• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of improved PSO-based to neural network control system of parallel mechanism

    2015-12-19 08:47:54ChangjianWANGPengWANGSchoolofMechanicalEngineeringYangtzeUniversityJingzhou434000China
    機床與液壓 2015年12期
    關(guān)鍵詞:自適應(yīng)性控制精度魯棒性

    Chang-jian WANG,Peng WANG(School of Mechanical Engineering,Yangtze University,Jingzhou 434000,China)

    Application of improved PSO-based to neural network control system of parallel mechanism

    Chang-jian WANG,Peng WANG*
    (School of Mechanical Engineering,Yangtze University,Jingzhou 434000,China)

    As the traditional PID neural network could not effectively control the real-time nonlinear multivariable system,this paper proposed a new type of multivariable adaptive PID neural network controller.This control system could put out feedback and activation feedback,with the function of proportion,integration and differentiation.We used the Particle Swarm Algorithm which is based on the solution space division to optimize the parameters of the controller.It also could eliminate effect of initial values on the accuracy of the controller and can be applied to the parallel mechanism control system.As the simulation results shown,controller had higher precision,better robustness and adaptability.This research provided a theoretical basis for the optimization design and performance analysis of the parallel mechanism.

    PID neural network,Parallel mechanism,Improved particle swarm algorithm

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail:jdygcyw@126.com

    1 Introduction

    Comparing to the series robot,the parallel robot has high stiffness,strong bearing capacity,high precision and compact structure.It could be suitable for some applications in machining,aircraft manufacturing,and health care which have small work space and large load strength.

    With the rapid development of computer technology and artificial intelligence,people integrate mathematical models and operating experience into the computer in order to control the entire mechanical system[1]. It is very difficult to establish an accurate model of control system of parallel mechanism due to typically nonlinear multivariable systems and uncertainties and other factors outside interference.So PID control and its combination with other control theory can be used to solve such problems and favored by the majority of researchers.Neural network has powerful computing,strong robust,high fault tolerance and self-learning that can be approached to continuous linear function,but the presence of slow learning speed,many input parameters and poor dynamic performance make it not easy to achieve in reality.To solve this problem,the advantages of PID controller and neural network were combined and then a new neural network PID controller(PIDNNC)was brought up that it had robustness,high control accuracy and could overcome the above drawbacks[2].This paper introduced an improved Particle Swarm Optimization(PSO)based on the solution space and put it into PIDNNC in order to figure out the local minima due to the gradient descent method of adjusting the weights and thresholds.This method not only improved the learning speed and convergence rate,but also obtained a better accuracy,sta-bility and convergence.Furthermore it provided a theoretical basis for improving control precision of parallel mechanism.

    2 Improved particle swarm optimization

    PSO is an optimized algorithm which makes use of group collaboration to achieve the global intelligent research.PSO imitate the process of bird population prey:each particle in the PSO“flights”towards to the optimal direction based on a search of all the particles and their own experience[3-4].Firstly,PSO initializes group of particles N,and then finds the optimal solution through an iterative process.The extreme speed and position of particles are updated by tracking the personal best position and global best position in each iteration.Update formula is as follows:

    Vi:evolution of the ithparticle velocity;Xi:position of the ithparticle;pBest[i]:the“best”position of the ithparticle;g:the“best”position in group;w:inertia weigh;c1,c2:acceleration factor;rand(t):random function,generate[0,1]of the random number.

    The solution space is derived from a term of linear algebra which is defined as follows:if ξ1,ξ2,…,ξnare N solutions of homogeneous linear equations,then any linear combination of their c1ξ1+c2ξ2+…+cnξnis also the solution vector of homogeneous linear equations.The collection of all the solutions formed a vector space,which is called solution space[5].It can be divided precisely and refined PSO.But one of the most critical factors is how to determine the extreme value area p,when p is stability as well as other areas are basically stable.How to divide solution space is as follows.

    1)Initialize attribute of particles,such as equally spaced and speed distribution;

    2)Record test value and solutions of statistics for each particle,all the particles are ranked according to the initialized attribute,and then identify the most value area and extreme area of every range and calculate the probability p;

    3)If the probability p is stable,output the value;otherwise return to(1)with doubling the size of particle swarm.

    Determination of the probability p is that it assumed p1,…,pnafter n times testing,if p satisfy i≥n/2 andwe define p is stable,moreover β≤0.001 could meet test requirements.

