• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and Numerical Analysis of the Polyvinyl Chloride(PVC)Mechanical Behavior Response

    2015-12-13 11:35:35
    Computers Materials&Continua 2015年13期

    Experimental and Numerical Analysis of the Polyvinyl Chloride(PVC)Mechanical Behavior Response

    H.Khellafi1,H.M.Meddah1,B.Ould Chikh1,B.Bouchouicha2,M.Benguediab2,M.Bendouba3

    The polyvinyl chloride PVC is a polymer material widely used for a large variety of applications.The present work focuses on the identification of the physical processes responsible for the mechanical properties of the PVC containing different crystallinities rate applied in large deformation and different strain rates.In order to understand the behavior of the PVC,a thermodynamic modeling is needed.Therefore,the contribution of this approach was demonstrated by experiment and numerical modeling.This comparative study demonstrates that the proposed model provides better agreement with experimental evidence.

    Damage;Fracture;PVC;Numerical analysis;FEM.

    1 Introduction

    The polymers are inseparable from our environment and our practical life.They have established themselves in all areas of our business through their use in hygiene and food products.Most often synthetic,sometimes natural,they must this rise to their wide range of features,hard,soft and elastic,transparent or opaque,insulated and occasionally conductors,more or less resistant to aggressive conditions of their use,always lightweight.The semi-crystalline polymers are materials that having a complicated microstructure consisted of an amorphous disordered phase and a vicious nature structured crystalline phase.Coexistence and interaction of these two phases of very different natures are the origin of the complexity of their macroscopic behavior that could fall within the scope of such as elasto-viscoplastic behavior[Kichenin(1992);Paquin and Berveiller(1996);Ouakka,Dang Van,Gueugnaut,and Blouet(1997);Polanco-Loria,Clausen,Berstad,and Hopperstad(2007)].Several fracture study ways were investigated,the first take place on the scale of thecontinuum mechanics.This approach allows predicting the evolution of this latter according to the state of loading and leads to a characterization of mechanical quantities at the instant of the rupture.Other phenomenological approaches are looking for simple mathematical models in order to translate sufficient conditions for the rupture is primed.

    The expression of criteria and descriptors put into play may be different according to the importance of the plastic process developing in the material.The polymers are composed of macromolecules that are obtained by adding small molecules called monomers.When a polymerization reaction is happened,the monomers are generally of long chains that can fold on themselves and/or entangle with neighboring macromolecules.The long chain polymer can have crystalline domains and/or amorphous as appropriate.Our aim is to depict the different routes of possible study and choose the most appropriate to the description of our material(PVC),establishing laws of behavior of Gurson Model[Gurson(1977)]and rupture criteria relevant implementable in a numerical simulation of the behavior of the PVC structure commonly used in the industry.We firstly present present much information that will glimpse the importance of the combined effects of the formulation and implementation of PVC.

    2 Analytical modeling of the strain rate deformation of polymers

    Modeling of polymers is based initially on the rheological model of Voigt and Maxwell.These models are used to combine both of viscoelastic and Viscoplasticity[Lamloumi,Hassini,Lecomte-Nana,Elcafsi,and Smith(2014)],two behaviors encountered in polymers.In the case of semi-crystalline,although the behavior of the amorphous phase is very different from the behavior of the crystalline phase,many models have tried to describe by means of a unique equation of the two-phase behavior[Gurson(1977)]Other models,based on the Eyring equation[Bahadur(1977)]make it possible to account for the rubber elasticity of the amorphous phase as well as the deformation of the crystalline phase[Eyring(1936)].Other models have chosen to rely solely on modeling the crystalline texture[G’sell and Jonas(1981)].The polymer is then considered as a polycrystalline aggregate of crystallises formed randomly.The crystalline phase is believed to have a viscoelastic behavior,crystalline lamellae deforming sliding,parallel or perpendicular to the channels.The failure to take into account the contribution of the amorphous phase to plastic deformation implies an underestimation of the plastic hardening,especially in shear.This will be checked especially as the amount of amorphous phase is important in the polymer.To take into account the contribution of the amorphous phase,the previous model is complemented by the model Van Der Giessen dealing with the rubber elasticity[Dahoun(1992)].This model adds two param-eters:density in the crystallises and limited by the average number of segments by sub channels flexible chains.To combine the two models,the mean stress is decomposed due to the stress between the crystalline phase and the stress due to the amorphous phase such as(1):

    Xc:Is a constant in eq(1).

    The introduction of Van Der Giessen model[Wu and Van Der Giessen(1993)]to account for the contribution of the amorphous phase improves the original Dahoun model[Dahoun(1992)].However,the juxtaposition of both models as shown in the equation above is nevertheless a simplification since no coupling or interaction between the two phases are taken into account.It is seen that the complexity of the semi-crystalline structures seriously complicates models compared to amorphous polymers,formed from a single homogeneous phase behavior.Modeling of these is then often taken as a basis for reflection.

    2.1 The criterion of gurson

    In connection with the approach mentioned above,the model comprises a Gurson flow condition,a measure of the volume fraction of voids,a law characteristic nucleation and a law of evolution cavities.This volume increases in polymers due to void growth is commonly reported in many recent studies[G’sell and Dahoun(1994);Laiarinandrasana,Morgeneyer,Proudhon,N’guyen,and Maire(2012)].The flow function has been obtained in the following manner:

    ?The Von Mises criterion is used to characterize the flow of the matrix.

