• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monte Carlo Simulation of Ti-6Al-4V Grain Growth during Fast Heat Treatment

    2015-12-13 11:35:32AmirRezaAnsariDezfoliWengSingHwang
    Computers Materials&Continua 2015年13期

    Amir Reza Ansari Dezfoli,Weng-Sing Hwang,2

    Monte Carlo Simulation of Ti-6Al-4V Grain Growth during Fast Heat Treatment

    Amir Reza Ansari Dezfoli1,Weng-Sing Hwang1,2

    Investigations of the microstructural evolution of Titanium(Ti)alloys during high temperature processes and heat treatment are attracting more attention due to wide variety of applications for such alloys.In most of these processes the Titanium alloys are subjected to fast heating or cooling rates.In this paper,Monte Carlo simulation is used to simulate the grain growth kinetics of Ti-6Al-4V alloy during fast heat treatment.Here,Monte Carlo simulation of grain growth is based on the Q-state Potts model.Our model is calibrated using the parabolic grain growth law,where the empirical constants are taken from the literature.The simulation results are compared with the experimental data,and this comparison shows good agreement between the two.

    Ti-6Al-4V;Grain growth;Monte Carlo simulation;Q-state Potts model;Fast heat treatment.

    1 Introduction

    Titanium undergoes a phase transformation from α-phase(hexagonal close-pack)to β-phase(body-centered cubic)at a temperature 883°C[Donachie(2000)].Adding other element to pure Titanium leads to stabilization of the α or β phase.For example,Al is known as an α-stabilizer element while V is considered as a β-stabilizer[Blackburn(1967);Kattner,Lin,and Chang(1992);Zhang,Cao,and Guo(2014)].Ti-6Al-4V is one of the most important Titanium alloys,and contains a mixture of Ti,Al and V with the chemical formula Ti-6.04Al-4.03V-0.12Fe-0.09O-0.03C-0.009N[Ahmed and Rack(1998)].Ti-6Al-4V has a number of superior properties,such as high corrosion resistivity,high strength,good formability and low density.Due to these properties Ti-6Al-4V is used in applications such as aircraft turbine engine components,aircraft structural components,aerospace fas-teners,high-performance automotive parts,marine applications,medical devices,and sports equipment[PalDey and Deevi(2003);Wang(1996)].

    In order to enhance the mechanical properties of Ti-6Al-4V products,post-production heat treatment is necessary[Vrancken,Thijs,Kruth,and Van Humbeeck(2012)].Experimental investigations proved that at room temperature the microstructure of Ti-6Al-4V contains elongated α grains surrounded by small amount of β-phase[Elmer,Palmer,Babu,and Specht(2005);Vrancken,Thijs,Kruth,and Van Humbeeck(2012)].If Ti-6Al-4V is heated above 995°C,a fully homogeneous β-phase microstructure is formed[Vrancken,Thijs,Kruth,and Van Humbeeck(2012);Weiss and Semiatin(1998)].The heat treatment of Ti-6Al-4V can be classified based on the heat treatment temperature compared to the β-transus temperature.The heat treatment can be proceed at subtransus temperature(a temperature less than β-transus,995°C)or super-transus temperature(a temperature higher than β-transus,995°C).β-phase grain growth is obviously predominant during heat treatment in the supertransus condition.Based on the required time,the heat treatment can be also divided into two major categories:long-time(furnace,t>100s)and short-time(salt pot and induction,0<t<100s)methods[Ivasishin,Shevchenko,and Semiatin(2002)].Therefore,if the duration of Ti-6Al-4V heat treatment is less than 100s and the temperature more than 995°C,the grain growth is considered as short-time β grain growth.

