• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳、鎘與去甲基斑蝥酸鈉和咪唑配合物的結(jié)構(gòu)、與DNA/BSA的作用及抗增殖活性

    2015-12-15 07:18:54杜芳園李士坤林秋月湯寧寧
    關(guān)鍵詞:斑蝥浙江師范大學(xué)光譜法

    杜芳園 李士坤 林秋月*, 魏 瓊 湯寧寧

    (1浙江師范大學(xué)浙江省固體表面反應(yīng)化學(xué)重點(diǎn)實(shí)驗(yàn)室,金華321004)

    (2浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)

    杜芳園1,2李士坤2林秋月*,1,2魏 瓊2湯寧寧2

    (1浙江師范大學(xué)浙江省固體表面反應(yīng)化學(xué)重點(diǎn)實(shí)驗(yàn)室,金華321004)

    (2浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)

    以2種配體去甲基斑蝥酸鈉(Na2DCA=7-氧雜二環(huán)[2.2.1]庚烷-2,3-二甲酸鈉)和咪唑(IM),分別與鎳和鎘的醋酸鹽通過(guò)溶液法合成了2種配合物[Ni(IM)(DCA)(H2O)2]·2H2O(1),[Cd2(IM)4(DCA)2]·2H2O(2)。應(yīng)用元素分析、熱重分析、紅外光譜及X-射線單晶衍射法對(duì)配合物的組成和結(jié)構(gòu)進(jìn)行了表征。配合物1與2的中心離子分別與咪唑的亞胺氮原子、去甲基斑蝥酸根的羧基氧原子和醚鍵氧原子配位,配位數(shù)均為6,分別為單核(1)和雙核(2)配合物。通過(guò)紫外光譜法、熒光光譜法和粘度法研究了配合物與DNA的相互作用。結(jié)果表明,配合物能通過(guò)部分插入模式與DNA發(fā)生較強(qiáng)的結(jié)合作用(Kb:5.51×103(1)、1.01×103(2)L· mol-1)。同時(shí),利用熒光光譜法研究了配合物與牛血清白蛋白(BSA)的相互作用。配合物能與BSA發(fā)生強(qiáng)烈的相互作用(KA:1.91× 105(1)和6.17×105(2)L·mol-1),結(jié)合位點(diǎn)數(shù)均為1。測(cè)試了配合物對(duì)人肝癌細(xì)胞(SMMC7721)和人乳腺癌(MCF-7)的體外抗增殖活性。結(jié)果顯示,配合物對(duì)不同癌細(xì)胞具有選擇性抑制作用。鎳配合物(1)對(duì)SMMC7721的抗癌活性較去甲基斑蝥酸鈉有明顯提高。

    咪唑;去甲基斑蝥酸鈉;鎳配合物;鎘配合物;與DNA和BSA相互作用;體外抗增殖活性

    0 Introduction

    Recent studies indicated that the transition metal complexes possessed excellent antiproliferative activities,especially complexes containing natural anticancer products[1-2].Disodium demethylcantharate(Na2(DCA)), as the derivatives of cantharidin,have been applied in clinical use[3].Some previous researches also showed that,after forming metal complexes,the antiproliferative activities of ligand could be improved significantly[4-5].Meanwhile,demethylcantharate(DCA)itself could inhibit the activities of PP1 and PP2A effectively[6-7].According to the literature[8],the platinum complexes containing DCA are likely to possess dual anti-cancer mechanism:inhibition of PP2A and platination of DNA,which promotes the anticancer activities of complexes.

    The imidazole group is an important topic in biochemistry.It presents in the metallic centers of metalloproteins and metalloenzymes.In the active centers of biomolecules,the nitrogen atom from imidazoles is known to bond to metals.Developing new medicines that are able to treat severe poisoning is also relevant to the study of heteroligand complexes[9]. And the transition metal complexes of demethylcantharidin and heterocyclic compounds possessed intense antiproliferative activities[10-11].The interaction mechanisms of these complexes with biomacromolecules have been studied previously[12-13].

    Thus,designing and synthesizing the drugs, which could simultaneously interacting with various biomacromolecules(such as DNA and protein) strongly,has a vital significance.In this study,two Niand Cdcomplexes of demethylcantharate and imidazole were designed and synthesized.The interactions of the complexes with DNA and bovine serum albumin(BSA)were investigated.In addition, antiproliferative activities against human hepatoma cells(SMMC-7721)and human breast cancer cells (MCF-7)lines were tested in vitro.

    1 Experimental

    1.1 M aterials and instrum ents

    All reagents and chemicals were obtained from commercial sources.Demethylcantharidin(NCTD, C8H8O4)was obtained from Nanjing Zelang Medical Technology Co.Ltd.;imidazole(IM,C3H4N2)and DNA were obtained from Sinopharm Chemical Reagent Co. Ltd.;ethidium bromide(EB)was obtained from Fluka Co.Ltd.;DNA solution(ρ=200 μg·m L-1,c=3.72×10-4mol·L-1,A260/A280=1.8~2.0)was prepared by 50 mmol· L-1NaCl;BSA was purchased from Beijing BioDee BioTech Co.Ltd.and was stored at 277 K;BSA solution(ρ=500 μg·mL-1,c=7.47 μmol·L-1)was prepared by 5 mmol·L-1NaCl;Human hepatoma cells (SMMC7721)and human breast cancer cells(MCF-7) were purchased from Shanghai Institute of Cell Bank. Na2DCA was synthesized by Demethylcantharidin (NCTD)and NaOH according to the reference[14].Other chemical reagents in analytical reagent grade were used without further purification.

    Elemental analyses of C,H and N were carriedout in Vario ELⅢelemental analyzer.Infrared spectra were measured using the KBr disc method by NEXUS-670 FT-IR spectrometer in the spectral range 4 000~400 cm-1.The thermogravimetric analyses were monitored on TGA/SDTA851ethermo gravimetric analyzer.Diffraction intensities of the complexes were collected at 293 K on Bruker SMART APEXⅡCCD difffractometer.Electronic absorption spectra were recorded on UV-2501 PC spectrophotometer.Fluorescence emission spectra were obtained by Perkin-Elmer LS-55 spectrofluorometer.Viscosity experiments were carried on Ubbelodhe viscometer.

