• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫摻雜氧化錫納米材料的固相合成及其可見光降解百草枯

    2015-12-15 07:18:34賀仲兵劉少友閔宗義楊紅蕓
    關(guān)鍵詞:凱里百草晶格

    賀仲兵 劉少友 閔宗義 楊紅蕓 聶 信

    (1凱里學(xué)院化學(xué)與材料工程學(xué)院,凱里556011) (2湖南大學(xué)環(huán)境科學(xué)與工程學(xué)院,長(zhǎng)沙432001)

    (3廣西大學(xué)環(huán)境學(xué)院,南寧530004)

    硫摻雜氧化錫納米材料的固相合成及其可見光降解百草枯

    賀仲兵1,2劉少友*,1,3閔宗義2楊紅蕓1聶 信1

    (1凱里學(xué)院化學(xué)與材料工程學(xué)院,凱里556011) (2湖南大學(xué)環(huán)境科學(xué)與工程學(xué)院,長(zhǎng)沙432001)

    (3廣西大學(xué)環(huán)境學(xué)院,南寧530004)

    以十二烷基苯磺酸鈉(SDBS)為模板,采用低溫固相反應(yīng)法合成了硫摻雜二氧化錫(S-SnO2)納米粉體材料,并用XRD、XPS、SEM、UV-Vis、FTIR及HR-TEM等技術(shù)對(duì)材料進(jìn)行了表征,探討了S摻雜SnO2納米材料對(duì)百草枯的可見光降解性能,分析了S摻雜效應(yīng)的作用機(jī)理。結(jié)果表明,采用固相反應(yīng)法所得SnO2及S-SnO2納米材料的禁帶寬度變窄,SDBS對(duì)材料的表面結(jié)構(gòu)具有一定的調(diào)控作用。S是以S/S和S/S的形式進(jìn)入SnO2晶格形成Sn1-xSxO2晶體結(jié)構(gòu)而不是進(jìn)入SnO2晶格間隙,Sn-O-S鍵的彎曲振動(dòng)峰介于930~980 cm-1之間。S的摻雜使SnO2納米材料表面活性增強(qiáng),光催化降解百草枯的活性依次為SnO2

    硫摻雜;二氧化錫;固相合成;可見光降解;百草枯

    0 Introduction

    Paraquat(1,1′-Dimethyl-4,4′-bipyridinium)is a quick-acting and non-selective contact herbicide,and it could kill green plant tissue on contact[1].It is highly toxic to human beings and animals,potentially leading to acute respiratory distress syndrome(ARDS),and there are no specific antidotes[2].It is also reported that paraquat may be considered as persistent organic pollutants as it could persist in soil for a long time (with a half-life up to 20 years)and accumulate in various organisms through the food chain,which can lead to various health problems to human beings, including teratogenicity,carcinogenicity and mutagenicity[3].Furthermore,paraquat could be rapidly adsorbed and strongly bonded to clay and organic matter in the soil,and it shows biologically inert and cannot be taken up by plant roots or other organisms[4].Thus,the extensive use of paraquat leads to severe contamination of soil and groundwater,which may pose adverse effects on the environmental ecosystem and human health.Therefore,it is of practical importance to find out an effective way to remove paraquat from polluted waters.

    SnO2,usually comprised of tetragonal,hexagonal and orthorhombic crystal systems,has been widely used in gas sensor,semiconductor,spectralite and transparency electrode because of its low resistivity and high transmittance[5].SnO2as a n-type semiconductor with wide band gap(3.8 eV)is an excellent photocatalyst[6-8].However,due to its wide band gap, SnO2photocatalysis could only utilize UV light with λ<330 nm,which is less than about 3%of the sunlight spectrum,limiting its application by directly and fully utilizing the solar energy.Hence,great efforts have been made to enhance the visible light photocatalytic activity of SnO2,such as doping with metal/nonmetal elements to change the energy level and consequently broadening light responsive range to visible light region[9-12].

    Sulfur is a multivalent element,and different doping technologies lead to different chemical states of sulfur in the crystal lattice and subsequently to exhibit different photocatalytic activities[13-14].As a facile, efficient and promising preparation method,solid-state reaction has been extensively applied in synthesis of high photocatalytic active nanomaterial.Herein,SnO2and S-doped SnO2nanoparticles were synthesized by a facile solid-state reaction approach at low temperature using sodium dodecyl benzene sulfonate(SDBS)as a template.Paraquat was chosen as the model pharmaceutical to evaluate the photocatalytic degradation activity of the as-synthesized nanomaterial under visible light irradiation.The relationships between the photocatalytic performances and the S-doping mechanism along with the structural characteristics of the resultant photocatalysts were investigated and discussed.

    1 Experimental

    1.1 Chem icals and materials

    1.2 Preparation of S-doped SnO2

    In a typical process,NaOH,SnCl4·5H2O and Na2S2O3·5H2O with a molar ratio of nNaOH∶nSnCl4·5H2O∶nNa2S2O3·5H2O=4∶0.9∶0.1 and SDBS with a mass fraction of 9%of total weight were ground with a mortar for 30 min at 20℃under the humidity of 75%.After stood for 4 h,the white viscous mixtures were heated at 120℃for 2 h in an oven.After cooling to room temperature,the mixtures were soaked in deionized water for 6 h with stirring The obtained solid specimen were washed with distilled water thoroughly until free from Cl-and SO42-and dried at 105℃,and then were finally heated to 600℃in a muffle furnace for 8 h with a heating rate of 2℃·min-1to obtain faint yellow photocatalysts of S-doped SnO2(S-SnO2(SDBS)). For comparison,white SnO2,white SnO2(SDBS)and faint yellow S-SnO2were also synthesized using identical condition in the absence of SDBS as well as Na2S2O3· 5H2O,Na2S2O3·5H2O and SDBS,separately.