    ?A rigid plastic model is assumed to be valid due to its large deformation caused by the process of ductile fracture.

    ?A form of the velocity field is considered in the aggregate to enable the cavities to grow while maintaining the incompressibility of the plastic matrix.This velocity field must also verify the kinematic boundary conditions of the tensor of deformation rate on the surfaces of a unit cell of cubic shape.Based on these assumptions,an approximate flow of a porous material according to which stress depends on the macroscopic,microscopic flow stress of the matrix and the volume fraction of actual cavities is obtained as follows(2):

    With:

    Φ:Function of flow

    σeq:The equivalent macroscopic stress

    σm:Average macroscopic stress

    f:The porosity of the material

    σ0:The limit of elasticity of the matrix

    Gurson model gives satisfactory approximations for high triaxiality constraints but,overestimates the fracture strain of the material for low levels of triaxiality.

    2.2 Mechanical behavior

    Despite large differences in the nature and structure of metals(and alloys)and polymers(and composite),we paradoxically observed strong similarities in their macroscopic behavior.Thus,with orders of magnitude different,the terms of elasticity,viscosity,plastic deformation,hardening,brittle fracture,ductile failure,apply to all such materials.This is what justi fies a priory the overall approach to the mechanics of materials using the concepts of continuum mechanics.

    Thermodynamics and rheology,it allows building models that do not depend on their foundations of the materials.Thus,it is not uncommon for the analysis methods of the mechanical properties developed for the metals are applied to polymers.However,if the rheological behavior of materials appears to involve macroscopic phenomena similar,they differ in the basic phenomena involved as well as their magnitude.This is the case for example for the way they develop or not nicking(plastic instability observed in simple tension beyond a certain critical strain).Experimentally this phenomenon,which often occurs at the center of the specimen[Castagnet and Deburck(2007);Laiarinandrasana,Besson,Lafarge,and Hochstetter(2009);Boisot,Laiarinandrasana,Besson,Fond,and Hochstetter(2011)],is characterized by a concentration of the local plastic deformation.For a metal,this local thinning is increasing more and more up to the lead to rupture of the specimen.In contrast,for some polymers,the thinning of the striation stabilizes and then we observed a propagation shoulder of the striation.The experimental test is performed to determine the behavior law of PVC;the specimen was collected in the form of a plate.Geometry corresponds to the ASTM D638 standard M1A[ASTM D638(2010)]as shown in Fig.1.

    The test was performed on an Instr?n tensile testing machine at room temperature of 23°C.Different elastoplastic material properties can be obtained from the stress-strain curve(see Fig 1.a).The mechanical properties of PVC used are presented in Tab.1.

    Figure 1:Specimens geometry used in tension test.

    Table 1:Mechanical properties of the Polyvinyl Chloride(PVC).

    Fig.2.(b),(c)and(d)shows the experimental and numerical stress-strain curve for different strain rate(v=0.1,v=0.01 and v=0.001).These figures show the typical response of PVC under tensile,consisting of three regions:an initial linear elastic phase,a stress plateau and a densification stage,characterized by a steep stiffness increase.Results show very good comparison between the numerical predictions obtained from the FE models and experimental data.The developed FE model using is capable of predicting with some accuracy not only the duration and peak stress of the impact at different strain rate,but also the typical nonlinear shape of the stress-strain curves.The experimental and numerical comparison showed to be in a good agreement.

    2.3 Numerical study

    Figure 2:Stress vs Strain curves a)Experimental analysis,b)experimental and numerical cures at V=0.001 s?1,c)experimental and numerical cures atV=0.01 s?1,d)experimental and numerical cures at V=0.1 s?1.

    Many recent papers in fracture analysis of complex 2D&3D solid structures and materials are presented[see,Dong and Atluri(2012a);Dong and Atluri(2012b);Bendouba,Djebli,Aid,Benseddiq,and Benguediab(2015)].Working on axisymmetric notched specimens(AE)as presented in[Meddah,Selini,Benguediab,Bouziane,and Belhamiani(2009);Ognedal,Clausen,Dahlen,and Hopperstad(2014);Ognedal,Clausen,Berstad,Seelig,and Hopperstad(2014)],it is possible to study multiaxial loading,only using a tensile test.These specimens allow overcoming stress conditions plane strain.For a notched,as the elastic limit is not exceeded the maximum constraint is on the bottom of notch phenomenon by stress concentration.The yield strength is reached first at this location.If the test continues to be deformed plastically,the deformed area expands and eventually invaded the notched section.The load reaches the limit load of the specimen.To meet the criterion of plasticity(Von Mises or Tresca),it is necessary to increase all the axial stress.Thus,plastic deformation con fined raises the general level of stress and the rate of stress triaxiality β.This is defined as(7):

    σm:The mean stress

    σeq:The equivalent Von Mises stress.

    For a cylindrical test piece having a groove notch root radius(R)leaving a collar of radius(a)in the minimum cross section(Figure 2),the calculation of distribution of stress and strain is complicated and not fully resolved analytically.Simplifying assumptions are necessary as that of equality between the radial and tangential strains into the minimum section where Z=0.However,it follows that the radial and tangential stresses are equal and the deflector is independent of the radial coordinate(r)for this style.With these assumptions,the equilibrium equations and the plasticity criterion,it is shown that:

    With(r)is the radius of curvature of isostatic lines,where they intercept the plane Z=0.