    1.2 Syntheses of the complexes

    A mixture of Ni(Ac)2·4H2O(1 mmol)and imidazole(1 mmol)were dissolved in water.The aqueous solution of Na2DCA(1 mmol)was added dropwise to the mixed solution.The green solution was then filtered after stirring for 4 h.Two weeks later,green crystals with suitable size for single-crystal X-ray diffraction were obtained.Anal.Calcd.(%)for NiC11H20N2O9:C,34.50;H,5.26;N,7.31.Found(%):C,34.35; H,5.32;N,7.40.Λm(DMF):21 S·cm2·mol-1.IR spectra (KBr,cm-1):1 604(νas(COO-));1 416(νs(COO-));1 267, 1 185,988(ν(C-O-C));737,584(ν(O-H)).

    The solution of Cd(Ac)2·4H2O(1 mmol)and imidazole(3 mmol)were stirred at 50℃for 2 h.The aqueous solution of Na2DCA(1 mmol)was added dropwise to the mixed solution.And the pH value of the mixed solution was adjusted to 5.0 using glacial acetic acid.The colorless solution was then filtered after stirring at 50℃for 4 h.Two weeks later, colorless crystals with suitable size for single-crystal X-ray diffraction were obtained.Anal.Calcd.(%)for Cd2C28H36N8O12:C,37.31;H,4.02;N,12.43.Found (%):C,37.48;H,3.95;N,12.26.Λm(DMF):25 S·cm2·mol-1.IR spectra(KBr,cm-1):1 595(νas(COO-));1 391 (νs(COO-));1 265,1 178,987(ν(C-O-C)).

    1.3 Antiproliferative activity evaluation

    The MTT assay was applied to measure the antiproliferative activities.Title complex was dissolved in DMSO as 100 mmol·L-1stock solutions and then diluted in culture medium before using.The final concentration of DMSO in the medium was less than 0.1%and no interference with the tested biological activities was shown[15].Cells were seeded for 24 h, and the title complex or Na2(DCA)was added and incubated for 72 h.Then 100 μL MTT(1 mg·m L-1, dissolved in culture medium)was added into each well and incubated for 4 h(37℃).The inhibition ratio was calculated.The errors quoted were standard deviations,which were based on three replicates[16].

    1.4 Crystal structure determ ination

    Single crystals,with size of 0.310 mm×0.163 mm×0.036 mm(1)or 0.199 mm×0.179 mm×0.138 mm (2),were analyzed by X-ray diffraction.Data were collected with a graphite monochromatic Mo Kα radiation(λ=0.071 073 nm)using the ω-2θ scan technique at 296(2)K.The structures were solved by direct methods and refined by full-matrix least-squares techniques using the SHELXTL-97 program package[17-18]. All non-hydrogen atoms were refined anisotropically. Besides the hydrogen atoms next to oxygen atoms located on different Fourier maps,other hydrogen atoms were generated geometrically.Crystal data and experimental details for structural analyses are listed in Table 1.

    CCDC:822330,1;822328,2.

    Table1 Crystal data and structure refinem ent details for the com p lexes

    Continued Table 1

    2 Results and discussion

    2.1 Characterization and crystal structure

    2.1.1 Thermogravimetric analysis(TGA)

    The experiment was performed under air atmosphere with a heating rate of 10℃·min-1and temperature range of 30~800℃.The TG-DTG curves of complex 1 are shown in Fig.1.For complex 1,according to the TG-DTG curves,a four-stage weight loss processes happened.The first weight loss stage(9.98%) occurred in the temperature range of 65~160℃, which corresponded to the departure of the two crystal water(9.40%theoretical).The second weight loss stage(9.48%),which corresponded to the departure of two coordinated water(9.40%theoretical),was occurred in the temperature range of 161~215℃.The third weight loss stage(16.86%),which corresponded to the departure of imidazole ligand(17.78%theoretical), was occurred in the temperature range of 216~340℃. Title complex gave a sharp weight loss peak at temperature around 341~525℃,which corresponds to the weight loss of 43.96%.It indicates the thermal decomposition of one DCA(43.92%theoretical).At temperature above 525℃,no further weight loss occurred.The sample residue was NiO,which weigh 19.72%of the initial mass(19.50%theoretical).The TG-DTG curves of complex 2 were similar to 1.

    Fig.1 TG-DTG curves of complex 1

    2.1.2 Structural description of the complexes

    Molecular structure of complexes were shown in Fig.2.Selected bond lengths and bond angles are presented in Table 2 and 3.

    Molecular structure of complex[Ni(IM)(DCA) (H2O)2]·2H2O(1)is shown in Fig.2a.The structural model shows the Niion was six-coordinated.Each Niwas coordinated with one imine nitrogen N(1) from imidazole(IM),two carboxylate oxygen atoms O(1) and O(1A)in two different carboxylate groups,one bridge oxygen atom O(3)from demethylcantharate,and two oxygen atoms(O(1W#1),O(1W),)from water.The bond angles of O(1)#1-Ni(1)-O(1),O(1W)#1-Ni(1)-O(1W),O(1W)-Ni(1)-O(1)and O(1W)#1-Ni(1)-O(1)#1 are 84.57(7)°,88.74(8)°,176.81(5)°and 176.81(5)°,respectively,all of which are close to 90°.Thus,a slightly distorted quadrangle was formed around Ni(1)by O(1W),O(1W)#1,O(1),and O(1)#1.Similarly,the imine nitrogen N(1)and the bridge oxygen atom O(3) were in the axial positions.They formed a distorted octahedral structure.Due to the binding of the bridge oxygen atoms O(3)with Ni,two six-membered rings (Ni(1)-O(3)-C(3)#1-C(2)#1-C(1)#1-O(1)#1 and Ni(1)-O(3)-C(3)-C(2)-C(1)-O(1))were formed,and a sevenmembered ring(Ni(1)-O(1)-C(1)-C(2)-C(2)#1-C(1)#1-O(1)#1)was formed,which could have stabilized the complex.

