• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inter-carrier Interference Analysis for MIMO-OFDM Systems in High-Speed Train Environment

    2015-12-20 09:12:52WANGJunhua王軍華JIAOWuchen焦戊臣FANGYong

    WANG Jun-hua (王軍華),JIAO Wu-chen (焦戊臣),F(xiàn)ANG Yong (方 勇)

    School of Communication &Information Engineering,Shanghai University,Shanghai 200444,China

    Introduction

    High-speed train (HST) is a kind of fast orbit transportation tools,and the speed is more than 200 km/h.The communication model of HST is the broadband wireless communication.With the rapid development of HST worldwide,security,convenience and operational efficiency of passenger information services in the HST scenario have been ever-increasing.Moreover,a lot of key technical requirements have been imposed to the systems design of broadband wireless communications.

    As a promising technique to meet those requirements,orthogonal frenquency division multiplexing (OFDM)has been widely recognized as the key physical layer technology for the next generation broadband wireless communications[1].OFDM divides the broadband into many narrow bands for each subcarrier,which has the robustness to the frequency-selective fading multipath channel.Moreover, OFDM presents advantages of high spectrum efficiency,mitigating inter-symbol interference (ISI)by inserting a cyclic prefix (CP).OFDM has become a standard technique for the third-generation partnership project long-term evolution (3GPP LTE)[2]and worldwide interoperability for microwave access (WiMAX)[3]standards.Apart from several advantages,multi-carrier OFDM systems also have some drawbacks.The main drawback is that OFDM requires strict orthogonality between subcarriers.The orthogonality between the subcarriers is destroyed due to the Doppler frequency offset,particularly in the HST environment,which leads to serious ICI,and system performance may be considerably degraded.Therefore,it is necessary and significant to investigate the mechanism and influence factors of ICI.

    There is a large number of literatures about ICI of OFDM systems,but not a lot for HST environment,because the features of HST channel deviate significantly from those in low mobility.The channel of HST is non-stationary because the traversed environments are vary and complex,while the models of existing literatures are almost stationary.Based on the feature of wide sense stationary uncorrelated scattering (WSSUS),Zheng and Wang[4]analyzed the ICI of fractional Fourier transform orthogonal frequency division multiplexing (FRFT-OFDM)systems and discrete Fourier transform OFDM (DFT-OFDM)systems by evaluating the influence of ICI by utilizing the expressions of signal-to-interference ratio (SIR).Wang et al.[5]analyzed the ICI energy based on Jakes's model and gained the conclusion that most of a symbol energy spread over itself and its neighborhood subcarriers for the normalized Doppler frequency offset was small,and Cai and Giannakis[6]also achieved the conclusion for the continuous signal model.Ma et al.[7]explored the channel and interference gains for OFDM subchannel and gave a fact that the ICI was caused by the time-varying channel within one OFDM symbol.Haque et al.[8]analyzed the ICI of aeronautical channel.Assume that the model characteristics are known and the change of channel is relatively slow to an OFDM symbol.Basing on the linear time-varying channel model,Lin et al.[9]analyzed the effect of ICI and proposed a time domain ICI self-cancellation method.Du et al.[10]presented and compensated the ICI by estimating the high doppler shifts in long-term evolution for railway (LTE-R)systems.Shi[11]summarized the ICI problem and proposed the method to mitigate ICI in high mobility.Wang et al.[12]analyzed and explored the correlation property of ICI in the fast channel variation arising from highspeed motion.Chen et al.[13]explored the ICI vector in multipleinput multiple-output (MIMO)-OFDM systems and expressed the ICI gains at a particular subcarrier for channels with ITU-R vehicular channel A (VA)profile.For doubly-selective fading channels,Shu et al.[14]analyzed and deduced the upper bound of ICI power.Based on the additive white Gaussian noise(AWGN)channel,ICI is analyzed[15].The conventional channels of above literatures are WSSUS Rayleigh fading channel,flat fading channel and AWGN channel,which can't be used in HST environment.At present,the communication quality of HST is quite poor and a low data rate is observed[16].Some measurements and models about HST channel are implemented.Liu et al.[17]achieved the related parameter characteristics of HST channel by practical measurements.Gao et al.[18]estimated Ricean factor K by using a moment-based estimator along the Zhengzhou-Xi'an high speed railway.Gesbert et al.[19]presented a new model for MIMO outdoor wireless fading channels and investigated their capacity performance.Ghazal et al.[20]proposed a non-stationary geometry-based stochastic model(GBSM)in continuous domain for MIMO HST channels.Cheng et al.[21]proposed an adaptive GBSM for non-isotropic MIMO mobile-to-mobile (M2M)Ricean fading channels.For the geometrical street model,Chelli et al.[22]derived a nonstationary MIMO vehicle-to-vehicle (V2V)channel model.However,these measurements and models only analyze the channel of HST,there are no joint OFDM systems or MIMOOFDM systems to analyze and test the channel.Therefore,it is crucial to establish an HST channel model and joint MIMOOFDM systems to analyze and test the communication quality of the HST channel.The purpose of this paper is to get this target.

    The rest of this paper is organized as follows.Section 1 describes the system model including discrete channel model and MIMO-OFDM systems model.The CIR and channel coefficients are analyzed in section 2.The simulation results are discussed in section 3 and conclusions are drawn in section 4.

