.

    [19]Gesbert D,B?lcskei H,Gore D A,et al.Outdoor MIMO Wireless Channels:Models and Performance Prediction [J].IEEE Transactions on Communications,2002,50(12):1926-1934.

    [20]Ghazal A,Wang C X,Haas H,et al.A Non-stationary Geometry-Based Stochastic Model for MIMO High-Speed Train Channels [ C ].International Conference on ITS Telecommunications,Taiwan,China,2012:7-11.

    [21]Cheng X,Wang C X,Laurenson D I,et al.An Adaptive Geometry-Based Stochastic Model for Non-isotropic MIMO Mobile-to-Mobile Channels[J].IEEE Transactions on Wireless Communications,2009,8(9):4824-4835.

    [22]Chelli A,Patzold M.A Non-stationary MIMO Vehicle-to-Vehicle Channel Model Derived from the Geometrical Street Model[C].Vehicular Technology Conference (VTC Fall),San Francisco,USA,2011:1-6.

    [23]Médard M.The Effect upon Channel Capacity in Wireless Communications of Perfect and Imperfect Knowledge of the Channel[J].IEEE Transactions on Information Theory,2000,46(3):933-946.

    [24]Patzold M,Hogstad B O.A Wideband MIMO Channel Model Derived from the Geometric Elliptical Scattering Model [J].Wireless Communications and Mobile Computing,2006,8(5):138-143.

    [25]3GPP.TS 36.101 V10.2.1,3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment(UE)Radio Transmission and Reception (Release 10)[S].European Telecommunications Standards Institute,2011.

    [26]Jeon W G,Chang K H,Cho Y S.An Equalization Technique for Orthogonal Frequency-Division Multiplexing System in Time-Variant Multipath Channel [J].IEEE Transactions on Communications,1999,47(1):27-32.

    Appendix

    Derivation of Eq.(15)

    Substituting the discrete channel impulse response hp,q(n,l)into Gp,q(m,k)

    Because the period of one OFDM block is very short,we can find that(1 ≤l ≤L)can be approximated to constant during the OFDM period.Therefore,B(m,k),C(m,k),and D(m,k)can be described as

    Because ψn1is independent and identically distributed random variable with uniform distributions over[-π,π)and the mean of ψn1is E[ψn1]= 0,= S and C(m,k)can be simplified as