    Fig.2 Coordination environment of metal atoms in the complex 1(a)and complex 2(b)showing 50%probability ellipsoids and the atom-labeling scheme

    Table2 Selected bond lengths(nm)and angles(°)for complex 1

    Table3 Selected bond lengths(nm)and angles(°)for com p lex 2

    Molecular structure of complex[Cd2(IM)4(DCA)2]· 2H2O(2)is shown in Fig.2b.The complex was binuclear,and each Cdion was six-coordinated.Each Cdion was six-coordinated by two nitrogen atoms from two imidazole,one ether oxygen atom,two oxygen atoms of different carboxyl groups from one DCA,and one bridging oxygen atom of carboxyl group from the other DCA.Two Cdions were connected by O(1)andO(1)#1,and formed a quadrangle coordination center Cd2O2,which was the symmetric center of the entire molecule.O(1),O(1)#1,O(5)#1 and N(3)lay on the same equatorial plane with Cd(1)with a torsion angle. O(3)#1 and N(1)were in the axial positions.It formed a distorted octahedral structure since the bond angle of N(1)-Cd(1)-O(3)#1 was 157.61(6)°.And two imidazole molecules that coordinated with each Cdion were vertical to each other.

    Packing diagram of the complexes was showed in Fig.3,and the hydrogen bond lengths and bond angles are given in Table 4 and 5.

    Taking complex 1 as an example,strong(O-H…O)hydrogenbonds(O…O distance is0.27480~0.28696 nm)existed between adjacent chains,which involve the coordinated water,the crystal water and the carboxyl group from adjacent chains.Numerous intraand intermolecular hydrogen-bonding interactions were formed.Crystal water of each molecular was linked with O(2W)-H(2WA)…O(2W)#4,resulting in an onedimensional chain.These one-dimensional chains could extend the structure to 2D layer with O(1W)-H(1WA)…O(2)#2 and O(2W)-H(2WB)…O(2)#1.And these layers could constructed the three-dimensionalstructure of the complex with O(1W)-H(1WB)…O(1)#3. Therefore,we concluded that the synergistic effect, such as hydrogen-bonding interactions,existing between the complexes and biomacromolecule,could be the fundamental cause of the biological activity change found in macromolecules.

    Fig.3 Packing diagrams of complex 1(a)and complex 2(b)showing hydrogen bonding interactions(dashed lines)

    Table4 Hydrogen bond lengths(nm)and bond angles(°)for com plex 1

    Table5 Hydrogen bond lengths(nm)and bond angles(°)for com plex 2

    2.2 DNA binding studies

    2.2.1 Electronic absorption spectra

    The application of electronic absorption spectroscopy is one of the most useful techniques in DNA-binding studies[19].The UV absorption spectra would change in accordance with the environmental condition changes,since the stacking interactions happened between the complexes and DNA[20].Results are shown in Fig.4,with increasing DNA concentration, hyperchromic(1)or hypochromic(2)effect was observed,which indicated molecular level interactions existed between the complexes and DNA.

    The intrinsic binding constant(Kb)was determined by the equation:cDNA/(εA-εF)=cDNA/(εB-εF)+1/[Kb(εB-εF)], where εA,εFand εBcorresponded to the apparent extinction coefficient,the extinction coefficient for the free compounds and its fully DNA-bound combination, respectively[21].Kbvalues of the complexes were 3.28× 104(1),5.95×103(2)L·mol-1,respectively.These values suggested that the complexes possessed moderate binding abilities with DNA.Meanwhile,the binding constants of the complexes with DNA were one or two orders of magnitude less than that of classical intercalator(EB)[22],which indicated the binding mode between title complexes and DNA were non-classical intercalative.The values suggested that the binding ability of complex 1 was more intense than complex 2, and the Kbof complex 1 is close to the value of cobaltcomplex[Co(IM)(DCA)(H2O)2]·2H2O(2.62×104L· mol-1)[23].The results suggested that the structure of the complex played an important role in the interaction with DNA.

    2.2.2 Fluorescence spectral studies

    To study the intensity and mode of the interaction between complexes and DNA,EB was used as fluorescence probe due to its conjugate rigid plane structure.And the fluorescence quenching of EB-DNA system by this planar structure compound was studied.Intense fluorescence was observed at 592 nm in the EB-DNA system,but not in the complexes. The results were shown in Fig.5.With increasing concentration of the complexes,the intensity of emission bands of EB-DNA system reduced,which inferred that two complexes bonded to DNA.These complexes could replace EB from EB-DNA system, and inserted into DNA string.

    Fig.4 Absorption spectra of complex 1(a),2(b)in the absence and the presence of DNA

    Fig.5 Emission spectra of EB-DNA system in the absence and presence of complex 1 and complex 2

    According to the Stern-Volmer equation[24]:F0/F= 1+Ksqr,the abilities of complexes binding with DNA could be quantified.From the illustration in Fig.5,a preferable linear relation existed between F0/F and r, and the constant Ksqof Stern-Volmer was gradient of the illustration.The Ksqvalues for complexes were 0.055(1)and 0.006(2),respectively.The results indicated the DNA binding ability of complex 1 was more intense than complex 2,and the binding mode between the complexes and DNA was intercalation.However, the intercalation between complex 2 and DNA was too weak for complex 2 to displace EB from the EB-DNA system,and the fluorescence system has no significant change.It was attributed to the differences of their structures.Space steric hindrance resulting from two mutually perpendicular imidazole rings,hindered the insertion of complex 2 into the base pair pleated sheet of the DNA double helix.

    2.2.3 Viscosity measurements

    Hydrodynamic measurements are sensitive to DNA length change and considered to be the most critical tests in evaluating binding modes in solution in the absence of crystallographic structural data[25]. The classical intercalative mode can lead to significant increase in viscosity of DNA solution,due to the increasing of overall DNA length caused by separation of base pairs at intercalation sites.In contrast,a partial or non-classical intercalation of the compounds can bend or kink DNA helix,resulting in a decrease of its effective length and viscosity[26].To further study the binding mode of the compounds interacting with DNA,DNA viscosity at 25℃was investigated(Fig.6),and the relative viscosities η were calculated through equation[27]:η=(t-t0)/t0,where t0and t represent the flow time of DNA solution in the absence and presence of complex through the capillary, respectively.The experimental data showed that the relative viscosity of DNA steadily decreased after adding complexes,but there were no significant viscosity change occurred after adding Na2DCA or IM. A possible explanation is that the complexes were partially inserted to the DNA base pairs and resulting in a kink in the DNA helix,therefore the DNA effective length was reduced[28].The steric hindrance of the complex was accrescent due to the non-planar structure of demethylcantharate(DCA).