    Bridgman(1994)was assumed that isostatic lines can be treated as circles that intersect at right angles of the notch which is the ring[Cayzac,Sa?,and Laiarinandrasana(2013)].

    The radius(r)of curvature is given by(eq 5):

    The average axial forceˉσZZi.e.the load applied to the test piece is given by the following expression(6):

    The ratio of maximum stress triaxiality is on the axis of the specimen such as(7):

    Figure 3:(a)Schematic of the specimen AE,(b)Distribution of the axial stress,radial and tangential as calculated by Bridgman.

    Thus as shown in Fig.3 the stress pro file is a parabola,with a maximum at the center of the specimen.The axial stress will be proportionately higher than the radius of curvature R will be low.Choice has occurred in this work on AE specimen four different radii of curvature in order to study the influence of the rate of stress triaxiality on the behavior of“damage”material.

    The four radii studied are R=80 mm(AE80),10 mm(AE10),4 mm(E4)and 2 mm(AE2)respectively.The geometries of the specimen are such that the total length is 66 mm,the diameter of the barrel is 10 mm,and the bottom of notch diameter is 5 mm(Fig.4).

    Figure 4:AE specimen geometry.

    The studied geometries by notched symmetry(axisymmetric),only quarter of the specimen is meshed with reduced quadratic axisymmetric element integration.Thus,because of the symmetry it is possible to mesh the quarter length to represent the entire structure as shown in Fig.5.In the indented area,the mesh is finished,unlike the smooth area where it is coarser.

    Figure 5:Mesh of the quarter specimens test.

    The tests on the specimen were made in AE with imposed displacement.Numerically it is not possible to return to such a condition directly in the calculation load.At first,the longitudinal displacement of the test was measured at a test speed of variable diameter reduction.

    3 Results and discussion

    Fig 6(a,b,c and d)shows a simulation of the stress-strain curve taken at the critical point of the specimen to the four radii obtained(β =0.33 for AE80,β =0.44 for AE10,β =0.6 for AE4 and β =0.8 for AE2)for tensile tests at four different speeds(0.2,0.6,1 and 1.4 mm/s).We note that with the same displacement,the stress is higher when the radius of curvature is smaller.In the test AE80,there is an increase in the maximum stress and a diameter reduction.In contrast,between AE4,AE2 and AE10,no difference in the maximum stress is observed,while a decrease diameter is obtained.So it seems that beyond a radius value limit,the maximum stress is“saturated”.Only analyzes for low speed are presented,knowing that the same interpretation can be made for higher speeds.On the general appearance of the curves,two interesting results are worth mentioning.The first is the presence of a tow hook at the maximum end;this hook may indicate either a structural effect,or a softening of the material.In the case of a structural effect,the traction hook indicates the rapid formation of the constriction which supports the majority of the stress and elongation.

    Figure 6:Effect of triaxiality on the constitutive law for four speeds solicitation.

    It then reflects softening attributed to the formation and growth of cavities formed at the location of the deformation in the notched area.The second interesting point concerns the plastic deformation tray.The load remains almost constant as the diameter reduction and the end of analysis for AE80 is characterized by work hardening.This result indicates a strong plastic flow associated with orientation and sliding strings.Finally,the fibrils are highly stretched,and then they create additional resistance.

    Fig.7(a,b,c,d)illustrates stress vs strain curves at different strain rate(v=0.2,v=0.6,v=1 and v=1.4 mm/s)with the variation of(β =0.8,β =0.6,β =0.44 and β=0.33),in this figure we can see the influence of the rate of stress triaxiality β on the mechanical properties of the material studied and we can pronounce that the same shape of the curves is observed.We note that the presence of the hook still in the smallest speed.In the test v=0.2 mm/s et β=0.8 there is an increase in the maximum stress.In contrast,between v=1 mm/s and v=1.4 mm/s any difference in the maximum stress is observed,while a reduction in diameter is obtained.

    Figure 7:Effect of the strain rate.

    Fig.8(a,b,c,d)shows the evolution of the deformation according to the thickness of the specimen(diametral position)for each radius of curvature R,indicating the influence of strain rate on this evolution.It is noted from this representation that the deformation progress from the heart to the outside position,whatever the strain rate and is important for the high strain rate,but for the case when R=2 mm and the speed V=1.4 mm/s,the deformation is significant which causes quick failure of the specimen.It is deduced from this study that the notch bottom is the most critical position.In particular for the curvature radius R=2 mm and the strain rate V=1.4 mm/s.

    Fig.9 represents the levels equivalent stresses(Von Mises)in function of the variation of the notch radius at different speeds.Firstly,these stresses are concentrated in the bottom of the notch,the concentration decreases in the way from the notch is noted on the other hand,it increases with increasing radius of the notch,and that the distribution of these stresses is not homogeneous on the side closest to the fault is subjected to relatively low stress amplitude.The largest stresses are located at the bottom of the notch,the amplitude decreases gradually from this zone.If the stress exceeds the elastic limit of the material,a plastic region in the vicinity of the bottom of notch appears.

    Figure 8:Evolution of strain versus specimen thickness.

    Figure 9:Stress distribution for different notch root radius of curvature.