    In the researching process of particle swarm,every particle is constantly pursuing the known optimal position.But it also could cause other particles chasing the local extremes when it becomes the temporary optimal location,hence the whole population into this local extreme.Therefore,to solve this problem of blind search,we first divided the solution space of all the particle swarm into several regions;if there was only one extreme value in a certain area,then blind search could work:the particles could be automatically tend to it.Space can be divided equally,randomly or with the graphics division(such as triangles,squares);each interval was an independent group of small particles.Interval extreme could be found in each area with performance standards,and then compare each interval extreme;finally,find a whole range extreme position for an optimum solution.

    3 Controller design of parallel mechanism

    3.1 Multivariable control PIDNNC

    PID control,produced in the early 20th century,has dominated the field of automatic control,depending on its simple structure,good stability and flexible handling.Neural network with its own self-correction and adaptive capacity has been widely adopted in different situations.A new controller PIDNNC,in which structural features and control laws were effectively combined,is shown in Fig.1.There are input section ej(j=1,2,…,s),one output section and three hidden layers;hidden layer,input and output end existed recursive feedback loop;there is a linear activation function in the hidden layer and output layer[6].In the controller,the first node a1of hidden layer contained a dynamic output feedback and record function which could feedback the weighting sum to node n1,while the second node a2does not had feedback;the third node a3has active feedback and it delayed with minus units of output after weighting sum of nodes n3and regarded it as a new input to n3.

    As is shown in the Fig.1,PIDNNC is negative feedback loop;input is rj(k)(j=1,2…s),output is yj(k)(j=1,2,…,s),system output error is ej(k)= rj(k)-yj(k).The controller’s output at time k in hidden layer is αi(k)(i=1,2,3)

    Network terminal output:

    Compared to formula(1)(2)(3)to(5),(1)presents the integral feature like the PID control.(2)is of proportion character which has activated feedback and(3)reflects the differential aspect.Unlike previous PID neural network,which is caused by controller that contains the output feedback and self-feedback network hybrid recursive composition,PIDNNC is designed convenient,simple structure and the determined number of nodes in the hidden layer.In addition,three sets of hidden layer weights w1j,w2j,w3j(j=1,2,…,s)are similar to the proportion,integration and differential that make physical meaning of parameters relatively clear.Multivariable controller is designed according to the complexity of the object and this process is more convenient than conventional PID.

    Fig.1 ControIIer of PIDNNC

    In the design process of the controller,we need to determine the number of input layer,hidden layer and output layer first,and then to adjust the network weights w1j,w2j,w3j(j=1,2,…,s)and output weights w1(k),w2(k),w3(k)to obtain better properties neural network.According to(4),the characteristics of PIDNNC are determined by the weights of hidden layer while the rule of output layer is summation which function is linear.Therefore,in order to decrease training time and study design,the output weights wi(i=1,2,3)is set to 1,and learning optimization parameters to wij(i=1,2,3;j=1,2,…,s).

    In this article,we made the improved PSO into m file using Matlab,and then optimized the objective function with Sim function.Firstly,the initial values of parameters were entered into the parameter matrix X,then system block diagram was built by Simulink and saved to mdl format.Finally,used the Sim function to write the objective function program and optimized it with m file.

    3.2 Controller of parallel mechanism

    Fig.2 displays the 3-TPT parallel mechanism,which is composed of fixed platform,moving platform,driven rod and connecting rod.Both moving platform and fixed platform are equilateral triangle,each drive rod is connected to parallel mechanism with Hooke joint,so as the moving platform and fixed platform. Three drive rods are driven by servo motor and adjust the position of movable platform by changing the length.They withstand external forces and torque[7].

    Fig.2 3-TPT paraIIeI mechanisms

    Degree of freedom can be deduced by KutzbachGrable:

    F:DOF;n:the number of component;g:kinematic pair;fi:the relative freedom of kinematic pair of i-th.

    In the parallel mechanism,n=8,g=9,each Hooke joint has 2 rotational DOF and each moving pair has 1 DOF,socording to(6)F=3,the DOF of 3-TPT parallel mechanism is 3.

    In this paper,the model of parallel mechanism was established by Simulink in SimMechanics simulation and integrated to the control system[8].The model of PIDNNC is shown below.