    Fig.6 Effect of increasing amounts of the compounds on the relative viscosity of DNA at 25℃

    Meanwhile,the relative DNA viscosity was reduced in different degrees,which inferred that complex 1 had stronger interaction with DNA than complex 2.This result agrees with the electronic absorption spectra and fluorescence spectra observation. These conclusions explained the structural differences causing the differences in DNA bindings.

    2.3 Interaction w ith BSA

    2.3.1 Fluorescence spectra and quenching mechanism

    Fig.7 Fluorescence spectra of BSA in the absence(dash line)and the presence(solid line)of complex 1(a)and complex 2(b)

    The fluorescence quenching of BSA by the complexes was showed in Fig.7.The results showed that BSA has strong fluorescence emission at 346 nm. The peak intensity decreased with the increasing concentration of complexes,which inferred that strong interactions and energy transfer between complexes and BSA existed[29].The BSA-complex compound system appeared one equal strength emission point at 316(1) and 310(2),indicating that a compound system was formed between BSA and complexes,resulting quenching in the BSA fluorescence[30].

    In order to verify the quenching mechanism,the fluorescence quenching was assumed to be dynamic quenching.The quenching rate constants can be calculated by the Stern-Volmer equation[31]:F0/F=1+ Kqτ0cQ,where cQis the concentration of the complexes. For many proteins,τ0is known to be approximately equal to 10-8s.Using these assumptions,the calculated quenching rate constants Kqwere 5.64×1014(1)and 9.20×1014L·mol-1·s-1(2),respectively.These values were much greater than the maximum possible value for diffusion-limited quenching in water(2×1010L· mol-1·s-1),which suggested that quenching mechanism of complexes to BSA was static quenching[32].

    2.3.2 Binding constants and binding sites

    Assuming there were n identical and independent binding sites in protein,the binding constant KAcan be calculated using equation[33]:lg(F0-F)/F=lg KA+n lg cQ. The obtained values of KAwere 1.91×105L·mol-1(1), 6.17×105L·mol-1(2),and 2.78×104L·mol-1(Na2DCA). The values of n were 0.80(1),0.82(2)and 0.66 (Na2DCA),respectively.These results indicated that strong binding interactions existed between the complexes and BSA.And the results also inferred that complex 2 had stronger interaction with BSA than complex 1,and the binding site of complexes was one. The binding intensity of complexes with BSA was stronger than with DNA,due to the binding intensity of Na2DCA with BSA was found stronger than with DNA.

    2.4 Antiproliferative activity evaluation

    The antiproliferative activities of Na2(DCA)and complex 1 were evaluated by human hepatoma cells (SMMC-7721)and human breast cancer cells(MCF-7) using the MTT assay in vitro.The relations between inhibition rates and complex concentrations against human hepatoma cells and breast cancer cells were shown in Fig.8 and Fig.9,respectively.

    Fig.8 Inhibition effects of complex and Na2(DCA)on SMMC-7721 cell growth

    Fig.9 Inhibition effects of complex and Na2(DCA)on MCF-7 cell growth

    As shown in Fig.8,the inhibition ratios of complex against human hepatoma cells were significantly higher than Na2(DCA).Especially at the concentration of 75.00 μmol·L-1,the inhibition ratio of complex ((48.2±3.4)%)was much greater than Na2(DCA) ((19.1±8.3)%).The inhibition ratios of complex 1 against SMMC-7721 lines increased with concentration growth.The concentration of the compounds with 50% inhibition(IC50)on the SMMC7721 was determined. The values of IC50of complex((86.48±6.1)μmol·L-1) and Na2(DCA)((152.8±15.6)μmol·L-1)inferred that the complex had stronger inhibition activities against human hepatoma cells compared to Na2(DCA),and it was even more intense than NCTD(IC50=(115.5±9.5) μmol·L-1)[34],which were both applied in clinical use. Complex 1 had intense antiproliferative activities against the human hepatoma cells(SMMC-7721)in vitro,which had the potential to develop as an anticancer drug in the future.As shown in Fig.9,the inhibition ratio of complex 1 were lower than the ratio of Na2(DCA)against human gastric cancer cells under the concentration of 300.00 μmol·L-1.In conclusion, the results showed complex 1 had strong antiproliferative effect against human hepatoma cells within the tested concentration range.It indicates that they had selectivity for the inhibition effect against cancer cells after forming complexes.

    3 Conclusions

    Two transition metal complexes[Ni(IM)(DCA) (H2O)2]·2H2O(1)and[Cd2(IM)4(DCA)2]·2H2O(2)were synthesized and characterized.Complex 1 was mononuclear molecule,and complex 2 was binuclear molecule.Central ion of each complex was sixcoordinated by nitrogen atoms from imidazoles and oxygen atoms from DCA.These complexes possess strong DNA and BSA binding abilities,and the binding intensity of complex 1 with DNA was stronger than complex 2.And the complex 1 had intense antiproliferative activities against the human hepatoma cells(SMMC-7721)in vitro,which gives it the potential to be developed as an anti-cancer drug in the future.

    Acknow ledgements:We thank Institute of Zhejiang Academy of Medical Sciences for helping with anti-proliferative activity test.