    1.3 Structural and m orphological characterizations

    The XRD patterns were recorded by X′Pert Pro diffractometer using Cu Kα radiation(λ=0.154 06 nm, divergence slit fixed at 0.76 mm)at a scan speed of 0.02°·min-1from 5°to 80°,with a generator voltage of 40 kV,tube current of 40 mA,and a linear position sensitive detector.The surface morphologies of the synthesized photocatalysts were observed using a Field Emission Scanning Electron Microscopy(JEOL,JSM-6700F)with an accelerating voltage of 20 kV and a resolution of 1 nm.High resolution transmission electron microscopy(HRTEM)was observed with a JEOL-2100 operated at 200 kV.The FTIR spectra were investigated with a Spectrum 65 infrared spectrometer with a range of 4 000~400 cm-1and a spectral resolution of 1 cm-1.UV-Vis spectra were recorded on a Shimadzu UV-2550 spectrometer.The spectra were collected at 200~700 nm referenced to BaSO4.XPS was carried out on Thermo ESCALAB250 spectrometer using monochromated Al Kα(1 486.6 eV)source operated at 110 W.And the binding energies were referenced to the C1s line at 284.8 eV from adventitious carbon.The surface photovoltaic properties were performed on surface photovoltage spectrum(SPS) apparatus assembled by micro-/nanomaterials testing center of Hunan University.The surface photovoltage cell with a sandwich configuration(ITO/Sample/ITO) is shown in Fig.1.All tests were performed in indoor environment,and the data were obtained as the raw data.

    Fig.1 Setup of surface photovoltage cell configuration

    1.4 Photocatalytic activity test

    The photocatalytic activity of as-prepared photocatalysts was evaluated by the photocatalytic degradation of paraquat in water under visible light irradiation.Photocatalytic degradation of paraquat by the as-prepared photocatalysts was performed in a 50 mL photochemical reactor XPA-Ⅶ(Nanjing Xujiang Elechtromechanical Factory,China).A 300 W metal halogen lamp assisted with Toshiba B-47 optical filter (λ>410 nm,transmittance>90%)was used as a visible light source.The reaction solution was kept at 25℃± 1℃by the water continuously circulated in the jacket surrounding the reactor and stirred with a magnetic stirrer throughout the experiment.Prior to illumination, a suspension of 20 mL 50 mg·L-1paraquat with 20 mg photocatalyst was stirred in the dark for 60 min to achieve the adsorption-desorption equilibrium.A 5 mL solution was taken at a given time interval and centrifuged for 5 min.The concentration of paraquat was determined by UV-Vis spectrophotometer at a wavelength of 257 nm.After detection,the detection solution was taken back into the quartz tube for next use.

    2 Results and discussion

    2.1 Structural and m orphological

    characterization of photocatalysts

    2.1.1 XRD analysis

    Fig.2 XRD patterns of the samp les

    Table1 Data of crystallite size and crystal p lane parameter for all sam p les

    The wide-angle XRD patterns of the photocatalysts are displayed in Fig.2.All samples exhibit high intensity characteristic diffraction peaks of rutile SnO2,and no any other phases appear,suggesting rutile SnO2is the main phase in these samples.The peaks at 2θ values of 26.5°,33.9°,37.9°and 52.0° are attributed to the diffraction peaks of(110),(101), (200)and(211)crystal planes of rutile SnO2(PDF No. 411445),respectively.From the XRD patterns,SDBS shows an increase in intensity and a decrease in the peak width of diffraction peak,implying an increase in the crystallite size.Table 1 summarizes the crystallite sizes of all samples.As shown,the average crystallite sizes(d)of SnO2,SnO2(SDBS),S-SnO2and S-SnO2(SDBS)particles are 4.7,7.0,5.6,and 6.1 nm,respectively, as calculated by Bragg′s and Scherrer′s equation(D= 0.89λ/(βcosθ))from the peak at 2θ=26.5°,suggesting that the addition of SDBS is beneficial to the growth of the SnO2particles and increases in crystallinity. The diffraction peaks of(110)can be seen at 26.5° and 26.6°for SnO2and S-SnO2,respectively,implying that S with smaller ionic radius incorporates into the framework of SnO2by isomorphous substitution and subsequently leading to lattice distortion,the decrease of lattice distortion constant thus induces the increase of crystallite size.Similarly,the diffraction peaks of (110)can be observed at 26.4°and 26.7°for SnO2(SDBS)and S-SnO2(SDBS),respectively.This means that the addition of SDBS not only induces S into the lattice of SnO2,but also could regulate the crystallite size and interplanar spacing of SnO2by the guiding role of the molecular structure of SDBS,inferring that these samples may possess different photoelectric properties and photocatalytic activities,which could be corroborated by the results displayed in the following experiments.

    2.1.2 SEM analysis

    Fig.3 SEM images of samples

    The SEM images of SnO2,S-SnO2,SnO2(SDBS)and S-SnO2(SDBS)are shown in Fig.3.The SnO2synthesized by solid-state reaction route shows the formation ofirregular spherical particle with a diameter distribution from 3.5~6.5 nm and an obvious agglomeration between the particles.The particulate size of S-SnO2is 4~7.5 nm,confirming that the reducing in particles agglomeration.It might be attributed to that Na2S2O3· 5H2O hinders the diffusion and transmission of SnCl4· 5H2O and NaOH.As expected,the particulate size range of SnO2(SDBS)and S-SnO2(SDBS)is 3.5~7.5 nm,and 3.0~8.0 nm,respectively,and the two samples show more regular sphere-like particles with smoother surfaces as compared to that of SDBS-free samples, suggesting that the addition of SDBS remarkably weakens the agglomeration of particles as its electrostatic effect and space location-obstruct effect. The TEM images of S-SnO2(SDBS)particles size are shown in Fig.4.Hollow micron-sized SnO2spheres with a diameter of ca.0.5~1 μm can be found(Fig. 4a),and these spheres are comprised of 5 nm SnO2nanoparticles(Fig.4b),agreeing with the crystallite size from the XRD data.The hollow micron-sized SnO2spheres are templated by surfactant SDBS with large hydrophilic group and long hydrophobic group, which favor the formation of spherical micelles in aqueous solutions by surfactant self-assembly,and then Sn4+cations interact with SDBS anions through Coulomb forces at the interface of the spherical micelles.Subsequently,the condensation of inorganic precursors of SnCl4is improved owing to the confined growth to form SnO2nanoparticles and aggregate around the spherical micelles of SDBS.Finally,the surfactant SDBS template can be removed by calcination to form hollow micron-sized SnO2spheres and hollow spherical fragments(nanoparticles).The corresponding selected-area electron diffraction (SAED)pattern(Fig.4c)indicates that the diffraction rings can be readily assigned to the polycrystalline nature of SnO2phase.The corresponding highresolution TEM(HRTEM)image(Fig.4d)shows that the interplanar distance of 0.33 nm is assigned to (110)plane of SnO2,which means that S incorporatesinto the lattice of SnO2leading to the shrink of the interplanar distance of SnO2compared with that of pure SnO2crystal(with the interplanar distance of (110)plane is 0.34 nm).The EDX elemental mapping performed on a typical hollow sphere demonstrates that the element content(atomic percentages,at%)of S within the structure is ca.3.4%,which also suggests that a small amount of S is embedded into the lattice of SnO2.