    Fig.3 ModeI of PIDNNC

    Fig.4 System simuIation diagram

    4 Improved PSO algorithm steps

    When PSO optimized to PIDNNC,the objective function of the controller is fitness function;to search the optimal position by improved PSO is to minimize mean square error,fitness function is as follow:

    Where,l:sampled data;s:the number of input node;rj(k)-yj(k):output error.Optimization steps are as follows.

    1)PIDNNC controller and particle swarm initialization parameter is set according to the number of input layer neurons of controlled object[9],hidden layer nodes are set 3(Kp,Ki,Kd);initialized the population of position and velocity,set test number M and divided entire population into n subintervals.

    2)Put the values of Kp,Ki,Kdobtained by using conventional calculation as an initial value of hidden layer weights wij(0),then set output layer weights wi=1(i=1,2,3),computing u(0)[10].

    3)Calculated a1(k),a2(k),a3(k)and output u(k);set k=k+1,return to recalculate until the output meet accuracy requirements.

    5 Simulations

    Set parameters of 3-TPT parallel mechanism:R= 600 mm,r=200 mm;the size of provision population is 200,maximum number of iteration is 200,acceleration factor c1=2,c2=2,maximum speed v=0.2,inertia weight w=0.8.

    This paper performed a contrast experiment between traditional PID and PIDNNC optimized by improved PSO.Figure 5 is an improved PSO evolutionary curve,it can be seen that the it converges very fast early,later to slow down when search the optimal solution.This method could solve effectively the problem of local convergence.And in Fig.6,under the signal control of sine wane,PIDNNC optimized by PSO can adjust three output parameters online,accuracy and systematics error are improved and displacement is better.

    Fig.5 PSO evoIution curve

    Fig.6 Contrast curve of dispIacement and controI error

    6 Conclusions

    This paper introduced a new PSO based on divided solution space and put it into the design of a new multivariate controller PIDNNC which effectively solved the problem of multivariable nonlinear systems of traditional PID neural network.Hidden layer of the controller had the effect of proportional,integral and derivative at same time it had better stability,accuracy and robustness.Taking the improved PSO to optimized neural network system overcomed the problem of local minimum caused by the use of gradient descent,this made selection and learning of neural network more simpler,convergence more faster and looking for solutions more accurately.

    [1]TAN Xiankun.Improved control algorithm based on particle swarm optimization and its simulation research[J].Machine Tool&Hydraulics,2012,40(19):28-33.

    [3]Cong Shuang,Liang Yan-yang,Li Guo-dong.Multivariable Adaptive PID-like Neural Network Controller and Its Design Method[J].Inform Ation and Control,2006,35(5):565-573.

    [3]AO Chaohua,BI Jianchao.Improved algorithm of PSO and its application in parameter tuning of control system[J]. Machine Tool&Hydraulics,2012,40(12):84-90.

    [4]Che Lin-xian,He Bing,Yi jian,etal.Improved Particle Swarm Optimization for Forward Positional Analysis Symmertrical Stewart Parallel Manipulators[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(10):159-163.

    [5]Zhao Wei,Cai Xing-sheng.PSO Improved Algorthmg Based on the Solution Space Division[J].Journal of Jilin University:Science Edition,2012,50(4):725-732.

    [6]Liang Yan-yang.Nonlinear Adaptive Control of Time-carying Uncertain Electro-mechanical Motion System[D].Hefei:University of Science and Technology of China,2008.

    [7]Yang Hui,Zhao Heng-hua,F(xiàn)u Hong-shuan.The Establishment and Simulation of the Parallel Mechanism Virtual Prototype[J].Journal of Engineering Design,2012,19(6):445-448.

    [8]QIN Huiming,LI Xiao.Neural Network Control for Teleoperated Construction Robot Based on WAN[J].Machine Tool &Hydraulics,2014,42(3):5-8.

    [9]Feng Dong-qing,Xing Guang-cheng,F(xiàn)ei Min-rui,etal. Improved PSO-based Multivariable PID-like Neural Network Control[J].Journal of Simulation,2011,23(2):363-385.

    [10]Zhou Xi-feng.The Control of PID Neural Network Based on β Parameterized B-spline Basic Functions and Improved PSO[J].Maufacturing Automation,2011,33(10):61-67.