    The β-grain size,which is the average grain size after heat treatment,is an important factor in determining the final mechanical properties of the Titanium alloys produced using short-time heat treatment[Ivasishin,Shevchenko,and Semiatin(2002);Ivasishin(2001)].Some experimental efforts have been made in order to predict β grain size during short time heat treatments[Ivasishin,Shevchenko,and Semiatin(2002);Semiatin,Soper,and Sukonnik(1996)].In this study,we use the Monte Carlo method to investigate the β-grain growth of Ti-6Al-4V in short time heat treatment,as this method has been widely used to simulate grain growth in isothermal and non-isothermal conditions[Gao and Thompson(1996);Mishra and DebRoy(2004a,b);Yang,Sista,Elmer,and DebRoy(2000)].In addition the Monte Carlo method is used to simulate different processes and phenomena in engineering in micro and micro scales[Bhuvaraghan,Srinivasan,Maffeo,and Prakash(2010);Chen,Ma,and Gao(2012);Hernández-Rivera,Tikare,Wang,and Wang(2013);Huang,Tsai,Liu,Jeng,and Yang(2009);Liu,Liu,and Liu(2013)].At the first step,the temperature history is calculated using Lumped theory.In the next step,the relation between real time and Monte Carlo steps is developed using the experimental results obtained by Semiatin,Soper,and Sukonnik(1996).Using these two steps,the grain structure of Ti-6Al-4V alloy is simulated.The comparison made in the final step in this paper proves that good correspondence is obtained between the simulation results and the experimental results available in the literature.

    2 Simulation Procedure

    2.1 Heat Transfer Model

    A 25×38×1.3mm Ti-6Al-4V system is considered.In order to make a comparison between theoretical and experiment data,the dimensions of the system are chosen to be the same as in Semiatin,Soper and Sukonnik(1996)’s experimental study.Initially,the temperature of the system is considered at room temperature,T0(298K).The system is then heated up using a hot liquid bath with the constant temperature,T∞.

    The temperature uniformity of the system is checked by Lumped theory[Cengel and Hernán Pérez(2004);Incropera(2011)].In this theory,the Biot Number,Bi,is used to check the ratio between heat transfer resistance inside and on the surface of the system.The temperature in the system can be considered uniform for systems with a Biot number smaller than 1.The Biot number is expressed as[Incropera(2011)]:

    The characteristic length,lc,is defined as the ratio between the volume of the body and the surface area of the system,such as:

    If the criteria for Lumped theory are accepted then the heat transfer into the system during the time step,dt,can increase the energy of the system equal to ρVcpdT/dt[Incropera(2011)].Therefore:

    Simplifying the above equation,considering(T(t=0)=T0andand using integration,the solution of Equation(3)can then be written as;

    2.2 Grain Growth

    In order to simulate the grain structure during heat treatment,the Q-state Potts model is used,and this is a general case of the Monte-Carlo method for grain growth simulation,the details of which can found in the literature[Anderson,Srolovitz,Grest,and Sahni(1984);Saito and Enomoto(1992)].In this method,the micro structure is mapped onto discrete cells.Each cell in the simulation can have one of the 1 to Q states,which represent different crystallographic directions for grain growth.During the simulation it is necessary to consider a large number of grain orientations,Q,otherwise grains with the same orientation impinge infrequently.For Q>30,the final results are essentially independent of Q[Anderson,Srolovitz,Grest,and Sahni(1984)].

    In a Monte-Carlo simulation the energy of the system is described as[Anderson,Srolovitz,Grest,and Sahni(1984);Saito and Enomoto(1992)]:

    N is the number of cells and z indicates the number of nearest neighbors to cell number i.The Kronecker delta function is defined as δ(qi,qj)=1 if qi=qj,and 0 otherwise.

    Generally,the simulation algorithm of grain growth is based on the tendency of lattice points to achieve minimum energy.The basic Monte-Carlo algorithm can be brie fly explained as follows:

    ?Randomly select a cell.

    ?Assign a new state,q,for the cell.

    ?Calculate the energy difference before and after the change.

    ?If the energy of the system is decreased,the random change is kept.