    Fig.4 TEM images of S-SnO2(SDBS)

    2.1.3 UV-Vis spectra

    Fig.5 shows the UV-Vis spectra of SnO2,S-SnO2, SnO2(SDBS)and S-SnO2(SDBS).All samples exhibit an identical absorption in the UV region of the spectra, corresponding to the essential light absorption of SnO2crystal as the electron transition of SnO2from the valence band to the conduction band,and the UV-Vis spectra of the S-free and S-doped samples are rather similar.However,further observation reveals that the shape,slope and intensity of spectral line for the two samples are different.It may be one of evidences of the doping of S to the lattice of SnO2.Compared with SnO2,the absorption edge of S-SnO2displays a redshift,and the corresponding band gap decrease from 3.03 to 2.93 eV extrapolated by band gap estimation formula[15].As expected,S-SnO2(SDBS)also shows redshift as compared to SnO2(SDBS),and the band gap is 3.14 and 3.17 eV,respectively.It can be inferred that S-doping can improve the visible light absorption of the as-prepared photocatalysts due to the embedding of S into the SnO2lattice.Furthermore,the slower rate of diffusion and mass transfer in the solid-state reaction result in the crystal structure defects and imperfections,leading to the reduction of crystallinity and narrowing of the band gap of SnO2[16-18].

    2.1.4 FTIR spectra

    The FTIR spectra are shown in Fig.6.The absorbing peaks in the range of 620~640 cm-1can be assigned to the stretching vibration modes and bending vibration of Sn-O bond in SnO2[19-20].By comparing with the SnO2and SnO2(SDBS),it can be found that the samples of S-SnO2and S-SnO2(SDBS)exhibit absorbing peaks at 1 151 and 978 cm-1,and 1 130 and 931 cm-1,respectively,which can be attributed to the asymmetrical stretching vibration of O-S and bending vibration of Sn-O-S in S-doped SnO2[13,21].Moreover,the broad characteristic bands centered at 3 368,3 185,3 412 and 3 400 cm-1for SnO2,S-SnO2,SnO2(SDBS),and SSnO2(SDBS),respectively,can be assigned to the stretching vibration mode of H-O.It can be inferred from the difference of the peak position of H-O that the surficial polarities of resultant photocatalysts are different as the different degrees of association of H-O.The peaks at 1 630 cm-1are attributable to the bending vibration of H-O.Meanwhile,it is also found that the doping of S changes the peak position of bending vibration of H-O[16].

    Fig.5 UV-Vis spectra of the samples

    Fig.6 FTIR spectra of the samples

    2.1.5 XPS analysis

    The chemical compositions and chemical states of S-doped SnO2were characterized by XPS(Fig.7 and 8).The surface survey spectrum(Fig.7)shows the presence of the Sn4d,Sn4s,S2p,O1s,C1s,Sn3d and Sn3p peaks in the samples.The presence of C peak is due to the adventitious hydrocarbon from XPS instrument itself and the residual organic groups fromthe SDBS.The high-resolution XPS spectra of the Sn, O and S elements are provided in Fig.8.For S-SnO2(SDBS), two peaks for the Sn3d5/2and Sn3d3/2observed at 485.1 and 494.7 eV,respectively,are both assigned to Sn4+in rutile phase of SnO2[22].The spectrum of S2p shows a broad asymmetric curve at 168.0 eV,which can be deconvoluted into two peaks with binding energies at 167.6 eV for S/Sand 169.5 eV for S/S[22], respectively,with a S/S/S/Smolar ratio of 0.9.The binding energy peaks for O1s observed at 529.2 and 531.0 eV are originated from Sn-O-Sn bond in SnO2and the adsorbed oxygen,respectively.For S-SnO2, the peaks of Sn3d shift slightly to lower binding energies compared with that of S-SnO2(SDBS).The peaks positions of S2p are identical with S-SnO2(SDBS).Comparatively,S/S/S/Smolar ratio of S-SnO2is 1.43,indicating S/Sis significantly more than S/S,implying that the addition of SDBS remarkably influences the valence states of S,which means that these two samples may possess different photocatalytic performance.Combined with the XRD results,the characteristic diffraction peaks of SnO2for pure SnO2and S-doped SnO2does not exhibit any shifts except a change in the full width at half-maximum,implying no variation in the lattice parameters but lattice distortion appears as S/Sand S/Sare embedded into the lattice of SnO2to form Sn1-xSxO2[23].Since S is doped as S/S/ S/S,the state of mixing 3p of S with 2p of O should be clear,they should mainly contribute to the conduction band in S-doped SnO2.That is,the S-O-Sn bond on the nanomaterial surface must be presented in FTIR spectra.Usually,if the S is doped as S2-,such kind of orbital mixing should occur,but not for the S doped as S/S/S/Soxidation state.These are consistent with the results in Fig.3 and Fig.4.Therefore,the origin of the slight extension of the visible light absorption after S doping is undoubted.It might be due to the nanoparticle size,defect effect,and mixing of p orbitals of S/S/S/Swith O2-.