    1 System Model

    1.1 Discrete channel model

    For most of wireless channels,there is more than one path from transmitter to receiver.It occurs multiple paths due to reflection,scattering and refraction from different objects.We consider a high speed railway channel model which is different from traditional channel model.It has a big Doppler frequency offset because of high speed,angles of departure (AoD)and angles of arrival (AoA)are time-variant,which make the HST channel have the character of non-stationary.Ghazal et al.[20]proposed a non-stationary GBSM in continuous domain for MIMO HST channels.We will achieve a discrete HST channel model based on the GBSM for MIMO-OFDM systems.

    In order to achieve discrete-time channel impulse response,we must determine how to sample the channel of GBSM.Let W'be the baseband input signal bandwidth and BDbe the bandwidth of the maximum Doppler spread,then the bandwidth W =W' +BDand the range of bandwidth is set to[-W/2,W/2].If we set the sampling interval ts= 1/W,the Nyquist sampling is achieved.A detailed argument about the sampling rate required for time-varying channels can be found in Médard's literature[23].Therefore,the sampling interval is ts=1/(W' +BD).Ghazal et al.[20]proposed GBSM,and the model was consisted of multiple confocal ellipses with single-bounced (SB)rays and the line-ofsight (LoS)component[24].Considering a tapped delay line(TDL)structure,these confocal ellipses represent the taps.The base station (BS)and train are located at the foci.Then S effective scatterers are distributed on the l th ellipse,where l=1,2,…,L and L is the total number of ellipses or taps.We use the GBSM and consider an MIMO HST communication system with MTtransmitting and MRreceiving omni-directional antenna elements which are at equivalent height.The Tp-Rqlink stands for from the pth (p =1,2,…,MT)element of the BS,Tpto the qth (q =1,2,…,MR)element of the HST,Rq.The Tp-Rqlink is consisted of two parts:the first part is the first path which is a superposition of the LoS component and SB components;the second part is the other paths which are a sum of SB components only.Let t=nts(n=0,1,2,…)and based on the GBSM[20],the time-variant LoS AoA(n)[25]and time-variant scatters AoAis the AoA between link s(nl)-HST and HST direction,where s(nl)is the nlth effective scatterer at the lth ellipse,nl=1,2,…,S)in the GBSM can be described as

    where Dsis the initial distance between BS and HST,Dminis the position of BS to the track-side,and υRis the speed of HST.

    where rRis the direction of HST motion,(0)is the initial distance between scatterer s(nl)and HST,and(0)is the initial AoA.In fact, the AoDand AoAare interdependent for SB rays.The relationship between the AoD and AoA for multiple confocal ellipses model can be expressed as[21]

    where al(n)=| al(0)- υRnts| is the semi-major axis of the lth ellipse,f(n)=| f(0)- υRnts| is the half of the distance between two focal points of ellipses,and bl(n)denotes the semi-minor axis of the lth ellipse and is defined as bl(n)=The εpq(n),εpnl(n)and εnlq(n)are the propagation distances of the waves through the links Tp-Rq,Tp-s(nl)and s(nl)- Rq,respectively.They can be described as follows,

    where kp= (MT-2p +1)/2,kq= (MR-2q +1)/2;=(n)/[al(n)+f(n)cosf2(n) + 2al(n)f(n)cos(n)]/[al(n) + f(n)cos)(n)];δTand δRare the antenna element spaces at the BS and HST;and βT,βRare the multi-element antenna tilt angles.Then the propagation time of the waves through the links Tp-Rqand Tp-s(nl)-Rqcan be expressed as τpq(n)= εpq(n)/c and τpq,nl(n)=(εpnl(n)+εnlq(n))/c,(1≤l≤L),respectively.The c is the velocity of light.Then the complex channel coefficients of link Tp-Rqcan be described as follow.The first path can be expressed as

    The other paths can be expressed as

    Here,

    fcis the carrier frequency,Kpqis the Ricean factor,the phases ψn1and ψnlare independent and identically distributed random variables with uniform distributions over[-π,π),and fmaxis the maximum Doppler frequency offset.

    Through the above description,we have achieved the discrete channel impulse response hl,pq(n).Let hp,q(n,l):=hl,pq(n),(1 ≤l ≤L),and hp,q(n,l)represents the lth channel tap at time n between the pth transmitting antenna and the qth receiving antenna.We will use the discrete channel impulse response hp,q(n,l)in MIMO-OFDM systems.

    1.2 MIMO-OFDM systems model

    We consider MIMO-OFDM systems with MTtransmitting antennas and MRreceiving antennas.One OFDM block contains N subcarriers.Xp(k),(0≤k≤N -1)denotes the data signal sent by the transmitting antenna p at the subcarrier k,and the power of all the data signals are equal to each other.Then the transmitted signal xp(n)in the time domain through IFFT is given by

    CP is inserted into each OFDM block and transmitted signal xp(n)through the discrete non-stationary GBSM channel to the receiver.When CP is removed,the received signal of the qth antenna at time n can be expressed in the following tappeddelay-line model[26].

    where l is the number of multipath,hp,q(n,l)represents the lth channel tap at time n between the pth transmitting antenna and the qth receiving antenna,and wq(n)is the AWGN with zero mean and variance σ2w.