    [1]ZHOU Jian-Liang(周建良),CHUN Xiao-Gai(春曉改),ZHOU Lin-Jiao(周琳姣),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2010,26(4):645-650

    [2]Chen Z F,Liu Y C,Liu L M,et al.Dalton Trans.,2009,2: 262-272

    [3]ZHANG Fan(張帆),LIN Qiu-Yue(林秋月),ZHENG Bo-Wen (鄭博雯),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2012,28(11):2451-2457

    [4]Lin Q Y,Wang Y Y,Feng Y L,et al.J.Coord.Chem.,2011, 64:920-930

    [5]Zhang F,Zheng X L,Lin Q Y,et al.Inorg.Chim.Acta,2013, 394:85-91

    [6]Timothy AH,ScottGS,ChristopherPG,etal.ChemMedChem, 2008,3(12):1878-1892

    [7]Hart M E,Chamberlin A R,Walkom C,et al.Bioorg.Med. Chem.Lett.,2004,14:1969-1973

    [8]To K K W,Ho Y P,Au-Yeung S C F.J.Chromatogr.A, 2002,947:319-326

    [9]Semerci F,Yesilel Q Z,Sahin E.J.Inorg.Organomet.Polym. Mater.,2010,20:334-342

    [10]YING Fu-Ling(尹富玲),SHEN Jia(申佳),ZOU Jia-Jia(鄒佳嘉),et al.Acta Chim.Sinica(化學(xué)學(xué)報(bào)),2003,61:556-561

    [11]Pang S K,Yu C W,Au-Yeung S C F,et al.B iochem.Biophys. Res.Commun.,2007,363:235-240

    [12]Wang N,Lin Q Y,Wen Y H,et al.Inorg.Chim.Acta,2012, 384:345-351

    [13]LI Shi-Kun(李士坤),LIN Qiu-Yue(林秋月),Lü Tian-Xi(呂天喜),et al.Chinese J.Struct.Chem.(結(jié)構(gòu)化學(xué)),2010,29: 1632-1637

    [14]WANG Jun(汪俊),XU Qiong-Ming(許瓊明),SUN Xiao-Fei (孫曉飛).Chin.J.Magn.Reson.(波譜學(xué)雜志),2009,26(1): 126-135

    [15]Kumar C S A,Prasad S B B,Vinaya K,et al.Eur.J.Med. Chem.,2009,44:834-844

    [16]Zheng X L,Sun H X,Liu X L,et al.Acta Pharmacol.Sin., 2004,25:1090-1095

    [17]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997.

    [18]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

    [19]Liu Z C,Wang B D,Yang Z Y,et al.Eur.J.Med.Chem., 2009,44:4477-4484

    [20]WU Xiao-Yong(吳小勇),LIU Jian-Feng(劉建風(fēng)),ZHAO Guo-Liang(趙國(guó)良).Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2012,28(8):1661-1667

    [21]Zhang F,Zhu W Z,Lin Q Y,et al.J.Rare Earths,2011,29 (4):297-302

    [22]GUO Qiong(郭瓊),LI Lian-Zhi(李連之),DONG Jian-Fang (董建方),et al.Acta Chim.Sinica(化學(xué)學(xué)報(bào)),2012,70:1617 -1624

    [23]Lin Q Y,Wang Y Y,Feng Y L,et al.J.Coord.Chem.,2011, 64(5):920-930

    [24]Lakowicz J R,Webber G.Biochemistry,1973,12(21):4161-4170

    [25]Satish S B,Anupa A K,Hussain H,et al.Inorg.Chem., 2011,50:545-558

    [26]Jose L G G,Javier H G,Aloma M R,et al.J.Inorg.Biochem., 2013,121:167-178

    [27]Song W J,Cheng J P,Jiang W J,et al.Spectrochim.Acta A,2014,121:70-76

    [28]Tan L F,Shen J L,Liu J,et al.Dalton Trans.,2012,41:4575 -4587

    [29]Ashoka S,Seetharamappa J,Kandagal P B,et al.J.Lumin., 2006,121:179-186

    [30]Wu X H,Liu J J,Wang Q,et al.Spectrochim.Acta A, 2011,79:1202-1209

    [31]Guo Q,Li L Z,Dong J F,et al.Spectrochim.Acta A,2013, 106:155-162

    [32]Wang Y J,Hu R D,Jiang D H,et al.J.Fluoresc.,2011,21: 813-823

    [33]Patra A,Sarkar S,Mukherjee T,et al.Polyhedron,2011, 30:2783-2789

    [34]Wang N,Lin Q Y,Feng J,et al.Inorg.Chim.Acta,2010, 363:3399-3406

    Structures,Interaction w ith DNA and BSA and Antiproliferative Activities of Niand CdCom p lexes Based on Demethylcantharate and Im idazole

    DU Fang-Yuan1,2LI Shi-Kun2LIN Qiu-Yue*,1,2WEI Qiong2TANG Ning-Ning2
    (1Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)
    (2College of Chemical and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Two mixed-ligand complexes[Ni(IM)(DCA)(H2O)2]·2H2O(1)and[Cd2(IM)4(DCA)2]·2H2O(2)(DCA= demethylcantharate,7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylate,C8H8O5;IM=imidazole,C3H4N2)were synthesized and characterized by elemental analysis,infrared spectra,thermogravimetric analysis,and X-ray diffraction. Complex 1 was a mononuclear molecule,with Niion six-coordinated by one nitrogen atom from imidazole, three oxygen atoms from DCA and two water molecules.The complex 1 crystallized in the monoclinic crystal system with P21/m.Complex 2 was a binuclear molecule,each Cdion was six-coordinated by two nitrogen atoms from two imidazole,one ether oxygen atom and three oxygen atoms of carboxyl groups from DCA.The complex 2 crystallized in the triclinic crystal system with P1 space group.The DNA binding properties of the complexes were investigated by electronic absorption spectra,fluorescence spectra and viscosity measurements. These two complexes could bind to DNA with moderate intensity via partial intercalation.The binding constants Kbwere 5.51×103(1)and 1.01×103L·mol-1(2)at 298 K,respectively.Meanwhile,the binding intensity of complexwith bovine serum albumin(BSA)is high,with binding constants KAequal to 1.91×105(1)and 6.17×105L·mol-1(2),respectively.Experimental results showed that complexes and BSA formed a 1∶1 compound with conformational changes in BSA.The antiproliferative activities of the complex(1)against human hepatoma cells (SMMC7721)lines and human breast cancer cells(MCF-7)lines were tested with MTT assay in vitro.The results showed that the inhibition effect had selectivity against cancer cells after forming complexes.The antiproliferative activities of the complex(IC50=(86.8±6.1)μmol·L-1)against the human hepatoma cells lines was more intense than Na2(DCA)(IC50=(152.8±15.6)μmol·L-1),which suggests potential application in anti-cancer drug development. CCDC:822330,1;822328,2.