    Fig.7 Surface survey XPS spectra of S-doped SnO2

    Fig.8 High-resolution XPS spectra of O1s,Sn3d and S2p for S-SnO2and S-SnO2(SDBS)

    2.2 Photocatalytic degradation of paraquat

    The photocatalytic degradation of a typical herbicide,paraquat under visible light irradiation is shown in Fig.9.These samples show obviously different adsorption capabilities towards paraquat(c0=50 mg·L-1) due to the different surface states,and the adsorption equilibrium is achieved within 60 min for all samples. No noticeable changes of paraquat concentration could be observed within 120 min under visible light irradiation without the addition of photocatalyst, indicating that only photolysis could not efficiently decompose the paraquat.As expected,the S-doped SnO2exhibits high photocatalytic activity,and it follows an order of SnO2(6.5%)

    Fig.9 Photodegradation of paraquat under visible light irradiation

    2.3 Photoeletrochem ical characterization

    Fig.10 shows the surface photovoltaic spectra (SPS)of sampleswithapplied potential bias of+0.5 V. Among all investigated samples,the surface photovoltage response of these nanopowder is positively correlated to the UV absorption intensity and range,that is,the surface photovoltage follows the order of S-SnO2(SDBS)(0.006 36 mV)>SnO2(SDBS)(0.005 01 mV)>S-SnO2(0.002 22 mV)>SnO2(0.000 46 mV). Comparatively,the surface photovoltage of S-SnO2(SDBS)is 13.8 times higher than that of SnO2under the same condition,suggesting that S-doped SnO2have higher efficiency to transport the photogenerated electrons than SnO2.From Fig.8,the surface photovoltage response of the samples can also be observed at 420~600 nm with a weak peak,attributing to the existence of a large amount of surfaces states and Dember effect.The surface state could change the configuration of nanoparticle′s surface atoms,electron spin and electronic transition.Based on EFISPS principle,the surface state is sensitive towards the external electric field,an external electric field enhances the transition probability of surface state to generate surface photovoltage response signals in the long wavelength[25].The stronger of the SPS signal is,the higher the efficiency of photoinduced charge separation.This is consistent with the results of visible-light degradation.Simultaneously,surface oxygen vacancies and defects enhance the separation of photogenerated charges at the interface,resulting in the higher photodegradation efficiency of paraquat.

    Fig.10 Electrical field induced surface photovoltage spectra in the samples

    From the results above,it can be deduced that the surficial states of photocatalyst have a significant effect on the photocatalytic activity.As for S-SnO2(SDBS), the S element is successfully incorporated into the lattice of SnO2with S/S/S/Sby substituting Sn4+, rather than embedded into the interstice of SnO2lattice,thereby leading to lattice distortion.The S3p level could mix with O2p which results in the narrowing of the band gap and enhancing the photocatalytic activity.Moreover,the formation of the localized midgap state above the top of the valence band for SnO2might be responsible for increasing thephotoactivity of SnO2in the visible region[26].The average size of S-SnO2(SDBS)is lower than 6 nm as the doping of S,leading to the enhanced absorption of light because of the quantum size effect and subsequently enhancing the amount of photo-induced carrier. Additionally,a large amount of hydroxyl groups in SSnO2(SDBS)are beneficial to generating highly reactive ·OH,thus accelerating the degradation of paraquat.It should also be noted that the ratio of S/Sin S-SnO2(SDBS)is obviously more than that of S-SnO2,which also enhances the degradation of paraquat because S/Shas stronger oxidation capacity than S/S.

    3 Conclusions

    In this work,S-doped SnO2nanoparticles with superior visible light photocatalytic activity was fabricated via a facile solid state synthesis approach at low temperature using sodium dodecyl benzene sulfonate(SDBS)as template.The S element is successfully incorporated into the lattice of SnO2with S/S/S/Sinstead of embedding into the interstice of SnO2lattice.S-doped SnO2could significantly improve visible light utilization property,thus resulting in narrowed band gap.SDBS has a significant regulating effect on the surficial structure of photocatalysts.The photocatalytic activity shows significant correlation with particle size,particle size distribution and the ratio of S/S/S/S.S-doped SnO2exhibits higher photocatalytic activity,and it follows an order of SnO2

    Acknow ledgements:This work was supported by the Education Quality Promotion Foundation of Department of Education,Guizhou Province,China(No.[2011]278-01),Guizhou Province Characteristic Leading Academic Discip line Project in Material Physics and Chem istry(No.[2011]208),Characteristic Key Laboratory Construction Fund of Guizhou Province(No. [2012]014),and Science and Technology Innovation Talent Team Foundation of Guizhou Province,China(No.[2013]4029).

    [1]SU Shao-Quan(蘇少泉),GENG He-Li(耿賀利).Pesticide (農(nóng)藥),2008,47(4):244-247

    [2]WANG Zhai-Yu(王載宇).J.Medical Frontier(醫(yī)藥前沿), 2011,1(12):61-62

    [3]JIAO Jian(焦劍),SONG Ji-Mei(宋繼梅),ZHANG Xiao-Xia (張小霞),et al.Guangzhou Chemical Industry(廣州化工), 2010,8(3):138-141

    [4]ZHENG Wen(鄭文),TANG Wen-Hao(唐文浩).Anhui AgriculturalSciences(安徽農(nóng)業(yè)科學(xué)),2007,35(8):2370-2371

    [5]LIU Chun-Ming(劉春明),FANG Li-Mei(方麗梅),ZU Xiao-Tao(祖小濤).Acta Phys.Sin.(物理學(xué)報(bào)),2009,58(2):936-940

    [6]Emons T T,Li J,Nazar L F.J.Am.Chem.Soc.,2002,124 (29):8516-8517

    [7]Monredon S,Cellot A,Delattre L,et al.J.Mater.Chem., 2002,12:2396-2400

    [8]Rockenberger J,Zum F U,Tischer M,et al.J.Chem.Phys., 2000,112(9):4296-4304

    [9]LU Yao(逯瑤),WANG Pei-Ji(王培吉),ZHANG Chang-Wen (張昌文),et al.Acta Phys.Sin.(物理學(xué)報(bào)),2011,60(6):223-229