    Performing the FFT on the received signal,the signal of the qth antenna at the kth subcarrier can be expressed as

    Let Gp,q(k,k)=then Yq(k)can be rewritten as

    We can gain the expression from Eq.(11)thatk)·Xp(k) is the desired term, and the expression of(m,k)·Xp(m)is the ICI term.ICI term will be analyzed in section 2.

    2 ICI Analysis

    In order to analyze the ICI on one subcarrier (such as let the kth subcarrier be the desired subcarrier),the carrier-tointerference power ratio (CIR)can be used to evaluate the system ICI power level.The expression of CIR is the ratio of the desired received signal power on the kth subcarrier and the ICI received signal power on the other subcarriers.The expression of·Xp(k)is the desired term and the expression ofXp(m)is the ICI term for the qth receiving antenna.The additive noise is omitted.The desired signal power of the qth receiving antenna at the kth subcarrier can be represented as

    The ICI power of the qth receiving antenna at the kth subcarrier is

    Then the CIR of the qth receiving antenna at the kth subcarrier can be described as

    where |Gp,q(k,k)| and |Gp,q(m,k)| are the amplitudes of channel coefficients between the pth transmitting antenna and the qth receiving antenna.The |Gp,q(m,k)| can be described as

    where

    Let m=k,and |Gp,q(k,k)| can be achieved.The derivations of |Gp,q(m,k)| and |Gp,q(k,k)| are given in the appendix.

    We can achieve the fact from Eqs.(13),(15),and (16)that the mainly influence factors of ICI are Kpq,the multipath number L,and the time-variant Doppler frequency offsets fd(fd=fmaxcos α,α is an angle).Therefore,we can analyze the influence of ICI via investigating the channel parameters Kpq,the multipath number L and the normalized Doppler frequency offsets ε (ε=fdNts).For Eqs.(14)and (15),we will simulate and analyze the channel coefficients | Gp,q(m,k)| and CIR by investigating Kpq,the multipath number L and the normalized Doppler frequency offset ε,respectively in section 3.

    3 ICI Simulation Analysis

    3.1 Channel coefficients simulation

    During detecting the kth subcarrier of the pth transmitting antenna,channel coefficients |Gp,q(m,k)| are the weights of each subcarrier and determine the influence degree of the mth(m ≠k) subcarrier to the kth subcarrier.The operating frequency fcis set to 2.4 GHz,and the transmission bandwidth W' =1 MHz.Specifically,we consider a 2 ×2 MIMO-OFDM system.Figures 1-3 show the amplitudes of channel coefficients|Gp,q(m,k)| when k =32 and N =64.We obtain the fact from Figs.1-3 that most of a signal energy spreads on itself and its several neighborhood subcarriers,namely,the ICI on one subcarrier mainly comes from several neighborhood subcarriers.Figure 1 shows the amplitude of channel coefficient |Gp,q(m,k)| when K =5 dB and 10 dB.The desired signal part |Gp,q(k,k)| (k=32)for K =5 dB is less than that for K =10 dB,but the ICI signal parts |Gp,q(m,k)| almost are opposite.Figure 2 shows the | Gp,q(m,k)| with L = 2 and 6.The desired signal part |Gp,q(k,k)| (k =32)for L =2 is bigger than that for L = 6,but the ICI signal parts |Gp,q(m,k)|almost are opposite.The more number of multipaths are,the bigger interference of ICI is.Figure 3 shows the |Gp,q(m,k)|with ε=0.07 and ε=0.2.|Gp,q(k,k)| (k=32)decreases and|Gp,q(m,k)| increases as ε becomes larger.Besides,we can find from Figs.1-3 that the desired signal part |Gp,q(k,k)| is much bigger than the ICI signal part |Gp,q(m,k)|.

    Fig.1 The change of |Gp,q(m,k)| with K,L =6,υR =500 km/h

    Fig.2 The change of |Gp,q(m,k)| with L,K =10 dB,υR =500 km/h

    Fig.3 The change of |Gp,q(m,k)| with ε,K =10 dB,L =6

    3.2 CIR and bit error rate (BER)simulations

    Fig.4 The change of CIR with K,L =6,υR =500 km/h

    Fig.5 The change of CIR with L,K =10 dB,υR =500 km/h

    Fig.6 The change of CIR with ε,K =10 dB,L =6

    The CIR is used to evaluate the ICI power level.Let the desired subcarrier k=1,the total number of subcarriers N=512,the operating frequency fc= 2.4 GHz,and the transmission bandwidth W' = 1.5 MHz.Specifically,we consider a 2 × 2 MIMO-OFDM system.Figures 4-6 show the CIR as a function of K,the multipath number L and the normalized Doppler frequency offset ε,respectively.The modulation of bit source is QPSK.We can gain the fact from Figs.4-6 that CIR increases as K becomes larger,decreases as L and ε become larger,namely,the rate which ICI components power takes the total power decreases as K becomes larger,increases as L and ε become larger.Furthermore,note that the biggest impact factor for CIR is the multipath number L and the minimum impact factor for CIR is K.For Fig.5,CIR =8.2 when L =2,while CIR <1 when L =8.For Fig.4,CIR=2.0 when K =4 dB,and CIR = 3.75 when K = 20 dB.For Fig.6,the impact of normalized Doppler frequency offset ε for CIR is not significant,but CIR=1 when ε=0.18,namely,the power of desired signal is equal to the power of ICI components.When the train speed υR>400 km/h,the normalized Doppler frequency offset ε >0.35,CIR tends to zero,and the quality of communication is very poor at this condition.

