甘世書(shū)
(國(guó)家林業(yè)局中南林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院,長(zhǎng)沙 410014)
利用度量誤差模型建立海南省松樹(shù)和橡膠樹(shù)質(zhì)量與材積相容模型
甘世書(shū)
(國(guó)家林業(yè)局中南林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院,長(zhǎng)沙 410014)
利用度量誤差聯(lián)立方程組模型方法,研建了海南省松樹(shù)和橡膠樹(shù)的一元與二元質(zhì)量與材積相容模型,所建模型預(yù)估精度較高,達(dá)到了93%以上,模型具有良好的全面切合性能,可用于實(shí)際生產(chǎn)中。
度量誤差模型;質(zhì)量與材積相容模型;松樹(shù);橡膠樹(shù);海南省
松樹(shù)和橡膠樹(shù)是海南省主要用材樹(shù)種,也是兩大重要的工業(yè)原料樹(shù)種,主要生產(chǎn)松脂和天然橡膠,每年都面臨著大量的更新采伐。而在實(shí)際采伐過(guò)程中,經(jīng)常需要估計(jì)立木的質(zhì)量。為了方便于生產(chǎn),快捷準(zhǔn)確地利用單株立木材積測(cè)算出樹(shù)干(去皮)質(zhì)量,編制樹(shù)干(去皮)質(zhì)量與樹(shù)干去皮材積的關(guān)系模型是切實(shí)可行的辦法之一,也具有十分重要的現(xiàn)實(shí)意義。
由于在質(zhì)量與材積轉(zhuǎn)換模型中,以材積作為自變量,而材積主要通過(guò)材積模型獲得,因此材積自變量不可避免的帶有誤差,用無(wú)誤差變量采用普通回歸估計(jì)方法建模已不再適宜。針對(duì)此問(wèn)題,本文采用了度量誤差聯(lián)立方程組模型方法研究建立了質(zhì)量與材積相容性模型,以期為實(shí)際生產(chǎn)提供可靠的計(jì)量工具。
研建通用型模型,為了保證其適用性,將樣本采集范圍盡可能覆蓋海南省各個(gè)地區(qū),同時(shí)盡可能擴(kuò)大樣本變量(胸徑、樹(shù)高)的覆蓋范圍,以真實(shí)反映變量間相關(guān)規(guī)律的完整性、真實(shí)性和穩(wěn)定性[1]。因此將松樹(shù)和橡膠樹(shù)的取樣范圍按胸徑分為6,10,16,22,28和32 cm以上共6個(gè)取樣點(diǎn)位。在每點(diǎn)位取樣時(shí)要求盡量按樹(shù)高的實(shí)際變化范圍分低、中、高(以高徑比控制)選取樣木,伐倒后在0/10,0.5/10,1/10,2/10,…,9/10樹(shù)高處實(shí)測(cè)帶皮和去皮直徑,同時(shí)采集各樣木鮮質(zhì)量樣品。
為了減少外業(yè)調(diào)查難度,將樹(shù)干3/10樹(shù)高處(去皮)的密度作為整個(gè)樹(shù)干(去皮)平均密度。調(diào)查樣本的長(zhǎng)度統(tǒng)一為100 cm,位置以3/10樹(shù)高分接處為中點(diǎn),上下各取50 cm。保證取樣長(zhǎng)度誤差在±1 cm范圍內(nèi)。用油鋸截取稱(chēng)樣本,截取時(shí)使鋸路盡量與樹(shù)干垂直。鋸?fù)旰?,分別測(cè)量上下兩頭的去皮直徑,同時(shí)復(fù)測(cè)樣本的長(zhǎng)度,并按最長(zhǎng)和最短的位置測(cè)2次,取平均值。
樣本質(zhì)量統(tǒng)一用電子稱(chēng)稱(chēng)量。在取樣后48 h, 96 h和144 h后再分別測(cè)定各樣本的質(zhì)量,起算時(shí)間以標(biāo)記的時(shí)間為準(zhǔn),時(shí)間誤差應(yīng)控制在±1 h范圍內(nèi),原則上不能超過(guò)±2 h。松樹(shù)和橡膠樹(shù)具體的建模樣本資料按徑級(jí)分布情況詳見(jiàn)表1。
表1 建模樣本資料按徑級(jí)分布情況徑階/cm建模樣本/株松樹(shù)橡膠樹(shù)62727102627162727222627282627≥322326合計(jì)155161