    基于改進的PSO在并聯(lián)機構(gòu)神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)中的應(yīng)用

    王長建,王 鵬*
    長江大學(xué)機械工程學(xué)院,湖北荊州 434000

    針對傳統(tǒng)PID神經(jīng)網(wǎng)絡(luò)不能實時有效地控制非線性多變量系統(tǒng)的問題,設(shè)計了一種新型多變量自適應(yīng)PID神經(jīng)網(wǎng)絡(luò)控制器。該控制器的隱含層帶有輸出反饋和激活反饋,實現(xiàn)了比例、微分和積分功能。利用一種基于解空間劃分的改進粒子群算法對控制器參數(shù)進行優(yōu)化,消除了初始值對控制器準(zhǔn)確性的影響,并將控制器應(yīng)用于并聯(lián)機構(gòu)控制中。由仿真結(jié)果可知:控制器控制精度高,魯棒性和自適應(yīng)性較強。這一研究為并聯(lián)機構(gòu)的精準(zhǔn)控制和優(yōu)化設(shè)計提供了理論基礎(chǔ)。

    PID神經(jīng)網(wǎng)絡(luò);并聯(lián)機構(gòu);改進PSO算法

    10.3969/j.issn.1001-3881.2015.12.010Document code:A

    TH165+.2

    1 July 2014;revised 17 February 2015;accepted 5 March 2015

    Chang-jian WANG,Professor.E-mail:wangchangjian2468@ 163.com

    *Corresponding author:Peng WANG,Master.