    Finally,the BER performance is achieved after analyzing the ICI and its influence factors.Here,a specific condition of HST channel parameters is considered.The SNR is set to 30 dB,the Ricean factor K =10 dB,and the multipath number L =6.Random trials are performed 10 times.When the train speed υR,varying from 50 to 500 km/h,the desired signal power is degraded and the ICI power is increased,as shown in Fig.7.Correspondingly,the BER performance is shown in Fig.8.The conclusion can be found from Figs.7 and 8 that the BER performance will deteriorate as the ICI power level increases.The BER is very high without any measures taken at the receiver.Therefore,the ICI mitigation and cancellation are necessary if good communication quality wants to be achieved.

    Fig.7 The change of desired signal power and ICI power with train speed

    Fig.8 The change of BER performance with train speed

    4 Conclusions

    In this paper,by using a discrete-time non-stationary GBSM, we have analyzed the channel coefficient|Gp,q(m,k)| and CIR of one desired subcarrier and other interference subcarriers.We verify the fact that the ICI on one subcarrier mainly comes from its several neighborhood subcarriers.CIR is investigated by changing K,the multipath number L and the normalized Doppler frequency offset ε.Note that the biggest impact factor for CIR is the multipath number L and the minimum impact factor is K,and when the train speed υR>400 km/h,the normalized Doppler frequency offset ε >0.35,the CIR will tend to zero.Finally,BER is investigated by simulating a specific channel environment.Without any processing to the received signal,the BER is very high.The communication quality is very poor.Therefore,we should take some efficient measures to mitigate ICI next step.

    [1]Adachi F,Kudoh E.New Direction of Broadband Wireless Technology [J].Wireless Communications and Mobile Computing,2007,7(8):969-983.

    [2]3GPP.TR 25.814,Rev.7.1.0,Physical Layer Aspects for Evolved UTRA (Release 7)[S].3GPP Organizational Partners(ARIB,ATIS,CCSA,ETSI,TTA,TTC),2006.

    [3]IEEE Std.802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2:Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[S].New York:IEEE Computer Society and the IEEE Microwave Theory and Techniques Society,2006.

    [4]Zheng J,Wang Z L.ICI Analysis for FRFT-OFDM Systems to Frequency Offset in Time-Frequency Selective Fading Channels[J].IEEE Communications Letters,2010,14(10):888-890.

    [5]Wang H M,Chen X,Zhou S D,et al.Low-Complexity ICI Cancellation in Frequency Domain for OFDM Systems in Time-Varying Multipath Channels [J].IEICE Transactions on Communications,2006,89(3):1020-1023.

    [6]Cai X D,Giannakis G B.Bounding Performance and Suppressing Intercarrier Interference in Wireless Mobile OFDM [J].IEEE Transactions on Communications,2003,51(12):2047-2056.

    [7]Ma J,Orlik P V,Zhang J Y,et al.Reduced-Rate OFDM Transmission for Inter-subchannel Interference Self-cancellation over High-Mobility Fading Channels[J].IEEE Transactions on Wireless Communications,2012,11(6):2013-2023.

    [8]Haque J,Erturk M C,Arslan H.Aeronautical ICI Analysis and Doppler Estimation[J].IEEE Communications Letters,2011,15(9):906-909.

    [9]Lin K Y,Lin H P,Tseng M C.An Equivalent Channel Time Variation Mitigation Schefme for ICI Reduction in High-Mobility OFDM Systems[J].IEEE Transactions on Broadcasting,2012,58(3):472-479.

    [10]Du Q,Wu G,Yu Q L,et al.ICI Mitigation by Doppler Frequency Shift Estimation and Pre-compensation in LTE-R Systems [C].Wireless Communication Systems (WCS),China,2012:469-474.

    [11]Shi Q.ICI Mitigation for OFDM Using PEKF[J].IEEE Signal Processing Letters,2010,17(12):981-984.

    [12]Wang H W,Lin D W,Sang T H.OFDM Signal Detection in Doubly Selective Channels with Blockwise Whitening of Residual Intercarrier Interference and Noise[J].IEEE Journal on Selected Areas in Communications,2012,30(4):684-694.

    [13]Chen C Y,Lan Y Y,Chiueh T D.Turbo Receiver with ICIAware Dual-List Detection for Mobile MIMO-OFDM Systems[J].IEEE Transactions on Wireless Communications,2013,12(1):100-111.

    [14]Shu F,Hlaing M,Liang Y,et al.PIC-Based Iterative SDR Detector for OFDM Systems in Doubly-Selective Fading Channels[J].IEEE Transactions on Wireless Communications,2010,9(1):86-91.