首先根據(jù)樣木樣段計(jì)算其去皮材積,進(jìn)而計(jì)算樣木密度,在根據(jù)整樣木去皮材積計(jì)算整樣木質(zhì)量。
具體計(jì)算各樣木樣段去皮材積公式如下[2]:
式中:V樣品為樣木樣段去皮材積(m3),D大為大頭去皮直徑(cm),D小為小頭去皮直徑(cm),L為長(zhǎng)度(m)。
計(jì)算整樣木去皮材積公式如下:
分別將松樹(shù)和橡膠樹(shù)按建模樣本與檢驗(yàn)樣本作材積與質(zhì)量對(duì)應(yīng)關(guān)系散點(diǎn)圖,分析表明,樣本資料中無(wú)異常樣木,所采集的樣木均用于建模和檢驗(yàn)。
通常的回歸模型,是假定自變量的觀測(cè)值不含誤差,而因變量的觀測(cè)值含有誤差。而實(shí)際中兩者都可能存在誤差,如抽樣誤差、測(cè)量誤差等,這些各種來(lái)源的誤差統(tǒng)稱(chēng)為度量誤差。當(dāng)自變量和因變量的觀測(cè)值中都含有度量誤差時(shí),通常的回歸模型估計(jì)方法就不再適用,而必需采用度量誤差模型方法,非線(xiàn)性度量誤差聯(lián)立方程組方法一般明顯優(yōu)于最小二乘法[3]。
根據(jù)數(shù)據(jù)分析表明,一元質(zhì)量模型和二元質(zhì)量模型差異不大,因此在建立聯(lián)立方程組模型時(shí)質(zhì)量模型統(tǒng)一采用一元模型。
一元模型結(jié)構(gòu)如下:
V=a0×Da1
W平均=b0×Db1×V
二元模型結(jié)構(gòu)如下:
V=a0×Da1×Ha2
W平均=b0×Db1×V
W平均取樣木在伐倒后48 h,96 h和144 h后三次測(cè)量的去皮濕質(zhì)量的平均值,V為去皮材積,D為胸徑,H為樹(shù)高,ai和bi為模型參數(shù)。
由于材積和質(zhì)量數(shù)據(jù)普遍存在著異方差性,在利用非線(xiàn)性回歸方法進(jìn)行擬合時(shí)還要采取措施消除異方差的影響[4-5]。常用的方法有采用對(duì)數(shù)回歸或者加權(quán)回歸,均采用非線(xiàn)性加權(quán)回歸的方法。關(guān)于權(quán)函數(shù)的選擇,根據(jù)獨(dú)立擬合方程的方差建立與自變量之間的回歸方程。
用6個(gè)指標(biāo)來(lái)對(duì)模型進(jìn)行評(píng)價(jià)和檢驗(yàn)。確定系數(shù)R2,估計(jì)值的標(biāo)準(zhǔn)差SEE,總相對(duì)誤差TRE,平均系統(tǒng)誤差MSE,預(yù)估精度P和平均百分標(biāo)準(zhǔn)誤差MPSE,計(jì)算公式如下:
采用非線(xiàn)性加權(quán)回歸方法對(duì)模型參數(shù)進(jìn)行估值,具體模型擬合結(jié)果見(jiàn)表2。
從表2中統(tǒng)計(jì)可知,無(wú)論一元模型還是二元模型,模型均具有較高的確定系數(shù)、較小的剩余標(biāo)準(zhǔn)差、較高的預(yù)估精度,模型的TRE和MSE都在±3%以?xún)?nèi),模型擬合結(jié)果良好。當(dāng)模型從一元提升到二元,松樹(shù)的立木去皮材積模型和質(zhì)量模型的P和R2均有大幅度地提高,SEE也有大幅地的下降,而橡膠樹(shù)模型從一元提升到二元,模型P和R2兩個(gè)指標(biāo)提高的幅度不大,只有SEE指標(biāo)有明顯下降。以上分析說(shuō)明用一元、二元模型來(lái)估計(jì)均是合適的。在實(shí)際工作中,如果要得到更高精度的預(yù)估值,則優(yōu)先采用二元模型。