    E-mail:47361222@qq.com

    猜你喜歡
    自適應(yīng)性控制精度魯棒性
    基于TRIZ理論的巡檢機器人移動底盤結(jié)構(gòu)創(chuàng)新設(shè)計
    機械傳動(2025年1期)2025-02-25 00:00:00
    基于多源異構(gòu)信息融合的采摘機械臂驅(qū)動控制研究
    荒漠綠洲區(qū)潛在生態(tài)網(wǎng)絡(luò)增邊優(yōu)化魯棒性分析
    高校外籍教師自適應(yīng)性調(diào)整探索——基于四川文理學(xué)院8名外教非結(jié)構(gòu)式訪談的定性研究
    基于確定性指標(biāo)的弦支結(jié)構(gòu)魯棒性評價
    MW級太空發(fā)電站微波能量波束指向控制精度分析
    基于非線性多輸入多輸出近似動態(tài)規(guī)劃的發(fā)動機缸平衡智能調(diào)節(jié)算法
    基于安卓的智能車轉(zhuǎn)速系統(tǒng)的設(shè)計與實現(xiàn)
    水下大壩裂縫圖像分割方法研究 
    基于非支配解集的多模式裝備項目群調(diào)度魯棒性優(yōu)化
    亚洲成人国产一区在线观看| 亚洲中文av在线| 一区二区三区激情视频| 亚洲精品国产色婷婷电影| 最新的欧美精品一区二区| 他把我摸到了高潮在线观看| 亚洲精品国产区一区二| 咕卡用的链子| 欧美黄色淫秽网站| 1024视频免费在线观看| 亚洲国产精品一区二区三区在线| 免费在线观看完整版高清| 女人高潮潮喷娇喘18禁视频| 国产成+人综合+亚洲专区| 夫妻午夜视频| 视频区图区小说| av超薄肉色丝袜交足视频| 成年人免费黄色播放视频| 99国产极品粉嫩在线观看| 又紧又爽又黄一区二区| 校园春色视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲av美国av| 亚洲少妇的诱惑av| 亚洲一区二区三区不卡视频| 亚洲精品国产色婷婷电影| 久久草成人影院| 久久精品亚洲av国产电影网| 一进一出好大好爽视频| 老熟妇仑乱视频hdxx| 不卡av一区二区三区| 日日摸夜夜添夜夜添小说| 久久这里只有精品19| 国产亚洲精品久久久久5区| 久久亚洲精品不卡| 一进一出抽搐gif免费好疼 | 中文欧美无线码| 亚洲国产精品一区二区三区在线| 欧美激情高清一区二区三区| 午夜影院日韩av| 亚洲欧美激情在线| 亚洲av成人一区二区三| 黑人猛操日本美女一级片| 热99re8久久精品国产| 色精品久久人妻99蜜桃| 国产精品.久久久| 在线观看免费视频网站a站| 大型黄色视频在线免费观看| 村上凉子中文字幕在线| 飞空精品影院首页| 91在线观看av| 久久ye,这里只有精品| 国产成人免费观看mmmm| 大香蕉久久成人网| а√天堂www在线а√下载 | 亚洲人成电影观看| 少妇裸体淫交视频免费看高清 | 波多野结衣一区麻豆| 一级片免费观看大全| 久久人妻福利社区极品人妻图片| 亚洲精品国产精品久久久不卡| 另类亚洲欧美激情| 新久久久久国产一级毛片| 一本大道久久a久久精品| 午夜精品久久久久久毛片777| 亚洲一区二区三区欧美精品| 夜夜爽天天搞| 香蕉丝袜av| 久久中文字幕人妻熟女| 精品乱码久久久久久99久播| 一区福利在线观看| 国产深夜福利视频在线观看| 精品福利观看| 又紧又爽又黄一区二区| 在线十欧美十亚洲十日本专区| 久久影院123| 国产精品电影一区二区三区 | 麻豆乱淫一区二区| 久久午夜综合久久蜜桃| 色婷婷av一区二区三区视频| 人成视频在线观看免费观看| av在线播放免费不卡| 水蜜桃什么品种好| 日日爽夜夜爽网站| 日韩欧美在线二视频 | 亚洲欧美精品综合一区二区三区| 精品国产亚洲在线| 国产精品99久久99久久久不卡| 一级毛片精品| 精品欧美一区二区三区在线| 午夜精品久久久久久毛片777| 欧美精品一区二区免费开放| 精品国产一区二区三区久久久樱花| 国产精品av久久久久免费| 国产不卡一卡二| 国产淫语在线视频| 久久久精品免费免费高清| 高清视频免费观看一区二区| 欧美黑人精品巨大| 欧美日韩黄片免| 亚洲欧美一区二区三区久久| 精品无人区乱码1区二区| 久久香蕉激情| 一区在线观看完整版| а√天堂www在线а√下载 | 国产精品永久免费网站| 在线av久久热| 99热网站在线观看| 波多野结衣一区麻豆| 两性夫妻黄色片| 久久精品成人免费网站| 亚洲五月天丁香| av超薄肉色丝袜交足视频| 亚洲av熟女| 国产伦人伦偷精品视频| 免费高清在线观看日韩| 亚洲中文av在线| 精品人妻熟女毛片av久久网站| 国产精品免费一区二区三区在线 | 久久天堂一区二区三区四区| 午夜福利欧美成人| 精品久久久久久,| 免费看a级黄色片| 国产无遮挡羞羞视频在线观看| 777久久人妻少妇嫩草av网站| 女性被躁到高潮视频| 超碰成人久久| 欧美日韩瑟瑟在线播放| 老司机深夜福利视频在线观看| 成人精品一区二区免费| 