    We also note that the damage was located in the area of the smallest radius of the specimen.It thus appears that these test pieces are adapted to highlight damaged by cavitations.For higher speeds,the effect of speed on the diametric reduction is demonstrated(reduced diametric reduction with increase in strain rate of the specimen).

    4 Conclusion

    Gurson-Tvergaard-Needleman model usually used for metallic materials[Tvergaard and Needleman(1984);Leblond,Perrin,and Devaux(1995)]has been used here to model the damage behavior of PVC.The damage in this model is described as being due to the growth of cavities,represented by parameters.The importance of damage during deformation has led us to use the GTN model that allows the coupling of the constitutive law with the effect of damage.The model was used to account for all mechanical results and determine a related failure mode and failure by crazing approach,a critical criterion in fibril elongation at low rate and triaxiality criterion coalescence of cavities rates triaxiality high.On behavior,effective plastic strain rate is described by the law of Norton.Hardening is considered isotropic,consists of a constant threshold elastoplastic behavior,describing a saturation deformation crystalline and amorphous phases,and an increase of the rigidity of elongated channels(work hardening).The latter describes exponential for large deformations,the fibril orientation and crystalline phases.The damage is taken into account by adjusting the parameters of the model on the evolution of volumetric strain,and on the draw hook reflecting the softening load due to the strong growth of cavities.

    ASTM D638.(2010):Standard test method for tensile properties of plastics,West Conshohocken,PA,USA:American Society for Testing and Materials.

    Bahadur,S.(1973):Strain hardening equation and the prediction of tensile strength of rolled polymers.Poly Eng Science,vol.13,no.4,pp.266–272.

    Bendouba,M.;Djebli,A.;Aid A.;Benseddiq,N.;Benguediab,M.(2015):Time-Dependent J-Integral Solution for Semi-elliptical 3 Surface Crack in HDPE.CMC:Computers,Materials&Continua,vol.33,no.2,pp.111–154.

    Boisot,G.;Laiarinandrasana,L.;Besson,J.;Fond,C.;Hochstetter,G.(2011):Experimental investigations and modeling of volume change induced by void growth in polyamide.Int J Solids Struct,vol.48,no.19,pp.2642–2654.

    Bridgman,P.W.(1944):The stress distribution at neck of the tension specimen.Transactions ASM,vol 32,pp.553–574.

    Castagnet,S.;Deburck,Y.(2007):Relative influence of microstructure and macroscopic triaxiality on cavitation damage in a semi-crystalline polymer.Mater Sci Eng A,vol.448,no.1,pp.56–66.

    Cayzac,H.A.;Sa?,K.;Laiarinandrasana,L.(2013):Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model.Int J Plast,vol.51,pp.47–64.

    Dahoun,A.(1992):plastic behavior and semi crystalline polymers deformation textures in uniaxial tension and simple shear,PhD Thesis,Ecole des Mines de Nancy,France.

    Dong,L.;Atluri,S.N.(2012a):SGBEM(Using Non-hyper-singular Traction BIE),and super elements,for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs.CMES:Computer Modeling in Engineering&Sciences,vol.89,no.5,pp.417–458.

    Dong,L.;Atluri,S.N.(2012b):SGBEM Voronoi Cells(SVCs),with embedded arbitrary shaped inclusions,voids,and/or cracks,for micromechanical modeling of heterogeneous materials.CMC:Computers,Materials&Continua,vol.33,no.2,pp.111–154.

    Eyring,H.(1936):Viscosity,Plasticity and Diffusion as Examples of Absolute Reaction Rates.J Chem Phys,vol.4,pp.283.

    G’sell,C.;Jonas,J.J.(1981):Yield and transient effects during the plastic deformation of solid polymers.J Mat Sci.,vol.16,no.7,pp.1956–1974.

    G’sell,C.;Dahoun,A.(1994):Evolution of microstructure in semi-crystalline polymers under large plastic deformation,Mat sci Eng.,vol.175,no.1–2,pp.183–199.

    Gurson,A.L.(1977):Continuum Theory of Ductile Rupture by Void Nucleation and Growth:Path I-Yield Function and Flow Rules for Porous Ductile Media.ASME Transaction.J Eng Mat Tech.,vol.99,pp.2–17.

    Kichenin,J.(1992):Thermomechanical behavior of polyethylene-Application to gas structures,PhD Thesis,Ecole Polytechnique,France.

    Laiarinandrasana,L.;Besson,J.;Lafarge,M.;Hochstetter,G.(2009):Temperature dependent mechanical behaviour of PVDF:experiments and numerical modelling.Int J Plast,vol.25,no.7,pp.1301–1324.

    Laiarinandrasana,L.;Morgeneyer,T.F.;Proudhon,H.;N’guyen,F.;Maire,E.(2012):Effect of multiaxial stress state on morphology and spatial distribu-tion of voids in deformed semi crystalline polymer assessed by X-ray tomography.Macromolecules,vol.45,no.11,pp.4658–4668.

    Lamloumi,R.;Hassini,L.;Lecomte-Nana,G.L.;Elcafsi M.A.;Smith,D.(2014):Modeling of Hydro-Viscoelastic State of Deformable and Saturated Product During Convective Drying.CMC:Computers,Materials&Continua,vol.43,no.3,pp.137–151,

    Leblond,J.B.;Perrin,G.;Devaux,J.(1995):An improved Gurson-type model for hardenable ductile metals.Europ J Mech Solids,vol.14,no.4,pp.499–527.