    imidazole;disodium demethylcantharate;nickel complex;cadmium complex;interaction with DNA and BSA; antiproliferative activity

    O614.81+3;O614.24+2

    A

    1001-4861(2015)04-0813-11

    10.11862/CJIC.2015.113

    2014-10-20。收修改稿日期:2015-01-13。

    國(guó)家自然科學(xué)基金(No.)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:sky51@zjnu.cn

    猜你喜歡
    斑蝥浙江師范大學(xué)光譜法
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    治斑禿
    婦女生活(2018年12期)2018-12-14 06:43:30
    直讀光譜法測(cè)定熱作模具鋼中硫的不確定度評(píng)定
    紅外光譜法研究TPU/SEBS的相容性
    南方大斑蝥體內(nèi)結(jié)合斑蝥素對(duì)人肝癌HepG2細(xì)胞凋亡的影響
    原子熒光光譜法測(cè)定麥味地黃丸中砷和汞
    中成藥(2016年8期)2016-05-17 06:08:22
    原子熒光光譜法測(cè)定銅精礦中鉍的不確定度
    90打野战视频偷拍视频| 亚洲天堂av无毛| 国产不卡一卡二| videosex国产| av国产精品久久久久影院| 久久久水蜜桃国产精品网| 国产日韩一区二区三区精品不卡| 老司机亚洲免费影院| 999久久久国产精品视频| 三上悠亚av全集在线观看| 午夜视频精品福利| 欧美成人午夜精品| 无人区码免费观看不卡 | 黄片播放在线免费| 精品久久久精品久久久| 水蜜桃什么品种好| 久久这里只有精品19| 99re在线观看精品视频| 中文字幕人妻熟女乱码| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av电影在线进入| 精品少妇久久久久久888优播| 免费高清在线观看日韩| 欧美人与性动交α欧美软件| 老鸭窝网址在线观看| 亚洲全国av大片| 亚洲色图 男人天堂 中文字幕| 午夜视频精品福利| 成年人黄色毛片网站| 亚洲伊人色综图| 亚洲第一欧美日韩一区二区三区 | 久久精品亚洲av国产电影网| 欧美av亚洲av综合av国产av| 一区二区日韩欧美中文字幕| 亚洲中文日韩欧美视频| 一级,二级,三级黄色视频| 精品高清国产在线一区| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| 超色免费av| 在线观看www视频免费| 久久亚洲真实| 亚洲全国av大片| 国产成人免费观看mmmm| 超碰97精品在线观看| 国产精品.久久久| 久久久久国内视频| 久久精品亚洲av国产电影网| 国产亚洲av高清不卡| 69av精品久久久久久 | 色老头精品视频在线观看| 在线观看免费午夜福利视频| 欧美日韩亚洲综合一区二区三区_| 极品少妇高潮喷水抽搐| 久热爱精品视频在线9| 精品国内亚洲2022精品成人 | 五月开心婷婷网| 精品亚洲乱码少妇综合久久| 女性被躁到高潮视频| 777米奇影视久久| 黄片大片在线免费观看| av有码第一页| 国产成人系列免费观看| 老熟妇仑乱视频hdxx| 欧美日韩国产mv在线观看视频| 国产97色在线日韩免费| 亚洲精华国产精华精| 性高湖久久久久久久久免费观看| 午夜福利一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 在线播放国产精品三级| 最新在线观看一区二区三区| 麻豆av在线久日| 女性生殖器流出的白浆| 一区二区日韩欧美中文字幕| 飞空精品影院首页| 我的亚洲天堂| 国产麻豆69| 久久99一区二区三区| 久久天堂一区二区三区四区| 露出奶头的视频| 99国产极品粉嫩在线观看| 热re99久久国产66热| av天堂久久9| 夜夜夜夜夜久久久久| 最新的欧美精品一区二区| 建设人人有责人人尽责人人享有的| 久久这里只有精品19| 青草久久国产| 亚洲av日韩精品久久久久久密| 国产野战对白在线观看| 色婷婷久久久亚洲欧美| 久久久久久久精品吃奶| 午夜视频精品福利| 99久久99久久久精品蜜桃| 18禁黄网站禁片午夜丰满| 男女之事视频高清在线观看| 欧美老熟妇乱子伦牲交| 欧美日韩亚洲高清精品| 麻豆成人av在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色片一级片一级黄色片| 汤姆久久久久久久影院中文字幕| 亚洲av日韩精品久久久久久密| 久久天堂一区二区三区四区| 一本综合久久免费| 中文字幕制服av| 亚洲美女黄片视频| 大片免费播放器 马上看| 午夜91福利影院| 又大又爽又粗| 国产主播在线观看一区二区| 乱人伦中国视频| 欧美国产精品va在线观看不卡| 黄色丝袜av网址大全| 一区二区三区精品91| videosex国产| 日本精品一区二区三区蜜桃| 香蕉国产在线看| 日本精品一区二区三区蜜桃| 日本欧美视频一区| tube8黄色片| 999久久久国产精品视频| 另类精品久久| 一区二区三区乱码不卡18| 国产精品一区二区在线不卡| 亚洲成国产人片在线观看| 操出白浆在线播放| 91国产中文字幕| 色精品久久人妻99蜜桃| 免费观看人在逋| 男女免费视频国产| 国产成人精品久久二区二区91| 欧美国产精品va在线观看不卡| 欧美乱妇无乱码| 久久精品亚洲av国产电影网| 嫁个100分男人电影在线观看| 精品福利永久在线观看| 在线观看免费日韩欧美大片| 三级毛片av免费| 桃花免费在线播放| 欧美人与性动交α欧美精品济南到| 免费看十八禁软件| 国产麻豆69| 免费av中文字幕在线| 正在播放国产对白刺激| 国产成人av激情在线播放| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| √禁漫天堂资源中文www| 日日夜夜操网爽| 最近最新中文字幕大全电影3 | 老汉色∧v一级毛片| 欧美日韩av久久| 在线 av 中文字幕| 国产精品电影一区二区三区 | 亚洲一区中文字幕在线| 黄色a级毛片大全视频| 亚洲精品久久午夜乱码| 国产精品98久久久久久宅男小说| av线在线观看网站| 久久精品人人爽人人爽视色| 国产一区二区在线观看av| 我的亚洲天堂| 一区二区三区激情视频| 精品亚洲乱码少妇综合久久| 久久国产精品大桥未久av| 99精品久久久久人妻精品| 欧美精品av麻豆av| 女性被躁到高潮视频| 精品亚洲成国产av| 国产成人精品久久二区二区91| 国产黄频视频在线观看| 丰满迷人的少妇在线观看| 国产精品1区2区在线观看. | 成年女人毛片免费观看观看9 | 老熟妇乱子伦视频在线观看| 亚洲五月色婷婷综合| 日韩 欧美 亚洲 中文字幕| 老司机影院毛片| 18禁黄网站禁片午夜丰满| www日本在线高清视频| 