    [15]Bishnu A,Jain A,Shrivastava A.A New Scheme of ICI Selfcancellation in OFDM System[C].International Conference on Communication Systems and Network Technologies,Gwalior,India,2013:120-123.

    [16]Yao J,Kanhere S S,Hassan M.Mobile Broadband Performance Measured from High-Speed Regional Trains [C].Vehicular Technology Conference (VTC Fall),San Francisco,CA,USA,2011:1-5.

    [17]Liu L,Tao C,Qiu J H,et al.Position-Based Modeling for Wireless Channel on High-Speed Railway under a Viaduct at 2.35 GHz[J].IEEE Journal on Selected Areas in Communications,2012,30(4):834-845.

    [18]Gao L Y,Zhong Z D,Ai B,et al.Estimation of the Ricean K Factor in the High Speed Railway Scenarios[C].International Conference on Communications and Networking,Beijing,China,2010:1-5.

    [19]Gesbert D,B?lcskei H,Gore D A,et al.Outdoor MIMO Wireless Channels:Models and Performance Prediction [J].IEEE Transactions on Communications,2002,50(12):1926-1934.

    [20]Ghazal A,Wang C X,Haas H,et al.A Non-stationary Geometry-Based Stochastic Model for MIMO High-Speed Train Channels [ C ].International Conference on ITS Telecommunications,Taiwan,China,2012:7-11.

    [21]Cheng X,Wang C X,Laurenson D I,et al.An Adaptive Geometry-Based Stochastic Model for Non-isotropic MIMO Mobile-to-Mobile Channels[J].IEEE Transactions on Wireless Communications,2009,8(9):4824-4835.

    [22]Chelli A,Patzold M.A Non-stationary MIMO Vehicle-to-Vehicle Channel Model Derived from the Geometrical Street Model[C].Vehicular Technology Conference (VTC Fall),San Francisco,USA,2011:1-6.

    [23]Médard M.The Effect upon Channel Capacity in Wireless Communications of Perfect and Imperfect Knowledge of the Channel[J].IEEE Transactions on Information Theory,2000,46(3):933-946.

    [24]Patzold M,Hogstad B O.A Wideband MIMO Channel Model Derived from the Geometric Elliptical Scattering Model [J].Wireless Communications and Mobile Computing,2006,8(5):138-143.

    [25]3GPP.TS 36.101 V10.2.1,3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment(UE)Radio Transmission and Reception (Release 10)[S].European Telecommunications Standards Institute,2011.

    [26]Jeon W G,Chang K H,Cho Y S.An Equalization Technique for Orthogonal Frequency-Division Multiplexing System in Time-Variant Multipath Channel [J].IEEE Transactions on Communications,1999,47(1):27-32.

    Appendix

    Derivation of Eq.(15)

    Substituting the discrete channel impulse response hp,q(n,l)into Gp,q(m,k)

    Because the period of one OFDM block is very short,we can find that(1 ≤l ≤L)can be approximated to constant during the OFDM period.Therefore,B(m,k),C(m,k),and D(m,k)can be described as

    Because ψn1is independent and identically distributed random variable with uniform distributions over[-π,π)and the mean of ψn1is E[ψn1]= 0,= S and C(m,k)can be simplified as