表2 一元和二元相容性模型擬合結(jié)果樹(shù)種類(lèi)型模型abcR2SEEP/%MPSE/%TRE/%MSE/%一元材積6.8361E-52.6076470.89340.0935893.9120.580.190.03質(zhì)量798.3739430.062532 0.888296.2021893.6420.990.190.06松樹(shù)二元材積3.5263E-51.891691.0543040.98010.0405297.368.972.080.23質(zhì)量754.2160620.082716 0.977443.3975997.1311.391.000.50一元材積1.48877E-42.413606 0.95460.0616196.5616.95-0.64-1.04質(zhì)量796.3552810.039481 0.947459.3680296.3718.67-0.21-4.48橡膠二元材積5.6588E-51.9295430.8665950.96800.0506697.1710.582.46-0.06質(zhì)量652.165980.104626 0.955954.5360396.6613.591.28-2.11
3.2.1 模型殘差隨機(jī)性檢驗(yàn)
根據(jù)松樹(shù)和橡膠樹(shù)材積殘差和質(zhì)量殘差的分布圖來(lái)看,所建立的一元和二元相容模型殘差基本服從隨機(jī)分布,不存在明顯的系統(tǒng)偏差,模型具有良好的全面切合性能。由于篇幅限制,在此只列出了松樹(shù)殘差分布圖,見(jiàn)圖1、圖2。
3.2.2 分段檢驗(yàn)
作為通用性預(yù)估模型,僅采用上述統(tǒng)計(jì)指標(biāo)進(jìn)行整體評(píng)價(jià)尚不足以充分辨識(shí)所建模型的效果,還需要采用TRE和MSE2個(gè)統(tǒng)計(jì)指進(jìn)行分段檢驗(yàn)。具體分段檢驗(yàn)的結(jié)果見(jiàn)表3。
從表3中統(tǒng)計(jì)指標(biāo)可知,松樹(shù)一元相容性模型在10 cm徑階下,質(zhì)量和材積模型的TRE、MSE指標(biāo)在10%以上;在其它各徑階下,質(zhì)量和材積模型的TRE、MSE指標(biāo)基本上在±5%以?xún)?nèi)。松樹(shù)二元相容性模型在各徑階下,質(zhì)量和材積模型的TRE、MSE指標(biāo)基本上在±5%以?xún)?nèi);且二元相容性模型要明顯優(yōu)于一元相容性模型,這主要原因在于,模型從一元提升到二元,很大程度上提高了材積模型的預(yù)估精度,因此也就提高質(zhì)量模型在各徑階下的適用性。
圖1 松樹(shù)一元質(zhì)量與材積相容模型殘差隨胸徑分布圖
圖2 松樹(shù)二元質(zhì)量與材積相容模型殘差隨胸徑分布圖
表3 松樹(shù)和橡膠樹(shù)分段檢驗(yàn)結(jié)果和橡膠樹(shù)樹(shù)種徑階/cm一元模型二元模型質(zhì)量材積質(zhì)量材積TRE/%MSE/%TRE/%MSE/%TRE/%MSE/%TRE/%MSE/%6-5.98-5.38-4.63-4.484.475.43.83.571012.011211.0411.02-0.840.16-2.7-1.9616-5.49-5.8-5.52-5.79-1.99-2.24-2.09-2.46松樹(shù)221.72.161.381.85-1.42-1.23-1.19-1.4128-2.64-2.89-2.91-3.22-0.15-0.610.62-0.01321.840.762.171.322.931.574.94.046-24.16-24.41-10.12-10.57-7.14-6.51.261.3510-11.52-11.87-2.29-2.45-6.95-8.63-2.17-3.71161.830.936.135.35-5.63-7.23-3.44-4.76橡膠樹(shù)2210.1410.234.224.265.516.060.010.33280.010.17-0.77-0.61-0.800.140.4232-3.19-1.83-3.06-2.292.783.856.326.26
從表3中統(tǒng)計(jì)指標(biāo)可知,橡膠樹(shù)一元質(zhì)量與材積相容模型,在6 cm徑階、10 cm和22 cm徑階下,存在著一定的偏差,在其它各徑階下模型的TRE和MSE指標(biāo)均在±4%以?xún)?nèi),這主要原因在于,橡膠樹(shù)分叉枝條較多,單靠胸徑而未考慮樹(shù)高的影響很難準(zhǔn)確反映材積的變化規(guī)律。因此,橡膠樹(shù)二元質(zhì)量與材積相容模型要明顯好于一元相容模型,在各徑階下,二元相容模型的TRE和MSE基本上在±7%以?xún)?nèi),且無(wú)明顯系統(tǒng)偏差。