日本欧美视频一区| 99国产极品粉嫩在线观看| cao死你这个sao货| 看免费av毛片| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 高清欧美精品videossex| 黄片小视频在线播放| 99热网站在线观看| 欧美日韩黄片免| 精品国产一区二区三区久久久樱花| 久久久精品94久久精品| 久久人人97超碰香蕉20202| 交换朋友夫妻互换小说| 色综合婷婷激情| 久久久精品免费免费高清| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 久久av网站| 最新在线观看一区二区三区| 在线观看www视频免费| 香蕉丝袜av| 国产在线精品亚洲第一网站| 99re在线观看精品视频| 亚洲国产av影院在线观看| 精品福利观看| 肉色欧美久久久久久久蜜桃| 国产av国产精品国产| 巨乳人妻的诱惑在线观看| 中文欧美无线码| 亚洲自偷自拍图片 自拍| 久久中文看片网| 免费不卡黄色视频| 婷婷成人精品国产| 久久精品国产亚洲av高清一级| 9色porny在线观看| 久久亚洲精品不卡| 国产国语露脸激情在线看| 一边摸一边抽搐一进一出视频| h视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 狠狠婷婷综合久久久久久88av| 日本一区二区免费在线视频| 久久精品亚洲熟妇少妇任你| 亚洲av日韩精品久久久久久密| svipshipincom国产片| 少妇粗大呻吟视频| 麻豆av在线久日| 在线观看舔阴道视频| 他把我摸到了高潮在线观看 | 久久人人爽av亚洲精品天堂| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 黑丝袜美女国产一区| 久久影院123| 纯流量卡能插随身wifi吗| 男女下面插进去视频免费观看| 久久99热这里只频精品6学生| 色在线成人网| 亚洲天堂av无毛| 色婷婷久久久亚洲欧美| 大香蕉久久网| 大码成人一级视频| 黑人巨大精品欧美一区二区蜜桃| 超色免费av| 热99国产精品久久久久久7| 91精品三级在线观看| 欧美成人免费av一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 亚洲天堂av无毛| 无限看片的www在线观看| 亚洲av美国av| 国产单亲对白刺激| 午夜精品国产一区二区电影| 91国产中文字幕| 女性被躁到高潮视频| 亚洲av日韩精品久久久久久密| 搡老乐熟女国产| tube8黄色片| 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 国产伦人伦偷精品视频| 丝袜美足系列| 亚洲熟妇熟女久久| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 性少妇av在线| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 成年版毛片免费区| 天堂中文最新版在线下载| 看免费av毛片| 天堂动漫精品| 国产精品一区二区在线不卡| 精品视频人人做人人爽| 欧美一级毛片孕妇| tube8黄色片| 视频区图区小说| 亚洲五月色婷婷综合| 亚洲精品中文字幕一二三四区 | 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色 | 在线永久观看黄色视频| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| 捣出白浆h1v1| bbb黄色大片| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免费看| 亚洲五月婷婷丁香| 免费在线观看日本一区| 国产在线一区二区三区精| 亚洲九九香蕉| 两人在一起打扑克的视频| 9热在线视频观看99| 男女床上黄色一级片免费看| 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 最新在线观看一区二区三区| 日本五十路高清| 亚洲熟女精品中文字幕| 不卡av一区二区三区| 人妻 亚洲 视频| 国产极品粉嫩免费观看在线| 日日夜夜操网爽| 欧美精品高潮呻吟av久久| 久久九九热精品免费| 九色亚洲精品在线播放| a级毛片在线看网站| 无限看片的www在线观看| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 国产精品九九99| 搡老乐熟女国产| 久久亚洲精品不卡| 成人三级做爰电影| 精品亚洲成国产av| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 久久九九热精品免费| 亚洲五月色婷婷综合| 亚洲av欧美aⅴ国产| 国产成+人综合+亚洲专区| 女人久久www免费人成看片| 最近最新中文字幕大全电影3 | 国产午夜精品久久久久久| av天堂久久9| 在线永久观看黄色视频| 国产高清videossex| 国产xxxxx性猛交| 国产麻豆69| 亚洲专区中文字幕在线| 99香蕉大伊视频| 亚洲熟女毛片儿| 亚洲精品自拍成人| 一二三四在线观看免费中文在| 交换朋友夫妻互换小说| 国产精品98久久久久久宅男小说| 中亚洲国语对白在线视频| 国产精品熟女久久久久浪| 国产精品自产拍在线观看55亚洲 | 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 国产一区二区在线观看av| 成人国产一区最新在线观看| 99久久国产精品久久久| 999久久久国产精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费电影在线观看| 久久午夜亚洲精品久久| 999精品在线视频| 国产成人影院久久av| 成年版毛片免费区| 中亚洲国语对白在线视频| 欧美精品亚洲一区二区| 又大又爽又粗| 亚洲成人免费电影在线观看| 日韩大码丰满熟妇| 午夜两性在线视频| 国产黄频视频在线观看| 国产成人欧美| 电影成人av| 成人永久免费在线观看视频 | 免费久久久久久久精品成人欧美视频| 欧美 日韩 精品 国产| 叶爱在线成人免费视频播放| av欧美777| 亚洲色图 男人天堂 中文字幕| 无限看片的www在线观看| 欧美老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 国产老妇伦熟女老妇高清| 精品人妻在线不人妻| 69精品国产乱码久久久| 日韩免费高清中文字幕av| 另类亚洲欧美激情| bbb黄色大片| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区在线臀色熟女 | 欧美日韩中文字幕国产精品一区二区三区 | 中文亚洲av片在线观看爽 | 性少妇av在线| 色在线成人网| 高清av免费在线| 欧美在线黄色| 亚洲综合色网址| 一区福利在线观看| www.