    [10]LU Yao(逯瑤),WANG Pei-Ji(王培吉),ZHANG Chang-Wen (張昌文),et al.Acta Phys.Sin.(物理學(xué)報(bào)),2012,61(2): 23101-23106

    [11]CHI Jun-Hong(池俊紅),WANG Juan(王娟).Acta Phys. Chim.Sin.(物理化學(xué)學(xué)報(bào)),2010,26(8):2306-2310

    [12]OUYANG Pan(歐陽(yáng)攀),ZHANG Hong(張鴻),LI Gen(李根),et al.Electronic Components and Materials(電子元器件及材料),2012,6(31):10-14

    [13]XU Ke-Jing(許珂敬),SHANG Chao-Feng(尚超峰),LI Fang (李芳).Chinese J.Nonferrous Metals(中國(guó)有色金屬學(xué)報(bào)), 2008,18(5):884-889

    [14]ZHOU Wu-Yi(周武藝),CAO Qing-Yun(曹慶云),TANG Shao-Qiu(唐紹裘),et al.J.Inorganic Materials(無機(jī)材料學(xué)報(bào)),2006,21(4):776-782

    [15]LIU Shou-Xin(劉守新),LIU Hong(劉鴻).Foundation and Application of Photocatalysis and Photoelectro-Catalysis(光催化及與光電催化基礎(chǔ)與應(yīng)用).Beijing:Beijing Chemical Industry Press,2005:135

    [16]CHANG Jian-Hua(常建華),DONG Qi-Gong(董綺功).Principle and Analysis of Spectrum(波譜原理與解析).Beijing: Beijing Science Press,2006:84

    [17]ZHANG Yi-Hua(張義華),ZHANG Jing-Xin(張景新),WANG Xue-Qing(王學(xué)勤),et al.J.Dalian Universityof Technology (大連理工大學(xué)學(xué)報(bào)),2000,40(1):64-66

    [18]Wark M,Ekloff G S,Jaeger N I.Stud.Surf.Sci.Catal.,1991, 69:189-197

    [19]Adans D M.Metal-Ligand and Related Vibrations.London: Edward Arnold,1967.

    [20]Socrates G.Infrared Characteristic Group Freqencies.New York:Wiley,1980.

    [21]Randeniya L K,Murphy A B,Plumb I C.J.Mater.Sci., 2008,43:1389-1399

    [22]Themlin J M,Chtaib M,Henrard L,et al.Phys.Rev.B,1992, 46(4):2460-2466

    [23]Satish C B M,Samuel J T,Glenn A,et al.Geochim. Cosmochim.Acta,1998,62(21/22):3499-3514

    [24]Slade P.Nature,1965,207:515-516

    [25]XUE Yong-Qiang(薛永強(qiáng)).Thesis for The Doctorate of Taiyuan University of Technology(太原理工大學(xué)博士學(xué)位論文),2005.

    [26]Daghrir R,Drogui P,Robert D.Ind.Eng.Chem.Res.,2013, 52:3581-3599

    Sulfur Doped Tin Oxide Nanoparticles:Solid State Synthesis and Performance for Visible-Light Driven Photocatalytic Degradation of Paraquat

    HE Zhong-Bing1,2LIU Shao-You*,1,3YANG Hong-Yun1MIN Zong-Yi2NIE Xin1
    (1College of Chemistry and Materials Engineering,Kaili University,Kaili,Guizhou 556011,China)
    (2College of Envirnomental Science and Engineering,Hunan University,Changsha 410082,China)
    (3School of Envirnomental Studies,Guangxi University,Nanning 530004,China)

    Sulfur doped tin oxide(S-SnO2)nanoparticles with high visible light-driven activity was synthesized by a facile solid state synthesis approach at low temperature using sodium dodecyl benzene sulfonate(SDBS)as a template.The samples were characterized by XRD,XPS,SEM,UV-Vis,HR-TEM,and FTIR.The doping mechanism and photocatalytic degradation of paraquat under visible light irradiation were investigated.The results show that the SDBS has a significant regulating effect on the surficial structure for both SnO2and S-SnO2prepared by solid state synthesis.The S element is successfully incorporated into the lattice of SnO2with S/Sand S/Srather than embeds into the interstice of SnO2lattice.S-doping enhances the photocatalytic activity of SnO2due to the presence of a large number of hydroxyls on the surface and S/Sin the lattice of SnO2benefiting the light absorption and effective charge separation,and it follows an order of SnO2

    S-doped;SnO2;solid state synthesis;photocatalytic degradation;paraquat

    O643.36

    A

    1001-4861(2015)04-0649-10

    10.11862/CJIC.2015.117

    2014-09-01。收修改稿日期:2015-02-08。

    貴州省科技創(chuàng)新人才團(tuán)隊(duì)建設(shè)基金項(xiàng)目(黔科人字[2013]4029);貴州省材料物理與化學(xué)特色重點(diǎn)學(xué)科建設(shè)基金項(xiàng)目(黔教高發(fā)[2011]208);貴州省教育廳特色重點(diǎn)實(shí)驗(yàn)室建設(shè)基金項(xiàng)目(黔教高發(fā)[2012]196);貴州省教育廳市州地普通本科高校教育質(zhì)量提升科研項(xiàng)目(黔教高發(fā)[2011]278-01)資助。