本文利用度量誤差聯(lián)立方程組模型方法,為海南省松樹(shù)、橡膠樹(shù)兩個(gè)樹(shù)種分別建立了一元和二元質(zhì)量與材積相容模型,經(jīng)模型檢驗(yàn)分析表明:
1) 度量誤差聯(lián)立方程組模型能有效解決材積方程和質(zhì)量方程之間不相容的問(wèn)題,并可同時(shí)建立立木材積方程、質(zhì)量方程及其轉(zhuǎn)換函數(shù),確保了相互之間估計(jì)結(jié)果的協(xié)調(diào)一致性和參數(shù)穩(wěn)健性。
2) 所建立的一元和二元相容性模型擬合效果均很好,當(dāng)模型從一元提升到二元時(shí),材積模型的精度有大幅度地提高,從而導(dǎo)致質(zhì)量模型的全面切合性能得到顯著提高。盡管一元模型在各別徑下,存在著一定的偏差,但對(duì)總體預(yù)估是無(wú)偏的。在實(shí)際生產(chǎn)中應(yīng)注意模型的適宜范圍,一元模型主要應(yīng)用于較大總體范圍內(nèi)的估計(jì),對(duì)于小區(qū)域范圍或者單木的質(zhì)量估計(jì),則應(yīng)考慮使用二元模型。
[1] 駱期邦,曾偉生,賀東北. 林業(yè)數(shù)表模型——理論、方法與實(shí)踐[M]. 湖南: 湖南科學(xué)技術(shù)出版社,2001.
[2] 孟憲宇. 測(cè)樹(shù)學(xué)[M]. 北京: 中國(guó)林業(yè)出版社,2006.
[3] 唐守正, 郎奎建, 李??? 統(tǒng)計(jì)和生物數(shù)學(xué)模型計(jì)算ForStat教程[M]. 北京:科學(xué)出版社,2009.
[4] 曾偉生, 駱期邦,賀東北. 論加權(quán)回歸與建模[J]. 林業(yè)科學(xué), 1999, 35(5 ): 5- 11.
[5] 曾偉生, 唐守正.立木生物量模型的優(yōu)度評(píng)價(jià)和精度分析[J].林業(yè)科學(xué), 2011, 47( 11): 106-113.
UsingMeasurementErrorModelingMethodtoEstablishCompatibleWeightandVolumeModelforPineandRubberinHainan
GAN Shishu
(Central South Forest Inventory and Planning Institute of State Forestry Administration, Changsha 410014, Hunan, China)
In this paper, we established one-way and two-way compatible weight and volume models for pine and rubber in Hainan province, using measurement error modeling method. The precision of these models were significantly high, more than 93%, these models have good comprehensive appropriateness and can be used in practical production.
measurement error model;compatible weight and volume model;pine;rubber;Hainan
2015-06-12
甘世書(shū)(1963-),男,湖南湘陰人,高級(jí)工程師,主要從事森林資源監(jiān)測(cè)等工作。
S 757.2
A
1003-6075(2015)04-0045-04
10.16166/j.cnki.cn43-1095.2015.04.012