    Meddah,H.M.;Selini,N.;Benguediab,M.;Bouziane,M.;Belhamiani,M.(2009):Analysis of the polypropylene mechanical behaviour response:Experiments and numerical modeling.Mat Des.,vol.30,no.10,pp.4192–4199.

    Ognedal,A.S.;Clausen,A.H.;Dahlen,A.;Hopperstad,O.S.(2014a):Behavior of PVC and HDPE under highly triaxial stress states:An experimental and numerical study.Mech Mat.,vol,72,pp.94–108.

    Ognedal,A.S.;Clausen,A.;Berstad,T.;Seelig,T.;Hopperstad,O.S.(2014b):Void Nucleation and Growth PVC–An Experimental and Numerical Study.Int J Solids Struct,vol.51,no.7–8,pp.1494–1506.

    Ouakka,A.;Dang Van,K.;Gueugnaut,D.;Blouet,P.(1997):An assessment of the defects damages in polyethylene Gaz pipes.In 10th Int conf on deformation yield and fracture of polymers Cambridge.The Chameleon Press Ltd.pp.557–560.Paquin,A.;Berveiller,M.(1996):Various ways for the micromechanical modeling of the behavior elastoviscoplastic of semicrystalline polymers.Annual conference of the French Group of Rheology,vol.15,pp.23–28.

    Polanco-Loria,M.;Clausen,A.H.;Berstad,T.;Hopperstad,O.S.(2010):Constitutive model for thermoplastics with structural applications.Int J Impact Eng.,vol.37,no.12,pp.1207–1219.

    Santos,P.G.,Carbajo,J.,Godinho L.,Ramis,J.(2014):Sound Propagation Analysis on Sonic Crystal Elastic Structures using the Method of Fundamental Solutions(MFS).CMC:Computers,Materials and Continua,vol.43,no.2,pp.109–136.

    Tvergaard,V.;Needleman,A.(1984):Analysis of the Cup-Cone Fracture in a Round Tensile Bar.Acta Metallurgica,vol.32,no.1,pp.157–169.

    Wu,P.D.;Van Ver Giessen,E.(1993):On improved network models for rubber elasticity ad their application to orientation hardening in glassy polymers.J Mech Phys Solids,vol.41,no.3,pp.427–456.