    In the same way,D(m,k)can be simplified as

    Therefore,

    Then |Gp,q(m,k)| can be achieved as

    Let m=k,and B(k,k),C(k,k),and D(k,k)are as follows

    Therefore,

    一本大道久久a久久精品| 久久人人爽av亚洲精品天堂| 丝袜美腿诱惑在线| 十分钟在线观看高清视频www| 亚洲精品美女久久久久99蜜臀| 嫩草影视91久久| 日韩一区二区三区影片| 色播在线永久视频| 一级毛片精品| 自拍欧美九色日韩亚洲蝌蚪91| 99riav亚洲国产免费| 另类亚洲欧美激情| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 18禁裸乳无遮挡动漫免费视频| 精品高清国产在线一区| 日韩制服丝袜自拍偷拍| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色 | 免费观看人在逋| 三级毛片av免费| 怎么达到女性高潮| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 99riav亚洲国产免费| 高清在线国产一区| 亚洲三区欧美一区| 十八禁网站免费在线| 日韩人妻精品一区2区三区| 久久久国产一区二区| 国产一区有黄有色的免费视频| 啦啦啦 在线观看视频| 91国产中文字幕| 黄色丝袜av网址大全| 国产精品久久久久久精品电影小说| 精品亚洲成国产av| 国产福利在线免费观看视频| av网站在线播放免费| 亚洲自偷自拍图片 自拍| 99国产极品粉嫩在线观看| 十八禁网站免费在线| 国产一区二区三区在线臀色熟女 | 久久精品国产a三级三级三级| 757午夜福利合集在线观看| 色尼玛亚洲综合影院| 18禁美女被吸乳视频| 欧美在线黄色| 成人国产一区最新在线观看| 久久久久精品人妻al黑| 国产精品成人在线| 真人做人爱边吃奶动态| 精品亚洲成a人片在线观看| 天天添夜夜摸| 日韩大片免费观看网站| 国产精品熟女久久久久浪| 波多野结衣av一区二区av| 国产男女超爽视频在线观看| 婷婷丁香在线五月| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 欧美乱妇无乱码| 久久热在线av| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕 | 伦理电影免费视频| 变态另类成人亚洲欧美熟女 | 亚洲精品久久午夜乱码| 99国产极品粉嫩在线观看| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 日韩免费高清中文字幕av| 免费看a级黄色片| 俄罗斯特黄特色一大片| 国产男女内射视频| 日韩中文字幕欧美一区二区| 亚洲精品粉嫩美女一区| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 露出奶头的视频| 亚洲人成伊人成综合网2020| 久久人人爽av亚洲精品天堂| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 成人国产一区最新在线观看| 精品国产一区二区三区四区第35| 欧美日韩成人在线一区二区| 热re99久久国产66热| 日本五十路高清| 叶爱在线成人免费视频播放| 多毛熟女@视频| 一级a爱视频在线免费观看| 少妇被粗大的猛进出69影院| 亚洲天堂av无毛| 青青草视频在线视频观看| 9色porny在线观看| 欧美黑人欧美精品刺激| 天天影视国产精品| 精品人妻1区二区| 欧美+亚洲+日韩+国产| 国产精品1区2区在线观看. | 亚洲精华国产精华精| 亚洲性夜色夜夜综合| 91精品三级在线观看| 成人亚洲精品一区在线观看| 久久av网站| 99国产精品免费福利视频| 一进一出好大好爽视频| 国产野战对白在线观看| 日韩视频在线欧美| 一个人免费在线观看的高清视频| 黄片大片在线免费观看| av网站在线播放免费| 中文字幕色久视频| 亚洲av片天天在线观看| 12—13女人毛片做爰片一| 女人被躁到高潮嗷嗷叫费观| h视频一区二区三区| 99re6热这里在线精品视频| 国产精品一区二区在线观看99| 99国产精品一区二区蜜桃av | 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 日本一区二区免费在线视频| 色婷婷久久久亚洲欧美| 男女床上黄色一级片免费看| 首页视频小说图片口味搜索| 亚洲三区欧美一区| 黑丝袜美女国产一区| 久久久久国产一级毛片高清牌| 黄色成人免费大全| 成人亚洲精品一区在线观看| 国产亚洲午夜精品一区二区久久| 国产高清视频在线播放一区| 国产有黄有色有爽视频| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 国产99久久九九免费精品| www.自偷自拍.com| av超薄肉色丝袜交足视频| av天堂久久9| 成人18禁在线播放| 成年版毛片免费区| 五月开心婷婷网| 久久久久久亚洲精品国产蜜桃av| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 欧美 亚洲 国产 日韩一| 在线永久观看黄色视频| 99久久国产精品久久久| 国产精品1区2区在线观看. | 免费高清在线观看日韩| 高清在线国产一区| 久久久久久久国产电影| 交换朋友夫妻互换小说| 精品一区二区三区av网在线观看 | 国产精品偷伦视频观看了| 美女福利国产在线| 午夜福利一区二区在线看| 久久久国产成人免费| 一区二区三区国产精品乱码| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三区在线| 免费看a级黄色片| 美女高潮到喷水免费观看| 日本a在线网址| 一级,二级,三级黄色视频| 性色av乱码一区二区三区2| 免费观看人在逋| 别揉我奶头~嗯~啊~动态视频| 午夜精品久久久久久毛片777| 2018国产大陆天天弄谢| 久久99热这里只频精品6学生| 在线十欧美十亚洲十日本专区| netflix在线观看网站| 欧美精品啪啪一区二区三区| 777久久人妻少妇嫩草av网站| 精品亚洲乱码少妇综合久久| 国产在线免费精品| 香蕉国产在线看| 精品第一国产精品| 女性被躁到高潮视频| 精品人妻1区二区| 免费女性裸体啪啪无遮挡网站| 日韩大片免费观看网站| 啦啦啦视频在线资源免费观看| 中文亚洲av片在线观看爽 | 伊人久久大香线蕉亚洲五| www.999成人在线观看| 亚洲伊人久久精品综合| 午夜两性在线视频| 久久人妻熟女aⅴ| 最近最新中文字幕大全电影3 | 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 