无限看片的www在线观看| 日韩免费高清中文字幕av| 亚洲va日本ⅴa欧美va伊人久久| 老司机深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 国产亚洲一区二区精品| 精品久久久精品久久久| 高清欧美精品videossex| 久久精品国产综合久久久| 国产免费男女视频| a级毛片黄视频| 国产精品秋霞免费鲁丝片| 欧美日韩成人在线一区二区| 视频在线观看一区二区三区| 一区二区三区精品91| 久久午夜亚洲精品久久| 精品一区二区三区四区五区乱码| 成人黄色视频免费在线看| 这个男人来自地球电影免费观看| 视频在线观看一区二区三区| 老熟妇仑乱视频hdxx| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| av在线播放免费不卡| 久久精品国产亚洲av香蕉五月 | 在线观看日韩欧美| 国产成人一区二区三区免费视频网站| 老司机福利观看| 欧美久久黑人一区二区| 国产高清videossex| 欧美中文综合在线视频| 成人18禁在线播放| 国产在线精品亚洲第一网站| svipshipincom国产片| 成人精品一区二区免费| 女同久久另类99精品国产91| 日韩免费av在线播放| 亚洲国产精品sss在线观看 | 无人区码免费观看不卡| 免费在线观看亚洲国产| 在线观看免费午夜福利视频| 欧美黄色淫秽网站| 首页视频小说图片口味搜索| 国产伦人伦偷精品视频| 亚洲精华国产精华精| 99精品久久久久人妻精品| 精品久久久久久电影网| 国产激情久久老熟女| 夜夜躁狠狠躁天天躁| 欧美日韩国产mv在线观看视频| 老司机深夜福利视频在线观看| 精品国产超薄肉色丝袜足j| 脱女人内裤的视频| 色综合欧美亚洲国产小说| 亚洲情色 制服丝袜| 欧美不卡视频在线免费观看 | 亚洲欧洲精品一区二区精品久久久| 亚洲欧洲精品一区二区精品久久久| 免费观看精品视频网站| 成人永久免费在线观看视频| 国产精品乱码一区二三区的特点 | 大型av网站在线播放| cao死你这个sao货| av福利片在线| 欧美人与性动交α欧美精品济南到| 99riav亚洲国产免费| 国产精品美女特级片免费视频播放器 | 成年版毛片免费区| 久久久精品区二区三区| 好男人电影高清在线观看| 日韩 欧美 亚洲 中文字幕| 国产免费av片在线观看野外av| 大香蕉久久网| 欧美成狂野欧美在线观看| 国产亚洲欧美精品永久| 在线国产一区二区在线| 国产精品免费视频内射| 国产野战对白在线观看| 宅男免费午夜| 欧美日韩乱码在线| 国产精品偷伦视频观看了| 亚洲国产中文字幕在线视频| av国产精品久久久久影院| 丝袜美足系列| 国产精品98久久久久久宅男小说| 亚洲全国av大片| av中文乱码字幕在线| 精品国产美女av久久久久小说| 欧美日本中文国产一区发布| 久久人妻福利社区极品人妻图片| 一级,二级,三级黄色视频| 欧美乱妇无乱码| 我的亚洲天堂| 757午夜福利合集在线观看| 一级a爱片免费观看的视频| 精品国产一区二区三区四区第35| 他把我摸到了高潮在线观看| 久久久水蜜桃国产精品网| 久久久国产精品麻豆| 天堂中文最新版在线下载| 一区二区日韩欧美中文字幕| 国产一区二区三区综合在线观看| 天堂中文最新版在线下载| 91国产中文字幕| 久久久久视频综合| 搡老乐熟女国产| 男男h啪啪无遮挡| 亚洲色图av天堂| 亚洲国产欧美日韩在线播放| 1024香蕉在线观看| 欧美+亚洲+日韩+国产| 久久国产精品男人的天堂亚洲| 午夜免费观看网址| 天天添夜夜摸| 亚洲精品自拍成人| 日本wwww免费看| 久久ye,这里只有精品| 亚洲专区字幕在线| 悠悠久久av| 久久天堂一区二区三区四区| 亚洲精品中文字幕一二三四区| 免费在线观看黄色视频的| 久久午夜综合久久蜜桃| 又黄又爽又免费观看的视频| 99久久人妻综合| 欧美黄色片欧美黄色片| 天堂中文最新版在线下载| 国产欧美日韩一区二区精品| 国产成人啪精品午夜网站| 热re99久久国产66热| 在线观看www视频免费| av线在线观看网站| 宅男免费午夜| 免费人成视频x8x8入口观看| 视频区图区小说| 人妻丰满熟妇av一区二区三区 | 国产精品久久久久成人av| 超碰97精品在线观看| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 国产精品成人在线| √禁漫天堂资源中文www| 香蕉久久夜色| 少妇粗大呻吟视频| 久久精品国产清高在天天线| 日本a在线网址| 国产成人av教育| 精品一区二区三区av网在线观看| 欧美国产精品va在线观看不卡| 悠悠久久av| 国产91精品成人一区二区三区| 免费女性裸体啪啪无遮挡网站| 欧美色视频一区免费| 高清在线国产一区| 香蕉久久夜色| 老熟妇仑乱视频hdxx| 亚洲精品一二三| 国产伦人伦偷精品视频| 欧美日韩福利视频一区二区| 国产精品一区二区在线不卡| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲高清精品| 日韩精品免费视频一区二区三区| 国产黄色免费在线视频| www.