    1LSTE Laboratory,University of Mascara,BP 763 Mascara,Algeria

    2LMSR Laboratory,University of Sidi Bel Abbes,Algeria

    3LPQ3M Laboratory,University of Mascara,BP 763,Mascara,Algeria

    国产亚洲精品av在线| 久久精品国产鲁丝片午夜精品| 午夜爱爱视频在线播放| 国内精品宾馆在线| 男人和女人高潮做爰伦理| 99热6这里只有精品| 国产亚洲一区二区精品| 嘟嘟电影网在线观看| 成人鲁丝片一二三区免费| 日韩欧美一区视频在线观看 | 久久久久久久大尺度免费视频| 少妇高潮的动态图| 中国美白少妇内射xxxbb| 人妻一区二区av| 搞女人的毛片| 三级男女做爰猛烈吃奶摸视频| 精品国产一区二区三区久久久樱花 | 免费看av在线观看网站| 亚洲精品中文字幕在线视频 | 好男人在线观看高清免费视频| 久久这里只有精品中国| 舔av片在线| 日本欧美国产在线视频| 能在线免费观看的黄片| 美女高潮的动态| 丝瓜视频免费看黄片| av黄色大香蕉| 日本免费a在线| 久久精品夜夜夜夜夜久久蜜豆| 国产永久视频网站| 天天躁夜夜躁狠狠久久av| 2022亚洲国产成人精品| 久久国产乱子免费精品| 亚洲欧洲国产日韩| 国产精品一区二区三区四区久久| 久久久久久久午夜电影| 69人妻影院| 高清欧美精品videossex| 成人性生交大片免费视频hd| 色视频www国产| 高清在线视频一区二区三区| 如何舔出高潮| 精品久久国产蜜桃| 久久久精品94久久精品| 久久久久久久国产电影| 夜夜爽夜夜爽视频| 国产白丝娇喘喷水9色精品| 国产精品综合久久久久久久免费| 精品国产三级普通话版| 嫩草影院精品99| 毛片女人毛片| 99久久人妻综合| 99久久精品一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲精品日韩在线中文字幕| 精品午夜福利在线看| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 51国产日韩欧美| 精品99又大又爽又粗少妇毛片| 日韩在线高清观看一区二区三区| 黄色配什么色好看| 插逼视频在线观看| 中文欧美无线码| 免费av毛片视频| 日韩av免费高清视频| 丝袜美腿在线中文| 狂野欧美白嫩少妇大欣赏| 高清在线视频一区二区三区| 黄色一级大片看看| 日韩欧美 国产精品| eeuss影院久久| 亚洲欧洲日产国产| 女人十人毛片免费观看3o分钟| 男人爽女人下面视频在线观看| 国产麻豆成人av免费视频| 国产精品伦人一区二区| 久久久久久久亚洲中文字幕| 免费看不卡的av| 色5月婷婷丁香| 亚洲经典国产精华液单| 1000部很黄的大片| 欧美日韩精品成人综合77777| 床上黄色一级片| 69人妻影院| 男人爽女人下面视频在线观看| 久热久热在线精品观看| 丝瓜视频免费看黄片| 可以在线观看毛片的网站| h日本视频在线播放| 国产黄色免费在线视频| 最近最新中文字幕免费大全7| 偷拍熟女少妇极品色| 亚洲成人一二三区av| 亚洲欧美日韩东京热| 3wmmmm亚洲av在线观看| 美女内射精品一级片tv| 亚洲三级黄色毛片| 只有这里有精品99| 日日干狠狠操夜夜爽| 免费黄网站久久成人精品| 亚洲av二区三区四区| av免费在线看不卡| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 亚洲成人精品中文字幕电影| 国语对白做爰xxxⅹ性视频网站| 日日啪夜夜爽| 久久精品人妻少妇| 亚洲欧美日韩卡通动漫| 国产在视频线在精品| av.在线天堂| 国产男人的电影天堂91| 国产69精品久久久久777片| 国产成人freesex在线| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片我不卡| 99热这里只有是精品50| 国产永久视频网站| 卡戴珊不雅视频在线播放| 直男gayav资源| av.在线天堂| 夫妻午夜视频| 精品99又大又爽又粗少妇毛片| 国产av码专区亚洲av| 国产成年人精品一区二区| 午夜爱爱视频在线播放| 网址你懂的国产日韩在线| 成人国产麻豆网| 视频中文字幕在线观看| 97超视频在线观看视频| 日韩精品青青久久久久久| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 最近中文字幕高清免费大全6| 好男人在线观看高清免费视频| 啦啦啦啦在线视频资源| 亚洲在线自拍视频| 久久久久国产网址| 在线观看av片永久免费下载| 国产精品久久久久久精品电影| 午夜亚洲福利在线播放| 春色校园在线视频观看| 欧美3d第一页| 免费人成在线观看视频色| 肉色欧美久久久久久久蜜桃 | 亚洲精品影视一区二区三区av| 亚洲国产精品成人久久小说| 中文字幕亚洲精品专区| 精品久久久久久久人妻蜜臀av| 免费无遮挡裸体视频| 亚洲av国产av综合av卡| 亚洲综合色惰| 搡老妇女老女人老熟妇| 99热全是精品| 日韩视频在线欧美| 全区人妻精品视频| 日本午夜av视频| 激情五月婷婷亚洲| 国产亚洲精品久久久com| 狠狠精品人妻久久久久久综合| 国产淫语在线视频| 肉色欧美久久久久久久蜜桃 | 一级毛片久久久久久久久女| 在线观看免费高清a一片| 99热全是精品| 成年女人看的毛片在线观看| 成人午夜高清在线视频| 久久这里有精品视频免费| 精品人妻视频免费看| 国产高清有码在线观看视频| 午夜视频国产福利| 色综合亚洲欧美另类图片| 成年人午夜在线观看视频 | 2018国产大陆天天弄谢| 精品99又大又爽又粗少妇毛片| 国产成人精品久久久久久| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 网址你懂的国产日韩在线| 日韩av免费高清视频| 国产精品久久久久久久久免| 国产有黄有色有爽视频| 日本免费a在线| 国产高清三级在线| 免费播放大片免费观看视频在线观看| 一级黄片播放器| 少妇高潮的动态图| 床上黄色一级片| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 两个人视频免费观看高清| 日本一本二区三区精品| 91aial.com中文字幕在线观看| 一区二区三区免费毛片| 国产精品99久久久久久久久| 国产精品日韩av在线免费观看| 中文字幕免费在线视频6| 亚洲欧美一区二区三区黑人 | 精品熟女少妇av免费看| 女人十人毛片免费观看3o分钟| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄| 乱系列少妇在线播放| www.av在线官网国产| 精品午夜福利在线看| 久久草成人影院| 亚洲欧美一区二区三区黑人 | 亚洲av日韩在线播放| 日本免费a在线| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看| 成年免费大片在线观看| 人妻夜夜爽99麻豆av| 啦啦啦中文免费视频观看日本| 中文字幕久久专区| 美女主播在线视频| 免费在线观看成人毛片| 寂寞人妻少妇视频99o| 观看美女的网站| 又黄又爽又刺激的免费视频.