曰老女人黄片| 亚洲人成77777在线视频| 国产精品久久电影中文字幕 | 亚洲国产看品久久| 欧美日韩福利视频一区二区| 欧美精品啪啪一区二区三区| 亚洲久久久国产精品| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 亚洲av日韩在线播放| 人人澡人人妻人| tube8黄色片| 黄片大片在线免费观看| 激情在线观看视频在线高清 | 99热国产这里只有精品6| 在线十欧美十亚洲十日本专区| 国产精品二区激情视频| 欧美另类亚洲清纯唯美| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| xxxhd国产人妻xxx| 精品视频人人做人人爽| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女 | 久久国产精品影院| 久久99一区二区三区| 日日夜夜操网爽| 日韩视频在线欧美| 三级毛片av免费| 亚洲五月色婷婷综合| 天天添夜夜摸| 中文字幕av电影在线播放| av欧美777| 国产成人一区二区三区免费视频网站| 国产一区二区三区视频了| 黄频高清免费视频| 50天的宝宝边吃奶边哭怎么回事| av在线播放免费不卡| 一进一出抽搐动态| 亚洲熟女毛片儿| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 侵犯人妻中文字幕一二三四区| 热99久久久久精品小说推荐| 90打野战视频偷拍视频| 两性夫妻黄色片| 可以免费在线观看a视频的电影网站| 国产精品欧美亚洲77777| 咕卡用的链子| 日本五十路高清| 叶爱在线成人免费视频播放| 亚洲成a人片在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 巨乳人妻的诱惑在线观看| 这个男人来自地球电影免费观看| 人人澡人人妻人| 精品一区二区三卡| 三级毛片av免费| 中文亚洲av片在线观看爽 | 亚洲第一欧美日韩一区二区三区 | 十八禁人妻一区二区| 我要看黄色一级片免费的| 亚洲成av片中文字幕在线观看| 熟女少妇亚洲综合色aaa.| 大型黄色视频在线免费观看| 亚洲五月婷婷丁香| 少妇 在线观看| 精品国产乱码久久久久久男人| 久久青草综合色| 成年动漫av网址| 99热网站在线观看| 亚洲av成人不卡在线观看播放网| 波多野结衣一区麻豆| 国产精品1区2区在线观看. | 国产熟女午夜一区二区三区| 少妇的丰满在线观看| 亚洲精品国产区一区二| 国产黄频视频在线观看| 亚洲专区字幕在线| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 80岁老熟妇乱子伦牲交| 女警被强在线播放| 欧美激情久久久久久爽电影 | 国产欧美亚洲国产| e午夜精品久久久久久久| 五月天丁香电影| 日本欧美视频一区| 一边摸一边抽搐一进一小说 | 狂野欧美激情性xxxx| 久久精品亚洲熟妇少妇任你| 一区福利在线观看| 黄片大片在线免费观看| 91精品国产国语对白视频| 波多野结衣av一区二区av| 1024视频免费在线观看| 激情在线观看视频在线高清 | 亚洲第一欧美日韩一区二区三区 | 久9热在线精品视频| 黄色成人免费大全| 久久免费观看电影| 九色亚洲精品在线播放| 亚洲黑人精品在线| 久久久久网色| 日本黄色日本黄色录像| 国产成人欧美在线观看 | 看免费av毛片| 18禁观看日本| 深夜精品福利| 亚洲伊人久久精品综合| 亚洲av片天天在线观看| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区综合在线观看| 操出白浆在线播放| 免费一级毛片在线播放高清视频 | tube8黄色片| 夜夜爽天天搞| 两个人看的免费小视频| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| 夜夜爽天天搞| 亚洲精品国产色婷婷电影| 老司机靠b影院| 欧美激情高清一区二区三区| 国产精品一区二区在线不卡| 亚洲 国产 在线| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频 | 制服诱惑二区| 老司机深夜福利视频在线观看| 亚洲成av片中文字幕在线观看| 色综合欧美亚洲国产小说| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| 午夜日韩欧美国产| 搡老岳熟女国产| 欧美乱妇无乱码| 免费在线观看视频国产中文字幕亚洲| kizo精华| aaaaa片日本免费| 国产亚洲av高清不卡| 国产欧美亚洲国产| 精品国产乱子伦一区二区三区| 国产欧美日韩一区二区三| 国产精品欧美亚洲77777| 国产淫语在线视频| 熟女少妇亚洲综合色aaa.| 久久国产精品男人的天堂亚洲| 国产成人免费观看mmmm| 亚洲伊人色综图| 日韩有码中文字幕| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 国产高清视频在线播放一区| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| tocl精华| 亚洲全国av大片| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线| 国产成人一区二区三区免费视频网站| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 日本五十路高清| 老司机午夜十八禁免费视频| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 99热网站在线观看| 在线观看一区二区三区激情| 色综合欧美亚洲国产小说| 欧美在线黄色| 一级毛片电影观看| 人妻一区二区av| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 啦啦啦视频在线资源免费观看| 国产一区二区激情短视频| 日日摸夜夜添夜夜添小说| 99在线人妻在线中文字幕 | 欧美日韩黄片免| 成年人黄色毛片网站| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看| 丝瓜视频免费看黄片| 午夜老司机福利片| 亚洲成人免费av在线播放| 成人国语在线视频| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 国产一区二区激情短视频| 男男h啪啪无遮挡| 成年人免费黄色播放视频| 男女高潮啪啪啪动态图| 免费看a级黄色片| 又大又爽又粗| 日韩免费高清中文字幕av| 成人免费观看视频高清| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 久久 成人 亚洲| 搡老岳熟女国产| 99riav亚洲国产免费| 色综合婷婷激情| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 女同久久另类99精品国产91| 亚洲九九香蕉| 亚洲精品av麻豆狂野| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 日韩制服丝袜自拍偷拍| 欧美精品一区二区免费开放| 日本黄色视频三级网站网址 | 免费av中文字幕在线| 国产欧美日韩一区二区三| 两个人看的免费小视频| 亚洲中文av在线| 欧美日韩国产mv在线观看视频| 日韩欧美免费精品| 国产精品99久久99久久久不卡| 咕卡用的链子| 精品福利永久在线观看| 久久久久久免费高清国产稀缺| 最黄视频免费看| 老熟女久久久| 精品午夜福利视频在线观看一区 | 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| www.