    In the same way,D(m,k)can be simplified as

    Therefore,

    Then |Gp,q(m,k)| can be achieved as

    Let m=k,and B(k,k),C(k,k),and D(k,k)are as follows

    Therefore,

    成人综合一区亚洲| 成人三级黄色视频| 国内精品宾馆在线| 久久精品国产自在天天线| 免费一级毛片在线播放高清视频| 亚洲最大成人手机在线| 亚洲av熟女| 亚洲国产精品sss在线观看| 国模一区二区三区四区视频| 免费观看精品视频网站| 国产亚洲最大av| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 91狼人影院| 岛国在线免费视频观看| 在线a可以看的网站| 国产在视频线精品| 国产精品久久久久久精品电影| 波野结衣二区三区在线| 小蜜桃在线观看免费完整版高清| 狠狠狠狠99中文字幕| 免费观看在线日韩| 免费看日本二区| 久久精品综合一区二区三区| 亚洲欧美精品自产自拍| 中文字幕亚洲精品专区| 最新中文字幕久久久久| 看片在线看免费视频| 日本一二三区视频观看| 亚洲国产欧美在线一区| 91av网一区二区| 国产精品久久久久久久电影| 日韩欧美在线乱码| 黄色欧美视频在线观看| 91精品国产九色| 水蜜桃什么品种好| 免费观看性生交大片5| 国产亚洲最大av| 国产亚洲91精品色在线| 国产私拍福利视频在线观看| 99久久精品热视频| 日韩精品有码人妻一区| 特级一级黄色大片| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美清纯卡通| 99九九线精品视频在线观看视频| 97人妻精品一区二区三区麻豆| 国产高清不卡午夜福利| 精品少妇黑人巨大在线播放 | 亚洲av电影不卡..在线观看| 又粗又硬又长又爽又黄的视频| 免费av毛片视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片a级毛片在线播放| 午夜精品国产一区二区电影 | 91久久精品国产一区二区三区| 亚洲精品成人久久久久久| 一个人看的www免费观看视频| 又爽又黄a免费视频| 亚洲国产精品成人久久小说| 日韩成人av中文字幕在线观看| 亚洲一级一片aⅴ在线观看| 国产爱豆传媒在线观看| 欧美潮喷喷水| 一卡2卡三卡四卡精品乱码亚洲| 99热全是精品| 久久久久久久久久久免费av| 国产69精品久久久久777片| 美女被艹到高潮喷水动态| 亚洲av熟女| 寂寞人妻少妇视频99o| 免费看日本二区| 国产真实乱freesex| 偷拍熟女少妇极品色| 男人舔奶头视频| 两个人的视频大全免费| 两个人视频免费观看高清| 黄色一级大片看看| 国产v大片淫在线免费观看| 深爱激情五月婷婷| 婷婷六月久久综合丁香| 久久精品国产亚洲av涩爱| 99热这里只有是精品在线观看| 亚洲欧美日韩卡通动漫| 丰满乱子伦码专区| 22中文网久久字幕| 久久久a久久爽久久v久久| 18禁在线无遮挡免费观看视频| 99热网站在线观看| 欧美最新免费一区二区三区| 嘟嘟电影网在线观看| 成人漫画全彩无遮挡| www日本黄色视频网| 亚洲国产高清在线一区二区三| 国产高清三级在线| 亚洲精品国产av成人精品| 国产精品久久久久久精品电影| 老司机影院毛片| 国产日韩欧美在线精品| 青青草视频在线视频观看| 成人毛片a级毛片在线播放| 一级毛片aaaaaa免费看小| 亚洲国产欧美人成| 免费av不卡在线播放| 精品人妻偷拍中文字幕| 国产亚洲5aaaaa淫片| 精华霜和精华液先用哪个| 欧美成人a在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧洲日产国产| 一个人免费在线观看电影| av国产久精品久网站免费入址| 插阴视频在线观看视频| 国产成人aa在线观看| 亚洲欧美日韩高清专用| 美女高潮的动态| 三级毛片av免费| 啦啦啦啦在线视频资源| 国产老妇伦熟女老妇高清| 成人漫画全彩无遮挡| 久久这里只有精品中国| 国产白丝娇喘喷水9色精品| 亚洲欧美成人精品一区二区| 岛国毛片在线播放| 欧美三级亚洲精品| 99久久九九国产精品国产免费| 日韩一区二区视频免费看| 狠狠狠狠99中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 韩国高清视频一区二区三区| 中文字幕av在线有码专区| 久久精品人妻少妇| 国产乱来视频区| av天堂中文字幕网| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| av免费观看日本| 国产精品乱码一区二三区的特点| 国产毛片a区久久久久| 三级经典国产精品| 久久久久久久久久成人| 国内精品一区二区在线观看| 久久久久免费精品人妻一区二区| 国产在线男女| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区 | 午夜视频国产福利| 日本欧美国产在线视频| 少妇的逼好多水| 日本黄大片高清| 精品人妻一区二区三区麻豆| 午夜福利在线观看吧| 91av网一区二区| 欧美激情久久久久久爽电影| 国产大屁股一区二区在线视频| 最近中文字幕高清免费大全6| 久久99精品国语久久久| 国产成人午夜福利电影在线观看| 国产精品久久久久久精品电影小说 | 久久精品久久久久久噜噜老黄 | 欧美日韩在线观看h| 成人美女网站在线观看视频| 日韩av在线大香蕉| 亚洲成人精品中文字幕电影| 免费人成在线观看视频色| 一级毛片我不卡| 在线观看一区二区三区| av在线亚洲专区| 久久久a久久爽久久v久久| 国产成人精品一,二区| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 亚洲美女视频黄频| 亚洲伊人久久精品综合 | 久久亚洲精品不卡| 亚洲av中文av极速乱| kizo精华| 精品久久久久久久久久久久久| 熟女人妻精品中文字幕| 美女xxoo啪啪120秒动态图| 亚洲精品自拍成人| 国产精品99久久久久久久久| 久久久久久久国产电影| 一区二区三区免费毛片| 亚洲最大成人手机在线| 91久久精品国产一区二区三区| 神马国产精品三级电影在线观看| 少妇的逼水好多| 别揉我奶头 嗯啊视频| 最近最新中文字幕大全电影3| 欧美成人免费av一区二区三区| 欧美zozozo另类| 国产成人91sexporn| 免费观看a级毛片全部| 久久久午夜欧美精品| 亚洲在久久综合| 亚洲国产精品久久男人天堂| 国产黄色小视频在线观看| 国产高清视频在线观看网站| 成人欧美大片| 99热这里只有是精品50| 3wmmmm亚洲av在线观看| 国产精品一及| 免费看美女性在线毛片视频| 免费搜索国产男女视频| 日本一二三区视频观看| 久久草成人影院| 久久精品国产亚洲av天美| a级一级毛片免费在线观看| 国产免费男女视频| 全区人妻精品视频| 91av网一区二区| 亚洲精品乱码久久久v下载方式| 国产又黄又爽又无遮挡在线| a级一级毛片免费在线观看| 一个人看的www免费观看视频| 我的老师免费观看完整版| 欧美日韩在线观看h| 久久99热这里只有精品18| 色哟哟·www| 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 成年免费大片在线观看| 欧美另类亚洲清纯唯美| 国产在线男女| 美女脱内裤让男人舔精品视频| 婷婷色麻豆天堂久久 | 久久精品久久精品一区二区三区| 亚洲国产最新在线播放| 国产精品熟女久久久久浪| 欧美成人精品欧美一级黄| 国产单亲对白刺激| 天堂影院成人在线观看| 欧美97在线视频| 色5月婷婷丁香| 身体一侧抽搐| 国产一区二区三区av在线| 日韩大片免费观看网站 | 狂野欧美白嫩少妇大欣赏| 欧美3d第一页| 成人美女网站在线观看视频| 中文资源天堂在线| 白带黄色成豆腐渣| 寂寞人妻少妇视频99o| 中文欧美无线码| 精品久久久久久久久av| 99久久精品国产国产毛片| 国产美女午夜福利| 99久国产av精品| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费| 亚洲色图av天堂| 久久精品人妻少妇| 免费av毛片视频| av国产免费在线观看| 寂寞人妻少妇视频99o| 村上凉子中文字幕在线| 亚洲欧洲日产国产| 毛片一级片免费看久久久久| 国产精品美女特级片免费视频播放器| 国产精品蜜桃在线观看| 又黄又爽又刺激的免费视频.| 日韩成人伦理影院| 国产熟女欧美一区二区| 91午夜精品亚洲一区二区三区| 亚洲成人中文字幕在线播放| 97超视频在线观看视频| 91精品伊人久久大香线蕉| 国产美女午夜福利| 欧美日本视频| 亚洲成人中文字幕在线播放| 国产黄a三级三级三级人| 免费观看人在逋| 18禁在线无遮挡免费观看视频| 国产亚洲av嫩草精品影院| 亚洲国产色片| 男人狂女人下面高潮的视频| 亚洲精品一区蜜桃| 国产伦在线观看视频一区| 成人毛片60女人毛片免费| 久久亚洲精品不卡| 久久人人爽人人爽人人片va| 亚洲内射少妇av| 乱人视频在线观看| 午夜福利在线观看吧| 乱系列少妇在线播放| 成人二区视频| 亚洲精品乱码久久久v下载方式| 男女那种视频在线观看| 免费一级毛片在线播放高清视频| 国产激情偷乱视频一区二区| 高清视频免费观看一区二区 | 亚洲精品国产成人久久av| 国产一区二区亚洲精品在线观看| av在线天堂中文字幕| 一本久久精品| 99在线视频只有这里精品首页| 国产精品伦人一区二区| 男女那种视频在线观看| 国产伦理片在线播放av一区| 国产成人freesex在线| 天堂中文最新版在线下载 | 午夜日本视频在线| 黄片wwwwww| 高清av免费在线| 深爱激情五月婷婷| 99国产精品一区二区蜜桃av| 国产黄片视频在线免费观看| 天天躁日日操中文字幕| 午夜精品国产一区二区电影 | 少妇被粗大猛烈的视频| 国产成人精品婷婷| 大香蕉97超碰在线| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| 