    *通訊聯(lián)系人。E-mail:lsy651204@163.com

    猜你喜歡
    凱里百草晶格
    神農(nóng)嘗百草
    神農(nóng)嘗百草
    非線性光學(xué)晶格中的梯度流方法
    神農(nóng)嘗百草
    KYRIE IRVING'S HANG DRIBBLE 凱里·歐文 停頓運(yùn)球
    NBA特刊(2018年7期)2018-06-08 05:48:30
    凱里·歐文 KYRIE IRVING 大器早成
    NBA特刊(2018年7期)2018-06-08 05:48:28
    神農(nóng)嘗百草
    幼兒畫刊(2018年5期)2018-06-05 02:17:05
    一個(gè)新非線性可積晶格族和它們的可積辛映射
    變臉 凱里·歐文
    NBA特刊(2017年24期)2017-04-10 08:50:16
    一族拉克斯可積晶格方程
    欧美乱妇无乱码| 国产免费av片在线观看野外av| 成人国产一区最新在线观看| 日韩欧美国产一区二区入口| 久久人人97超碰香蕉20202| 自线自在国产av| 巨乳人妻的诱惑在线观看| 亚洲av成人不卡在线观看播放网| 欧美乱色亚洲激情| 国产精品久久电影中文字幕| 欧美中文日本在线观看视频| 欧美成人免费av一区二区三区| 中文字幕色久视频| 首页视频小说图片口味搜索| 最新在线观看一区二区三区| 夜夜夜夜夜久久久久| 首页视频小说图片口味搜索| 国产亚洲欧美精品永久| 如日韩欧美国产精品一区二区三区| 这个男人来自地球电影免费观看| 亚洲色图 男人天堂 中文字幕| 99久久国产精品久久久| 亚洲色图 男人天堂 中文字幕| x7x7x7水蜜桃| 十分钟在线观看高清视频www| 亚洲成国产人片在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色怎么调成土黄色| 亚洲精品av麻豆狂野| 国产成+人综合+亚洲专区| 国产精品国产高清国产av| 国产精品99久久99久久久不卡| 日韩国内少妇激情av| 一级黄色大片毛片| 身体一侧抽搐| 精品久久久久久,| 日本 av在线| 99精品欧美一区二区三区四区| 国产精品一区二区三区四区久久 | 日本vs欧美在线观看视频| 精品久久久久久成人av| 免费av中文字幕在线| 在线播放国产精品三级| 免费在线观看日本一区| 搡老熟女国产l中国老女人| 欧美日韩瑟瑟在线播放| 一级黄色大片毛片| 精品国产亚洲在线| 国产欧美日韩一区二区三区在线| 黄色毛片三级朝国网站| 亚洲av成人一区二区三| 国产1区2区3区精品| 免费在线观看视频国产中文字幕亚洲| av电影中文网址| 中文亚洲av片在线观看爽| 老司机靠b影院| 精品一区二区三卡| 欧美午夜高清在线| 亚洲精品久久成人aⅴ小说| 国产成人系列免费观看| 国产一卡二卡三卡精品| 欧美黑人欧美精品刺激| 亚洲av电影在线进入| 国产伦人伦偷精品视频| 一个人观看的视频www高清免费观看 | 欧美在线一区亚洲| 18禁美女被吸乳视频| 久久天躁狠狠躁夜夜2o2o| 久久性视频一级片| 欧美成狂野欧美在线观看| 在线观看日韩欧美| 99香蕉大伊视频| 两人在一起打扑克的视频| 欧美日韩亚洲国产一区二区在线观看| 免费久久久久久久精品成人欧美视频| 校园春色视频在线观看| 久久人人爽av亚洲精品天堂| 免费在线观看日本一区| netflix在线观看网站| 欧美日韩国产mv在线观看视频| 日韩免费高清中文字幕av| 精品福利观看| 亚洲精品成人av观看孕妇| 一级黄色大片毛片| 久久婷婷成人综合色麻豆| 国产高清视频在线播放一区| 国产一区二区三区视频了| 在线观看66精品国产| av免费在线观看网站| 999精品在线视频| 国产三级在线视频| 国产免费av片在线观看野外av| 黄片小视频在线播放| 国产成人精品在线电影| 露出奶头的视频| 18美女黄网站色大片免费观看| 成人黄色视频免费在线看| 性欧美人与动物交配| 日韩一卡2卡3卡4卡2021年| 国产成人一区二区三区免费视频网站| 国产高清videossex| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 夜夜看夜夜爽夜夜摸 | 亚洲九九香蕉| 亚洲一区二区三区欧美精品| 久久精品国产99精品国产亚洲性色 | 五月开心婷婷网| cao死你这个sao货| tocl精华| 欧美黄色淫秽网站| 日韩欧美在线二视频| 亚洲 欧美一区二区三区| 国产精品久久久久成人av| 9热在线视频观看99| 热re99久久精品国产66热6| 乱人伦中国视频| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜一区二区| 俄罗斯特黄特色一大片| 久久99一区二区三区| 成人手机av| 狂野欧美激情性xxxx| 亚洲国产中文字幕在线视频| 9色porny在线观看| 久久精品亚洲精品国产色婷小说| 国产99白浆流出| 涩涩av久久男人的天堂| 国产欧美日韩一区二区三| 成人亚洲精品一区在线观看| www.www免费av| 一个人观看的视频www高清免费观看 | 熟女少妇亚洲综合色aaa.| 成人精品一区二区免费| 亚洲片人在线观看| 国产真人三级小视频在线观看| 久久精品人人爽人人爽视色| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区精品| 亚洲国产中文字幕在线视频| 国产熟女xx| 亚洲成人久久性| 精品一区二区三卡| 大陆偷拍与自拍| 麻豆国产av国片精品| 日本三级黄在线观看| 午夜福利影视在线免费观看| 久久精品91蜜桃| 亚洲国产精品999在线| 88av欧美| 狠狠狠狠99中文字幕| 久久久国产成人免费| 久久久久国产一级毛片高清牌| 久久久久久久久免费视频了| 亚洲专区字幕在线| 亚洲专区中文字幕在线| 国产精品久久久人人做人人爽| 琪琪午夜伦伦电影理论片6080| 国产伦人伦偷精品视频| 久久香蕉激情| 亚洲欧美精品综合久久99| 丁香六月欧美| 中文亚洲av片在线观看爽| 精品国产一区二区三区四区第35| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产美女av久久久久小说| 欧美激情极品国产一区二区三区| 99riav亚洲国产免费| 欧美中文日本在线观看视频| 亚洲国产欧美网| 热re99久久精品国产66热6| 在线观看免费视频网站a站| 香蕉丝袜av| 久9热在线精品视频| 免费久久久久久久精品成人欧美视频| 欧美乱码精品一区二区三区| av中文乱码字幕在线| 国产成年人精品一区二区 | 亚洲色图av天堂| 男人舔女人的私密视频| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 国产亚洲精品综合一区在线观看 | 免费av毛片视频| 黑丝袜美女国产一区| www.www免费av| 久久久国产一区二区| 老司机亚洲免费影院| ponron亚洲| 国产精品二区激情视频| 久久亚洲真实| 亚洲avbb在线观看| 