熟女人妻精品国产| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| 9热在线视频观看99| 亚洲九九香蕉| 日日爽夜夜爽网站| 亚洲精品一二三| 一边摸一边抽搐一进一小说 | 精品一区二区三区av网在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 婷婷成人精品国产| 交换朋友夫妻互换小说| 午夜日韩欧美国产| 国产av一区二区精品久久| 99热国产这里只有精品6| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 国产单亲对白刺激| 999精品在线视频| 18禁美女被吸乳视频| 久久人妻av系列| 极品少妇高潮喷水抽搐| 成人手机av| 又黄又粗又硬又大视频| 国产成人精品在线电影| 天堂8中文在线网| 亚洲第一av免费看| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 亚洲七黄色美女视频| 黑人操中国人逼视频| 久久av网站| 高清av免费在线| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 9色porny在线观看| 妹子高潮喷水视频| 久久人妻福利社区极品人妻图片| 色播在线永久视频| 久久久水蜜桃国产精品网| 黑人欧美特级aaaaaa片| 午夜福利一区二区在线看| 大片电影免费在线观看免费| 午夜免费成人在线视频| 亚洲国产av新网站| 美女视频免费永久观看网站| 又大又爽又粗| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 男女高潮啪啪啪动态图| 巨乳人妻的诱惑在线观看| 日本wwww免费看| 蜜桃国产av成人99| 一级片免费观看大全| netflix在线观看网站| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 久久久国产欧美日韩av| 免费在线观看黄色视频的| 成人av一区二区三区在线看| 又大又爽又粗| 亚洲专区国产一区二区| 性色av乱码一区二区三区2| 精品高清国产在线一区| 人人妻人人爽人人添夜夜欢视频| 国产精品免费大片| 日本精品一区二区三区蜜桃| 国产97色在线日韩免费| www.自偷自拍.com| 这个男人来自地球电影免费观看| 在线 av 中文字幕| 亚洲国产精品一区二区三区在线| 一本综合久久免费| 国产精品九九99| 久久这里只有精品19| 久久 成人 亚洲| 亚洲视频免费观看视频| 嫁个100分男人电影在线观看| 亚洲成人手机| 伊人久久大香线蕉亚洲五| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 欧美激情 高清一区二区三区| 久久精品国产99精品国产亚洲性色 | 99久久国产精品久久久| 国产精品国产高清国产av | 亚洲一码二码三码区别大吗| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 成人18禁高潮啪啪吃奶动态图| 日韩欧美三级三区| 欧美一级毛片孕妇| 在线观看一区二区三区激情| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 热99re8久久精品国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 国产精品影院久久| 久久久水蜜桃国产精品网| 99久久精品国产亚洲精品| 中文字幕精品免费在线观看视频| 国产高清激情床上av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一卡2卡三卡4卡5卡| 大陆偷拍与自拍| 91老司机精品| 亚洲熟妇熟女久久| 丁香六月欧美| 五月开心婷婷网| 成人精品一区二区免费| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 国产一区二区在线观看av| 国产高清激情床上av| 日日摸夜夜添夜夜添小说| 免费女性裸体啪啪无遮挡网站| 老司机在亚洲福利影院| 国产极品粉嫩免费观看在线| av欧美777| 亚洲精品av麻豆狂野| 满18在线观看网站| 黄色 视频免费看| 桃花免费在线播放| 国产伦理片在线播放av一区| 美国免费a级毛片| 桃红色精品国产亚洲av| 亚洲精品在线观看二区| 国产高清国产精品国产三级| 露出奶头的视频| 在线观看66精品国产| 三级毛片av免费| 国产精品香港三级国产av潘金莲| 一级毛片精品| 男女下面插进去视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久国产一级毛片高清牌| 精品国产一区二区三区四区第35| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 黄色视频不卡| 国产免费视频播放在线视频| 日本精品一区二区三区蜜桃| 日本vs欧美在线观看视频| 三上悠亚av全集在线观看| 国产色视频综合| 国产日韩欧美视频二区| 汤姆久久久久久久影院中文字幕| 我要看黄色一级片免费的| 一进一出好大好爽视频| 国产高清国产精品国产三级| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 精品亚洲成国产av| 亚洲成国产人片在线观看| 在线观看一区二区三区激情| 777米奇影视久久| h视频一区二区三区| 黑人猛操日本美女一级片| 一区二区日韩欧美中文字幕| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 2018国产大陆天天弄谢| 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 黑人操中国人逼视频| 性色av乱码一区二区三区2| 午夜激情av网站| 成年人黄色毛片网站| 久久久久久免费高清国产稀缺| 后天国语完整版免费观看| 99国产极品粉嫩在线观看| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 免费在线观看完整版高清| 一级毛片精品| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 国内毛片毛片毛片毛片毛片| 手机成人av网站| 国产黄色免费在线视频| 久久婷婷成人综合色麻豆| 日韩一卡2卡3卡4卡2021年| 欧美av亚洲av综合av国产av| 国产精品欧美亚洲77777| 99re6热这里在线精品视频| 国产成人精品久久二区二区免费| 18禁美女被吸乳视频| 亚洲精品成人av观看孕妇| 最黄视频免费看| 免费黄频网站在线观看国产| 多毛熟女@视频| 十八禁网站网址无遮挡| 欧美日韩国产mv在线观看视频| 久久久久久久精品吃奶| 动漫黄色视频在线观看| 精品国产一区二区久久| 国产在线观看jvid| 老司机福利观看| 国产一卡二卡三卡精品| 国产精品电影一区二区三区 | 久久亚洲真实| 日韩一区二区三区影片| 久久久国产成人免费| 国产一区有黄有色的免费视频| 国精品久久久久久国模美| 18在线观看网站| 美女午夜性视频免费|