| 精品人妻视频免费看| 老司机影院成人| 一个人看视频在线观看www免费| 亚洲av福利一区| 极品教师在线视频| 久久热精品热| 2021少妇久久久久久久久久久| 天天一区二区日本电影三级| 国产视频首页在线观看| 免费观看精品视频网站| 亚洲av.av天堂| 麻豆精品久久久久久蜜桃| 夜夜看夜夜爽夜夜摸| 偷拍熟女少妇极品色| 精品久久久噜噜| av国产免费在线观看| 简卡轻食公司| 免费观看在线日韩| 精品久久久久久久末码| 免费看光身美女| 九色成人免费人妻av| 99热这里只有精品一区| 美女大奶头视频| 成人性生交大片免费视频hd| 欧美xxⅹ黑人| 一本久久精品| 搞女人的毛片| 国产高清国产精品国产三级 | 日本三级黄在线观看| 在线观看av片永久免费下载| 老司机影院成人| 国产精品.久久久| 日韩强制内射视频| 成年女人在线观看亚洲视频 | 亚洲va在线va天堂va国产| 特级一级黄色大片| 99九九线精品视频在线观看视频| 99久久精品一区二区三区| 国产精品久久久久久精品电影| 久久精品久久久久久久性| 网址你懂的国产日韩在线| 国产精品一及| 久久6这里有精品| 国产伦精品一区二区三区视频9| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 国产成人一区二区在线| 亚洲精品成人久久久久久| 69人妻影院| 狠狠精品人妻久久久久久综合| 免费看光身美女| 热99在线观看视频| 一区二区三区乱码不卡18| 日本三级黄在线观看| 天堂中文最新版在线下载 | 国产精品久久久久久久电影| 国产欧美另类精品又又久久亚洲欧美| 国产精品熟女久久久久浪| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app| 22中文网久久字幕| 在线 av 中文字幕| 国产熟女欧美一区二区| 欧美激情在线99| 在线播放无遮挡| 亚洲av福利一区| 内地一区二区视频在线| 美女主播在线视频| 成人二区视频| 国产午夜精品久久久久久一区二区三区| 婷婷色综合www| 一个人看的www免费观看视频| 视频中文字幕在线观看| 欧美人与善性xxx| 夫妻午夜视频| 国产色婷婷99| 中文精品一卡2卡3卡4更新| 国产久久久一区二区三区| 国产午夜精品久久久久久一区二区三区| 能在线免费观看的黄片| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| 中文天堂在线官网| 久99久视频精品免费| 欧美三级亚洲精品| 男插女下体视频免费在线播放| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 久久亚洲国产成人精品v| 国产黄a三级三级三级人| 亚洲人成网站高清观看| 水蜜桃什么品种好| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| 夜夜看夜夜爽夜夜摸| 国产成人a∨麻豆精品| 久久久久久久久久成人| 一个人免费在线观看电影| 80岁老熟妇乱子伦牲交| 久久久久久久午夜电影| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 国产亚洲精品av在线| 一级毛片电影观看| 久久久久久久久中文| 国产精品三级大全| 国产大屁股一区二区在线视频| 日韩中字成人| 蜜桃久久精品国产亚洲av| 亚洲精品成人久久久久久| 欧美3d第一页| av国产免费在线观看| 干丝袜人妻中文字幕| 午夜福利在线在线| 麻豆精品久久久久久蜜桃| 男人舔奶头视频| 成人av在线播放网站| 麻豆久久精品国产亚洲av| 国内精品宾馆在线| 日韩欧美 国产精品| 一本一本综合久久| 成人毛片a级毛片在线播放| 高清欧美精品videossex| 大陆偷拍与自拍| 欧美成人一区二区免费高清观看| 亚洲成人av在线免费| 69av精品久久久久久| 国产成人freesex在线| 综合色丁香网| 伊人久久精品亚洲午夜| 一夜夜www| 欧美激情国产日韩精品一区| 免费观看性生交大片5| 一个人看视频在线观看www免费| 欧美一区二区亚洲| 久久鲁丝午夜福利片| 日本免费a在线| 99re6热这里在线精品视频| 视频中文字幕在线观看| 大香蕉久久网| videossex国产| 久久久久久久久久人人人人人人| 日韩欧美精品免费久久| 永久网站在线| 人妻少妇偷人精品九色| 午夜日本视频在线| 亚洲成人一二三区av| 精品人妻视频免费看| 一级av片app| 少妇人妻一区二区三区视频| 极品教师在线视频| 国产伦精品一区二区三区视频9| 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| av线在线观看网站| 国产 亚洲一区二区三区 | 午夜福利成人在线免费观看| 久久久久精品久久久久真实原创| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 观看免费一级毛片| 又粗又硬又长又爽又黄的视频| 国产免费又黄又爽又色| 久久久精品94久久精品| 欧美人与善性xxx| 嫩草影院新地址| 岛国毛片在线播放| 最后的刺客免费高清国语| 欧美区成人在线视频| 国产在视频线精品| 成人毛片60女人毛片免费| 久99久视频精品免费| 亚洲精品视频女| 韩国av在线不卡| 街头女战士在线观看网站| 久久精品久久久久久久性| 美女大奶头视频| 亚洲精品国产av蜜桃| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 