一本大道久久a久久精品| 亚洲 国产 在线| 亚洲激情在线av| 人成视频在线观看免费观看| 老司机福利观看| 久久影院123| 男男h啪啪无遮挡| 色哟哟哟哟哟哟| 18禁国产床啪视频网站| 免费人成视频x8x8入口观看| 国产麻豆69| 精品高清国产在线一区| 日韩免费av在线播放| 午夜福利,免费看| 啪啪无遮挡十八禁网站| 老司机福利观看| 国产精品久久久久成人av| 乱人伦中国视频| 国产精品自产拍在线观看55亚洲| 午夜精品在线福利| 成人18禁高潮啪啪吃奶动态图| 日韩精品中文字幕看吧| 美女午夜性视频免费| 少妇裸体淫交视频免费看高清 | 久9热在线精品视频| 国产日韩一区二区三区精品不卡| 动漫黄色视频在线观看| 成年人免费黄色播放视频| 亚洲人成电影观看| 日日夜夜操网爽| 黑人巨大精品欧美一区二区蜜桃| 少妇被粗大的猛进出69影院| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三| a在线观看视频网站| 黄色a级毛片大全视频| 欧美亚洲日本最大视频资源| 亚洲熟妇熟女久久| 亚洲五月婷婷丁香| 免费在线观看日本一区| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| 大码成人一级视频| 欧美激情久久久久久爽电影 | 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放 | 黑人巨大精品欧美一区二区mp4| 两个人免费观看高清视频| 夜夜爽天天搞| 级片在线观看| 亚洲欧美日韩另类电影网站| 亚洲成人国产一区在线观看| 免费在线观看亚洲国产| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 免费高清在线观看日韩| 国产成人一区二区三区免费视频网站| 精品久久久久久久久久免费视频 | 十八禁网站免费在线| 欧美色视频一区免费| 麻豆一二三区av精品| 国产野战对白在线观看| 日本免费a在线| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 午夜a级毛片| 日日干狠狠操夜夜爽| 色精品久久人妻99蜜桃| 操美女的视频在线观看| 窝窝影院91人妻| 亚洲五月色婷婷综合| 1024香蕉在线观看| 日本a在线网址| 亚洲国产中文字幕在线视频| 国产熟女xx| 波多野结衣高清无吗| 欧美日本中文国产一区发布| 18美女黄网站色大片免费观看| 99久久精品国产亚洲精品| av国产精品久久久久影院| 亚洲一区二区三区色噜噜 | 日韩人妻精品一区2区三区| 99久久国产精品久久久| 色综合婷婷激情| 国产精品综合久久久久久久免费 | 免费在线观看影片大全网站| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 国产成人av激情在线播放| 日本免费一区二区三区高清不卡 | 午夜福利在线免费观看网站| 精品久久久久久电影网| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 午夜福利在线观看吧| 国产激情久久老熟女| 97人妻天天添夜夜摸| 美女午夜性视频免费| 99国产精品一区二区蜜桃av| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 国产在线观看jvid| 欧美日韩乱码在线| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影 | av欧美777| 在线观看午夜福利视频| 制服人妻中文乱码| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 精品久久久久久电影网| 又黄又爽又免费观看的视频| 波多野结衣av一区二区av| a级毛片在线看网站| 怎么达到女性高潮| 国产精品综合久久久久久久免费 | 国产精华一区二区三区| x7x7x7水蜜桃| 欧美人与性动交α欧美软件| 啦啦啦免费观看视频1| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美软件| 啦啦啦免费观看视频1| 日本a在线网址| 亚洲avbb在线观看| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 亚洲色图综合在线观看| 久久国产乱子伦精品免费另类| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕| 亚洲欧美日韩另类电影网站| 久久天堂一区二区三区四区| 亚洲人成电影观看| 我的亚洲天堂| 999久久久国产精品视频| 中文字幕人妻丝袜制服| 久久国产精品人妻蜜桃| 国产精品综合久久久久久久免费 | 国产精品影院久久| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面| 亚洲精品在线美女| 欧美激情极品国产一区二区三区| 大码成人一级视频| 精品一区二区三区视频在线观看免费 | 久久久久久久午夜电影 | 日韩成人在线观看一区二区三区| 日本免费a在线| 国产激情久久老熟女| 精品一区二区三区视频在线观看免费 | 一二三四社区在线视频社区8| 欧美日韩视频精品一区| 国产单亲对白刺激| 美国免费a级毛片| 精品人妻1区二区| 久久久水蜜桃国产精品网| 日本vs欧美在线观看视频| 欧美不卡视频在线免费观看 | 午夜亚洲福利在线播放| 一级片'在线观看视频| 在线观看66精品国产| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 十八禁网站免费在线| 成人国语在线视频| 国产精品1区2区在线观看.| 深夜精品福利| 久久久水蜜桃国产精品网| 香蕉国产在线看| 午夜日韩欧美国产| 一a级毛片在线观看| 久久精品91无色码中文字幕| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av在线| cao死你这个sao货| 欧美大码av| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av高清一级| 级片在线观看| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 国产片内射在线| 亚洲精品国产区一区二| 国产精品爽爽va在线观看网站 | 国产亚洲精品一区二区www| 国产真人三级小视频在线观看| 在线观看免费日韩欧美大片| 精品高清国产在线一区| 国产精品香港三级国产av潘金莲| tocl精华| 女人爽到高潮嗷嗷叫在线视频| 日本 av在线| 99香蕉大伊视频| 欧美国产精品va在线观看不卡| 午夜免费观看网址| 老司机午夜十八禁免费视频| 日韩精品中文字幕看吧| 日本黄色日本黄色录像| 成人国语在线视频| 亚洲欧美激情在线| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 麻豆久久精品国产亚洲av | 