国产又色又爽无遮挡免| 精品熟女少妇av免费看| 成人三级黄色视频| 免费看美女性在线毛片视频| 麻豆精品久久久久久蜜桃| 99热这里只有是精品50| 久久精品91蜜桃| 欧美精品国产亚洲| 精品欧美国产一区二区三| 大又大粗又爽又黄少妇毛片口| 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 国产精华一区二区三区| 久久久a久久爽久久v久久| 在线a可以看的网站| 国内揄拍国产精品人妻在线| 国产亚洲最大av| 国产亚洲精品久久久com| 国产在线一区二区三区精 | 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级专区第一集| 日韩三级伦理在线观看| videossex国产| 九九爱精品视频在线观看| 伦精品一区二区三区| 国产精品久久电影中文字幕| 欧美一区二区精品小视频在线| 日韩欧美精品v在线| 国产成人福利小说| 99久国产av精品国产电影| 久久精品国产亚洲av天美| 国内精品一区二区在线观看| 村上凉子中文字幕在线| 男女国产视频网站| 国产黄a三级三级三级人| 成人无遮挡网站| 欧美成人午夜免费资源| 看免费成人av毛片| 欧美日本亚洲视频在线播放| 国产一区亚洲一区在线观看| 午夜老司机福利剧场| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 亚洲精品日韩在线中文字幕| 久久久精品94久久精品| 国产精品美女特级片免费视频播放器| 联通29元200g的流量卡| 一级黄色大片毛片| 亚洲欧洲国产日韩| 久久6这里有精品| 91精品国产九色| 少妇高潮的动态图| 男女下面进入的视频免费午夜| 91在线精品国自产拍蜜月| 级片在线观看| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 91精品国产九色| av在线亚洲专区| 男人舔奶头视频| 亚洲精品国产成人久久av| 热99re8久久精品国产| 日韩一区二区视频免费看| 日韩人妻高清精品专区| 天堂√8在线中文| 在线免费十八禁| 秋霞伦理黄片| 又粗又爽又猛毛片免费看| 国产视频首页在线观看| 人妻系列 视频| 欧美+日韩+精品| 国产三级在线视频| 久久久精品94久久精品| 国产乱来视频区| 国产精品不卡视频一区二区| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 一本久久精品| 亚洲在线自拍视频| 国产免费福利视频在线观看| 九色成人免费人妻av| 好男人在线观看高清免费视频| 国产欧美日韩精品一区二区| 亚洲第一区二区三区不卡| 国产男人的电影天堂91| 三级毛片av免费| 国产乱人偷精品视频| 亚洲国产高清在线一区二区三| 波野结衣二区三区在线| av国产免费在线观看| 亚洲五月天丁香| av线在线观看网站| 欧美日韩综合久久久久久| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 久久久久久久久中文| 亚洲精品日韩av片在线观看| 色播亚洲综合网| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 97在线视频观看| 女人被狂操c到高潮| 国产黄片美女视频| 国产精品,欧美在线| av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 3wmmmm亚洲av在线观看| 欧美xxxx黑人xx丫x性爽| 啦啦啦观看免费观看视频高清| 国产三级中文精品| 乱人视频在线观看| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 国产精品国产三级国产av玫瑰| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 免费看a级黄色片| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 一区二区三区高清视频在线| 美女xxoo啪啪120秒动态图| 亚洲精品乱码久久久v下载方式| 亚洲中文字幕一区二区三区有码在线看| 七月丁香在线播放| 亚洲欧美清纯卡通| 免费看av在线观看网站| 国产午夜精品一二区理论片| 亚洲国产精品sss在线观看| 99久久中文字幕三级久久日本| 性色avwww在线观看| 99热这里只有是精品50| 中文天堂在线官网| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 人人妻人人澡人人爽人人夜夜 | 国产v大片淫在线免费观看| 亚洲最大成人中文| 色噜噜av男人的天堂激情| av国产久精品久网站免费入址| 丝袜喷水一区| 色噜噜av男人的天堂激情| 亚洲精品乱码久久久v下载方式| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 亚洲精品456在线播放app| 白带黄色成豆腐渣| 国产成年人精品一区二区| 