精华液| 欧美最黄视频在线播放免费 | 久久人妻熟女aⅴ| 午夜精品在线福利| 国产精品一区二区在线不卡| 亚洲欧美激情在线| 美女午夜性视频免费| 日韩欧美免费精品| 亚洲色图 男人天堂 中文字幕| 国产精品欧美亚洲77777| av电影中文网址| 自线自在国产av| 亚洲久久久国产精品| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 国产麻豆69| 王馨瑶露胸无遮挡在线观看| 久久久久久人人人人人| 国产xxxxx性猛交| 亚洲aⅴ乱码一区二区在线播放 | 精品人妻1区二区| 亚洲第一青青草原| 最近最新中文字幕大全免费视频| 国产成人av教育| 午夜91福利影院| 18禁观看日本| 一本一本久久a久久精品综合妖精| 亚洲国产欧美一区二区综合| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 老司机深夜福利视频在线观看| 久久久久久久国产电影| 亚洲久久久国产精品| 亚洲人成电影免费在线| 黄片播放在线免费| 757午夜福利合集在线观看| 午夜福利乱码中文字幕| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 美女 人体艺术 gogo| 搡老乐熟女国产| 国产亚洲一区二区精品| 婷婷精品国产亚洲av在线 | 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 91大片在线观看| a级毛片黄视频| 热99久久久久精品小说推荐| 成年人黄色毛片网站| 窝窝影院91人妻| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 成人黄色视频免费在线看| 咕卡用的链子| 在线观看一区二区三区激情| 精品福利永久在线观看| www.精华液| 亚洲熟女毛片儿| 99在线人妻在线中文字幕 | 日韩免费高清中文字幕av| 久久人人97超碰香蕉20202| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 美女福利国产在线| ponron亚洲| 亚洲人成77777在线视频| 美女 人体艺术 gogo| 日日摸夜夜添夜夜添小说| 黄色 视频免费看| 捣出白浆h1v1| 亚洲欧美激情综合另类| 色综合婷婷激情| 国产不卡一卡二| 亚洲国产精品一区二区三区在线| 可以免费在线观看a视频的电影网站| 精品国产国语对白av| 乱人伦中国视频| 天堂中文最新版在线下载| 老司机福利观看| 欧美不卡视频在线免费观看 | 成人三级做爰电影| 少妇 在线观看| 国产精品一区二区在线观看99| 久久精品国产亚洲av香蕉五月 | 亚洲综合色网址| 午夜激情av网站| 免费在线观看完整版高清| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 老汉色av国产亚洲站长工具| 国产极品粉嫩免费观看在线| 欧美日韩瑟瑟在线播放| 国产欧美日韩一区二区三| 久9热在线精品视频| 王馨瑶露胸无遮挡在线观看| 99国产极品粉嫩在线观看| 精品国产乱码久久久久久男人| 成人国语在线视频| 九色亚洲精品在线播放| 国产免费av片在线观看野外av| 欧美乱妇无乱码| 成人精品一区二区免费| 欧美精品高潮呻吟av久久| 满18在线观看网站| 高清在线国产一区| 老司机靠b影院| 久久久国产精品麻豆| 国产成人欧美在线观看 | 在线天堂中文资源库| 日本vs欧美在线观看视频| 色播在线永久视频| 亚洲国产精品sss在线观看 | 在线观看一区二区三区激情| 电影成人av| 国产aⅴ精品一区二区三区波| 下体分泌物呈黄色| 五月开心婷婷网| 久久久国产成人精品二区 | 丝袜美足系列| tube8黄色片| 久久精品91无色码中文字幕| 亚洲欧美日韩高清在线视频| 18禁观看日本| 午夜亚洲福利在线播放| 成人18禁在线播放| 婷婷成人精品国产| 久久国产精品大桥未久av| 老司机福利观看| 在线观看www视频免费| 成人免费观看视频高清| 中文字幕色久视频| 九色亚洲精品在线播放| 老汉色av国产亚洲站长工具| 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 捣出白浆h1v1| 久久久久久亚洲精品国产蜜桃av| 午夜激情av网站| 捣出白浆h1v1| 成人国语在线视频| 又紧又爽又黄一区二区| av有码第一页| av网站在线播放免费| 亚洲精品在线美女| 露出奶头的视频| 欧美另类亚洲清纯唯美| 丰满饥渴人妻一区二区三| 久久久国产精品麻豆| 国产精品免费大片| 悠悠久久av| 久久精品国产亚洲av高清一级| 国产高清国产精品国产三级| 嫩草影视91久久| 啪啪无遮挡十八禁网站| 久久久久久久久免费视频了| 99国产极品粉嫩在线观看| 欧美日韩视频精品一区| 女同久久另类99精品国产91| 