熟女人妻精品国产| 日韩一卡2卡3卡4卡2021年| 丝瓜视频免费看黄片| 国产精品亚洲av一区麻豆| 日韩精品免费视频一区二区三区| 精品第一国产精品| 90打野战视频偷拍视频| 久久久久网色| 国产成人影院久久av| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 日韩视频在线欧美| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| 99国产精品一区二区蜜桃av | 久久精品国产亚洲av香蕉五月 | 不卡一级毛片| 一区二区av电影网| 国产淫语在线视频| 人人妻人人添人人爽欧美一区卜| 黑丝袜美女国产一区| 国产精品国产高清国产av | 91老司机精品| 90打野战视频偷拍视频| 国产精品国产高清国产av | 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久毛片微露脸| 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 999久久久精品免费观看国产| 午夜老司机福利片| 精品视频人人做人人爽| 黄色怎么调成土黄色| 成在线人永久免费视频| 国产精品1区2区在线观看. | 人妻久久中文字幕网| 日韩欧美一区二区三区在线观看 | 黄色丝袜av网址大全| 国产精品香港三级国产av潘金莲| 精品国产一区二区久久| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 乱人伦中国视频| 日本av免费视频播放| 欧美激情久久久久久爽电影 | 电影成人av| 午夜91福利影院| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看 | 日韩精品免费视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产一区二区三区视频了| 日本av免费视频播放| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 亚洲欧美激情在线| 1024视频免费在线观看| 亚洲五月色婷婷综合| 国产成人影院久久av| 亚洲成人免费电影在线观看| 91国产中文字幕| 黄色 视频免费看| 国产精品美女特级片免费视频播放器 | 99久久精品国产亚洲精品| 亚洲av成人不卡在线观看播放网| 性少妇av在线| 丝瓜视频免费看黄片| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 波多野结衣av一区二区av| 亚洲精品自拍成人| 国产日韩欧美视频二区| 久久性视频一级片| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久久毛片微露脸| 啦啦啦在线免费观看视频4| 少妇精品久久久久久久| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 免费不卡黄色视频| 亚洲美女黄片视频| 在线av久久热| 美女午夜性视频免费| 亚洲国产欧美在线一区| 亚洲 国产 在线| 免费在线观看黄色视频的| 国产欧美日韩一区二区三区在线| 电影成人av| 一边摸一边做爽爽视频免费| 波多野结衣一区麻豆| 国产精品久久久av美女十八| 精品国产乱子伦一区二区三区| 久久人妻熟女aⅴ| 超碰97精品在线观看| 狂野欧美激情性xxxx| 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 香蕉国产在线看| 免费少妇av软件| 人人妻人人添人人爽欧美一区卜| 一夜夜www| 国产精品久久久久久精品古装| 欧美黄色淫秽网站| 亚洲久久久国产精品| 老司机亚洲免费影院| 69精品国产乱码久久久| 国产精品香港三级国产av潘金莲| 91精品国产国语对白视频| 日韩人妻精品一区2区三区| 黑人巨大精品欧美一区二区蜜桃| 正在播放国产对白刺激| 久久中文字幕人妻熟女| 亚洲欧美激情在线| 少妇的丰满在线观看| 一二三四社区在线视频社区8| av不卡在线播放| 欧美人与性动交α欧美精品济南到| 天天影视国产精品| 亚洲色图综合在线观看| cao死你这个sao货| 日韩制服丝袜自拍偷拍| 国产精品一区二区在线不卡| 狠狠婷婷综合久久久久久88av| 久久久精品区二区三区| 国产单亲对白刺激| 91精品三级在线观看| 亚洲一区中文字幕在线| 无人区码免费观看不卡 | 怎么达到女性高潮| 男女下面插进去视频免费观看| 亚洲全国av大片| 亚洲精品国产色婷婷电影| 香蕉丝袜av| 悠悠久久av| svipshipincom国产片| 亚洲性夜色夜夜综合| 妹子高潮喷水视频| 欧美另类亚洲清纯唯美| 一个人免费在线观看的高清视频| 亚洲三区欧美一区| 欧美成人免费av一区二区三区 | 人成视频在线观看免费观看| 丝瓜视频免费看黄片| 最近最新中文字幕大全电影3 | 亚洲天堂av无毛| 欧美黑人精品巨大| 欧美乱码精品一区二区三区| tocl精华| 人妻 亚洲 视频| 一本久久精品| 后天国语完整版免费观看| 国产又爽黄色视频| 热re99久久国产66热| 国产精品偷伦视频观看了| 99re在线观看精品视频| 色播在线永久视频| 欧美精品一区二区免费开放| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 香蕉国产在线看| 精品人妻在线不人妻| 搡老熟女国产l中国老女人| 纵有疾风起免费观看全集完整版| 天堂俺去俺来也www色官网| 亚洲国产av影院在线观看| 日韩欧美一区视频在线观看| 天堂8中文在线网| 美女高潮到喷水免费观看| 一本综合久久免费| 久久精品91无色码中文字幕| 999久久久精品免费观看国产| 午夜老司机福利片| 97在线人人人人妻| 老司机影院毛片| 99国产精品99久久久久| 黄频高清免费视频|