久久久久久伊人网av| av在线老鸭窝| 夫妻午夜视频| 欧美+日韩+精品| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜 | 日韩,欧美,国产一区二区三区| 一夜夜www| 免费无遮挡裸体视频| 成人无遮挡网站| 国产精品久久久久久久电影| 国产人妻一区二区三区在| 国产黄色免费在线视频| 国产精品久久久久久久久免| 国产精品久久久久久精品电影| 十八禁国产超污无遮挡网站| 国产成人福利小说| 尾随美女入室| 亚洲国产精品成人综合色| 色网站视频免费| 春色校园在线视频观看| 日韩av不卡免费在线播放| 免费在线观看成人毛片| 欧美bdsm另类| 国产亚洲av片在线观看秒播厂 | 丝瓜视频免费看黄片| 国产精品一及| 久久久精品免费免费高清| 日韩强制内射视频| 黄色一级大片看看| 国产亚洲av嫩草精品影院| 精品一区二区三区人妻视频| 人妻系列 视频| 国产一区二区三区av在线| 欧美高清性xxxxhd video| 美女国产视频在线观看| 秋霞伦理黄片| 一夜夜www| 老司机影院毛片| 毛片女人毛片| 汤姆久久久久久久影院中文字幕 | 久久精品人妻少妇| 国产精品蜜桃在线观看| 免费av毛片视频| 青春草视频在线免费观看| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 97热精品久久久久久| 熟女电影av网| 日日摸夜夜添夜夜爱| 中文字幕av在线有码专区| 一级片'在线观看视频| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 丰满少妇做爰视频| 人妻制服诱惑在线中文字幕| 最近视频中文字幕2019在线8| 国产探花在线观看一区二区| 日韩欧美三级三区| 精品久久久久久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 韩国高清视频一区二区三区| 国产女主播在线喷水免费视频网站 | 国产精品伦人一区二区| 国产av在哪里看| 亚洲人与动物交配视频| 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 亚洲色图av天堂| 两个人视频免费观看高清| 搞女人的毛片| 国产综合精华液| 亚洲精品一二三| 久久久精品94久久精品| 青春草视频在线免费观看| 亚洲精品色激情综合| 可以在线观看毛片的网站| 日本免费a在线| 国产老妇女一区| 国产精品一区www在线观看| 亚洲熟女精品中文字幕| 精品人妻一区二区三区麻豆| 女人久久www免费人成看片| 一级毛片久久久久久久久女| 人体艺术视频欧美日本| 最近的中文字幕免费完整| 日韩中字成人| 中文字幕久久专区| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃 | 久久久久免费精品人妻一区二区| 好男人视频免费观看在线| 身体一侧抽搐| 国产单亲对白刺激| 亚洲国产色片| 亚洲熟女精品中文字幕| 亚洲在线自拍视频| 日本免费a在线| 高清午夜精品一区二区三区| a级毛色黄片| 亚洲久久久久久中文字幕| 日本午夜av视频| 国产麻豆成人av免费视频| 别揉我奶头 嗯啊视频| 肉色欧美久久久久久久蜜桃 | 免费观看性生交大片5| 三级经典国产精品| 婷婷色综合www| 日韩人妻高清精品专区| 色视频www国产| 热99在线观看视频| 亚洲人成网站高清观看| 成人特级av手机在线观看| 亚洲国产日韩欧美精品在线观看| 久久精品久久精品一区二区三区| 老司机影院毛片| 中文乱码字字幕精品一区二区三区 | 亚洲第一区二区三区不卡| 一级毛片我不卡| 国产黄片美女视频| 一二三四中文在线观看免费高清| 国产探花极品一区二区| 青青草视频在线视频观看| 免费人成在线观看视频色| 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色播亚洲综合网| 国产精品.久久久| 国产精品久久视频播放| 国产精品一区二区在线观看99 | 国产日韩欧美在线精品| 国产欧美另类精品又又久久亚洲欧美| 男女那种视频在线观看| 一级毛片 在线播放| 男女那种视频在线观看| 天堂√8在线中文| 国产欧美日韩精品一区二区| 综合色av麻豆| 国产伦理片在线播放av一区| 偷拍熟女少妇极品色| 看免费成人av毛片| 91久久精品国产一区二区成人| 欧美不卡视频在线免费观看| 精品久久久久久久末码| 国产av码专区亚洲av| 51国产日韩欧美| 精品久久久久久电影网| 久久久欧美国产精品| 精品久久久精品久久久| 91aial.com中文字幕在线观看| 老女人水多毛片| 午夜亚洲福利在线播放| 边亲边吃奶的免费视频| 亚洲精品乱码久久久v下载方式| 亚洲精品国产成人久久av| 欧美日韩综合久久久久久| 天堂俺去俺来也www色官网 | 亚洲久久久久久中文字幕| 久久久精品94久久精品| 人体艺术视频欧美日本| 色视频www国产| 777米奇影视久久| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 国产精品久久久久久精品电影| 尾随美女入室| 日韩亚洲欧美综合| 看非洲黑人一级黄片| 午夜视频国产福利| 国产在视频线精品| 五月伊人婷婷丁香| 久久这里有精品视频免费| 午夜福利在线观看吧| av播播在线观看一区| 青春草视频在线免费观看| 在线观看免费高清a一片| 国产黄色免费在线视频| 国产一区有黄有色的免费视频 | 欧美高清成人免费视频www| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 欧美一级a爱片免费观看看| 亚洲国产精品成人综合色| 日日啪夜夜撸| 亚洲在线观看片| 女人十人毛片免费观看3o分钟| 日韩av在线免费看完整版不卡| 国产乱人偷精品视频| 综合色丁香网| 日韩人妻高清精品专区| 观看免费一级毛片| 久久6这里有精品| 午夜日本视频在线| 老女人水多毛片| 国产av国产精品国产| 亚洲精品日韩在线中文字幕| 一级爰片在线观看| 69av精品久久久久久| 国产精品国产三级专区第一集| 天堂网av新在线| 丝袜美腿在线中文| 只有这里有精品99| 日韩电影二区| 国模一区二区三区四区视频| 亚洲熟女精品中文字幕| 赤兔流量卡办理| 午夜精品在线福利| 热99在线观看视频| 欧美人与善性xxx| 国产麻豆成人av免费视频| 久久久久久久久久黄片| 久久久久久久久久久免费av|