少妇裸体淫交视频免费看高清 | 丝袜人妻中文字幕| 热re99久久国产66热| 日韩精品免费视频一区二区三区| 51午夜福利影视在线观看| 亚洲精品国产一区二区精华液| 久久 成人 亚洲| 啦啦啦免费观看视频1| а√天堂www在线а√下载 | 午夜福利欧美成人| 麻豆国产av国片精品| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 亚洲成a人片在线一区二区| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费 | 欧美精品人与动牲交sv欧美| 久久青草综合色| 国产又色又爽无遮挡免费看| 99精品久久久久人妻精品| 欧美激情久久久久久爽电影 | 黄色怎么调成土黄色| 国产在线观看jvid| 国产av又大| 欧美国产精品va在线观看不卡| 人妻一区二区av| 久久精品国产99精品国产亚洲性色 | 黑人巨大精品欧美一区二区mp4| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 精品久久久久久电影网| 国产精品亚洲一级av第二区| 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 巨乳人妻的诱惑在线观看| 在线观看日韩欧美| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 亚洲五月天丁香| 美国免费a级毛片| 捣出白浆h1v1| 国产精品欧美亚洲77777| 精品人妻1区二区| 久久午夜亚洲精品久久| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 极品少妇高潮喷水抽搐| 午夜精品在线福利| 国产精品99久久99久久久不卡| 国产成人精品在线电影| 最近最新中文字幕大全电影3 | 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 大片电影免费在线观看免费| 人人妻,人人澡人人爽秒播| 中文欧美无线码| 欧美精品亚洲一区二区| 国产有黄有色有爽视频| 亚洲精品av麻豆狂野| 午夜免费观看网址| 欧美成人免费av一区二区三区 | 在线免费观看的www视频| 高清av免费在线| 久久精品国产a三级三级三级| 如日韩欧美国产精品一区二区三区| 9热在线视频观看99| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 国产精品久久久人人做人人爽| 高清av免费在线| 久热这里只有精品99| 成熟少妇高潮喷水视频| 欧美日韩亚洲高清精品| 99riav亚洲国产免费| 久久精品亚洲熟妇少妇任你| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| videosex国产| 久久 成人 亚洲| 美女高潮到喷水免费观看| 99精品在免费线老司机午夜| 美女高潮到喷水免费观看| 夜夜躁狠狠躁天天躁| 深夜精品福利| 久久久久久久久免费视频了| 精品乱码久久久久久99久播| 国产片内射在线| 一进一出好大好爽视频| 国产精品永久免费网站| 丰满的人妻完整版| 色尼玛亚洲综合影院| 国产不卡av网站在线观看| 丰满人妻熟妇乱又伦精品不卡| avwww免费| 欧美一级毛片孕妇| 久久国产乱子伦精品免费另类| 少妇的丰满在线观看| 午夜影院日韩av| 很黄的视频免费| 老熟女久久久| 日韩一卡2卡3卡4卡2021年| 午夜免费成人在线视频| aaaaa片日本免费| 99国产极品粉嫩在线观看| 国产97色在线日韩免费| 男女午夜视频在线观看| 精品久久久久久电影网| 国产深夜福利视频在线观看| 国产国语露脸激情在线看| 伊人久久大香线蕉亚洲五| 中文字幕人妻熟女乱码| 亚洲专区中文字幕在线| 国产麻豆69| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 日韩制服丝袜自拍偷拍| 精品一区二区三区四区五区乱码| 无遮挡黄片免费观看| 午夜久久久在线观看| 人妻一区二区av| 日日夜夜操网爽| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 在线观看舔阴道视频| 亚洲人成77777在线视频| 精品国产国语对白av| 亚洲性夜色夜夜综合| 香蕉久久夜色| 男女之事视频高清在线观看| 岛国在线观看网站| 国产片内射在线| 国产精品久久久人人做人人爽| 中文字幕最新亚洲高清| 在线免费观看的www视频| 精品少妇久久久久久888优播| 十八禁网站免费在线| 国产精品电影一区二区三区 | 色综合欧美亚洲国产小说| 日韩欧美一区视频在线观看| 成人影院久久| 亚洲av美国av| 国产1区2区3区精品| 黄色视频不卡| 亚洲成人手机| 中文字幕人妻丝袜制服| 色老头精品视频在线观看| 国产精品久久视频播放| 超碰97精品在线观看| 亚洲人成电影免费在线| 十八禁高潮呻吟视频|