欧美最黄视频在线播放免费 | 男女下面插进去视频免费观看| 精品久久久久久久久久免费视频 | 天天添夜夜摸| 久久精品国产99精品国产亚洲性色 | 久久午夜亚洲精品久久| 国产熟女xx| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 久热爱精品视频在线9| 国产一区二区激情短视频| 校园春色视频在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品久久视频播放| 午夜91福利影院| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 久久精品国产亚洲av高清一级| 精品国内亚洲2022精品成人| 亚洲第一av免费看| 99香蕉大伊视频| 麻豆成人av在线观看| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 久久久国产欧美日韩av| 99在线视频只有这里精品首页| 欧美精品亚洲一区二区| 啪啪无遮挡十八禁网站| 91久久精品国产一区二区成人| 人妻丰满熟妇av一区二区三区| 久久婷婷人人爽人人干人人爱| 国产69精品久久久久777片| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 成人欧美大片| 国产精品av视频在线免费观看| 午夜激情欧美在线| 精品不卡国产一区二区三区| 在线观看美女被高潮喷水网站 | 欧美区成人在线视频| 制服丝袜大香蕉在线| 亚洲美女搞黄在线观看 | 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看 | 欧美日韩福利视频一区二区| 麻豆成人av在线观看| 观看美女的网站| 日日夜夜操网爽| 亚洲综合色惰| 成年女人毛片免费观看观看9| av中文乱码字幕在线| 亚洲人成电影免费在线| 熟女电影av网| 在线观看午夜福利视频| 99久久九九国产精品国产免费| www.999成人在线观看| 国产又黄又爽又无遮挡在线| 国产一区二区在线观看日韩| 成年免费大片在线观看| 91久久精品电影网| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| 免费人成在线观看视频色| 久久精品国产清高在天天线| 如何舔出高潮| 日本与韩国留学比较| 一级黄片播放器| 神马国产精品三级电影在线观看| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 精品一区二区免费观看| 久久久久性生活片| 日本免费一区二区三区高清不卡| 亚洲最大成人手机在线| 欧美三级亚洲精品| 嫩草影院入口| .国产精品久久| 男女之事视频高清在线观看| netflix在线观看网站| 亚洲精品粉嫩美女一区| 男女那种视频在线观看| 国产精品一及| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡欧美一区二区| 国产成人aa在线观看| 亚洲中文字幕一区二区三区有码在线看| 中国美女看黄片| 波野结衣二区三区在线| 成人午夜高清在线视频| 亚洲无线观看免费| 国产精品精品国产色婷婷| 9191精品国产免费久久| 90打野战视频偷拍视频| 国产探花在线观看一区二区| 亚州av有码| 日本一本二区三区精品| 国产精品av视频在线免费观看| 婷婷丁香在线五月| 无遮挡黄片免费观看| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| 51国产日韩欧美| 亚洲 国产 在线| 久久久国产成人免费| 永久网站在线| 青草久久国产| 亚洲人成网站在线播放欧美日韩| 69av精品久久久久久| 久久久久久久久久成人| 亚洲av日韩精品久久久久久密| 成人精品一区二区免费| 国产三级黄色录像| 国产av麻豆久久久久久久| 国产国拍精品亚洲av在线观看| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 乱码一卡2卡4卡精品| 亚洲激情在线av| 乱码一卡2卡4卡精品| 久久99热这里只有精品18| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 欧美黄色淫秽网站| 少妇人妻一区二区三区视频| 国产亚洲欧美98| 精品久久久久久,| 蜜桃亚洲精品一区二区三区| 精品人妻视频免费看| 美女高潮的动态| 日韩成人在线观看一区二区三区| 欧美黄色淫秽网站| 久久国产乱子免费精品| 老司机午夜福利在线观看视频| 久久人人精品亚洲av| 欧美黄色淫秽网站| 午夜福利欧美成人| 国产久久久一区二区三区| 最新中文字幕久久久久| 久久伊人香网站| 国产免费av片在线观看野外av| 一本精品99久久精品77| 色吧在线观看| 高清在线国产一区| 国产私拍福利视频在线观看| 最近最新中文字幕大全电影3| 五月玫瑰六月丁香| 免费观看精品视频网站| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 哪里可以看免费的av片| 久久久久久久久中文| 亚洲av一区综合| 人妻制服诱惑在线中文字幕| 女人十人毛片免费观看3o分钟| 欧美最新免费一区二区三区 | 又爽又黄a免费视频| 高清日韩中文字幕在线| 国产色婷婷99| 亚洲av日韩精品久久久久久密| 中文字幕av在线有码专区| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 老鸭窝网址在线观看| 午夜两性在线视频| 1024手机看黄色片| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 亚洲男人的天堂狠狠| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频| 欧美精品国产亚洲| 天堂av国产一区二区熟女人妻| 极品教师在线免费播放| 亚洲最大成人中文| 亚洲五月天丁香| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 国产三级在线视频| 国产精品久久久久久久久免 | av视频在线观看入口| 国产精品98久久久久久宅男小说| 俺也久久电影网| 人妻夜夜爽99麻豆av| 亚洲成人久久爱视频| 午夜福利在线在线| 成年女人毛片免费观看观看9| 一a级毛片在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 免费观看人在逋| 国产白丝娇喘喷水9色精品| 最后的刺客免费高清国语| 国产高潮美女av| 免费在线观看成人毛片| 少妇人妻一区二区三区视频| 久久久久精品国产欧美久久久| 亚洲av成人av| 亚洲国产日韩欧美精品在线观看| а√天堂www在线а√下载| 黄色日韩在线| 亚洲av免费高清在线观看| 午夜免费成人在线视频| 老司机福利观看| 欧美黄色片欧美黄色片| 亚洲午夜理论影院| 国产精品久久久久久人妻精品电影| 欧美区成人在线视频| 欧美xxxx性猛交bbbb|