精品无人区乱码1区二区| 国产在线男女| 亚洲精品日韩av片在线观看| 亚洲最大成人手机在线| 亚洲丝袜综合中文字幕| 日本免费一区二区三区高清不卡| 日本av手机在线免费观看| 成人美女网站在线观看视频| 国产三级在线视频| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区| 色播亚洲综合网| 久久这里有精品视频免费| 久久热精品热| 成年女人永久免费观看视频| 欧美成人精品欧美一级黄| 1000部很黄的大片| 日本av手机在线免费观看| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 亚洲欧美中文字幕日韩二区| 一个人看视频在线观看www免费| 国产精品人妻久久久影院| 如何舔出高潮| 1000部很黄的大片| 91精品伊人久久大香线蕉| 国产成人午夜福利电影在线观看| 亚洲综合色惰| 美女高潮的动态| av在线蜜桃| 亚洲aⅴ乱码一区二区在线播放| 国产成人午夜福利电影在线观看| 美女国产视频在线观看| 韩国高清视频一区二区三区| 小说图片视频综合网站| 国产精品精品国产色婷婷| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 性色avwww在线观看| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区久久| 国产精品蜜桃在线观看| 精品人妻偷拍中文字幕| 免费搜索国产男女视频| 国产又色又爽无遮挡免| 亚洲欧洲国产日韩| 国产精华一区二区三区| 少妇熟女aⅴ在线视频| 国产av不卡久久| 女的被弄到高潮叫床怎么办| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久| 在线播放无遮挡| 在线免费观看的www视频| 久久久色成人| 大香蕉久久网| 91久久精品国产一区二区三区| 观看免费一级毛片| 日本色播在线视频| 国产黄色视频一区二区在线观看 | 日韩精品青青久久久久久| 欧美成人一区二区免费高清观看| 日韩在线高清观看一区二区三区| 国产成年人精品一区二区| 九九爱精品视频在线观看| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 九九在线视频观看精品| 欧美zozozo另类| 日日摸夜夜添夜夜添av毛片| 九色成人免费人妻av| 丝袜喷水一区| 草草在线视频免费看| 91精品国产九色| 蜜臀久久99精品久久宅男| 日韩亚洲欧美综合| 欧美区成人在线视频| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 久久久精品94久久精品| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 成年av动漫网址| 成人三级黄色视频| 久久久久性生活片| 国产乱人视频| 精品一区二区三区视频在线| 高清午夜精品一区二区三区| 国产成人a∨麻豆精品| 免费看光身美女| 99九九线精品视频在线观看视频| 久久这里有精品视频免费| 日韩三级伦理在线观看| 天堂影院成人在线观看| 欧美bdsm另类| 欧美3d第一页| 亚洲精品,欧美精品| 午夜激情欧美在线| 国产精品综合久久久久久久免费| 午夜免费激情av| 看十八女毛片水多多多| 国产高清有码在线观看视频| 伦精品一区二区三区| 听说在线观看完整版免费高清| 麻豆一二三区av精品| 亚洲内射少妇av| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 中文在线观看免费www的网站| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| 国产精品无大码| 美女高潮的动态| av播播在线观看一区| 99热6这里只有精品| 日韩精品青青久久久久久| 水蜜桃什么品种好| 日本免费一区二区三区高清不卡| 精品一区二区三区视频在线| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花 | 伊人久久精品亚洲午夜| 18禁在线播放成人免费| 97超碰精品成人国产| 激情 狠狠 欧美| 欧美日本视频| 免费大片18禁| 欧美日韩国产亚洲二区| 亚洲av一区综合| 内射极品少妇av片p| 国产黄片视频在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院精品99| av在线亚洲专区| 日本av手机在线免费观看| 伊人久久精品亚洲午夜| 欧美zozozo另类| 亚洲成色77777| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩高清专用| 男的添女的下面高潮视频| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 青春草国产在线视频| 精品人妻视频免费看| 国产91av在线免费观看| 久久99热这里只有精品18| 在线播放国产精品三级|