    ?If the energy is increased,the random change is a?llowed? to remain with a probability equal to the Boltzmann factor,

    Each Monte-Carlo time step(MCS)requires N attempted state changes,where N is the number of cells.The most important challenge in the Monte Carlo method is finding a relation between real time and MCS.The simulated grain growth kinetics can be defined by the following equation[Gao and Thompson(1996)]:

    L is the average grain size,dl is the cell length in Monte Carlo space,and K1and n1are model constants.On the other hand,most of the grain growth phenomena in materials can be described by the following parabolic equation[Gao and Thompson(1996)]:

    Where L is the average grain size,t is the real time and L0is the initial grain size.Gao and Thompson used equations(6)and(7)and proposed the following equation in order to set a relation between the MCS and real time during grain growth[Gao and Thompson(1996)]:

    Two parameters in Equation 6,K1and n1,should be found before setting a relation between MCS and real time.Taking the logarithm of both sides of Equation 6 gives:

    3 Results and discussion

    The simulation set-up is exactly the same as that used in the experimental study carried by Semiatin,Soper and Sukonnik(1996).A Ti-6Al-4V sheet with dimensions of 25×38×1.3 mm is considered.This sample is heated in a liquid salt-pot at temperatures of 1032°C and 1088°C.In Semiatin study the samples were immediately water quenched to avoid grain changes during cooling.In this work the change in grain structure is also neglected during the cooling time.All the physical properties of the material used in this study are listed in Table 1.

    Figure 1:Monte Carlo results.(a)G?rain s?ize versus MCS for Q=30 and T=1563 K.(b)Fitting graph for Plot ofVs.Log(MCS).

    Table 1:Data used for the calculation of the grain growth kinetics of Ti-6Al-4V.

    The convective heat transfer coefficient is considered equal to 585 j/sm2K[Semiatin,Soper,and Sukonnik(1996)].In this condition the Biot number is 0.01,which is very small,and thus the criterion for Lumped theory is met.The temperature history as a function of time during the heat treatment is shown in Figure 2.

    The relation between MCS with respect to real time and temperature is demonstrated in Figure 3.Equation 8 is used in order to calculate the corresponding MCS for each time.In reality,the experimental results show that in the initial sample both α -and β -phases are available.During the heating up process,the α -phase starts to convert to the β -phase.B-phase dissolution is then completed at the β-transus temperature.The time required for this in our case is almost 7 seconds,which is named the sub-transus period.An earlier experimental investigation showed that the grain growth during the sub-transus period is very small[Semiatin,Soper,and Sukonnik(1996)].Figure 3 also reveals that the MCS before the β-transus temperature is reached is almost zero,which means there is no grain growth below the β-transus temperature.

    Figure 2:Temperature history in the sheet using the Lumped model.

    Figure 3:The relationship of the MCS with real time and temperature during the simulation.(a)Real time Vs.MCS,(b)Temperature Vs.MCS.

    In order to calculate grain size,a(200×200)grid system is considered corresponding to a domain size of(200×40μm)×(200×40μm)=(8.0×8.0)mm.The grain size of the system is calculated during 100s heat treatment.Due to the statistical properties of the Monte Carlo method,for each case more than 10 repetitions were conducted and the average values are reported.The grain structures for different times are shown in Figure 4.The simulated morphology of the system shows that the grain size increases as a function of time during heating up.This occurs due to a reduction in the total energy of the system,which is achieved by reducing the total area of the grain boundary.This phenomena is consisted with the Monte Carlo procedure,in which any change is kept if leads to a more stable thermodynamic state.

    Figure 5 shows a comparison of the grain sizes in different experimental studies,empirical equations and our Monte Carlo simulation.The empirical equations are based on Equation 7.The coefficients from an earlier study[Semiatin,Soper,and Sukonnik(1994)]are n=2.0,Q=251 kJ/mol and k=2.02,while in the current study they are n=2,Q=312 kJ/mol and k=1110[Semiatin,Soper,and Sukonnik(1996)].

    Figure 4:Grain structure by the Monte Carlo method after(a)50 s,and(b)100 s.

    Figure 5:Predicted grain size Vs.time based on the Monte Carlo method(this study),experimental data[Semiatin,Soper,and Sukonnik(1994,1996)]and empirical parabolic grain-growth law equation[Semiatin,Soper,and Sukonnik(1994,1996)]at 1088°C.

    This comparison also proves the good prediction of grain size made by the Monte Carlo method.A large difference is indicated in Figure 5 between the results in Semiatin(1994)on the one hand,and our Monte Carlo results and those in Semiatin(1996)on the other.Mathematically,a much smaller k in the earlier case leads to the prediction of slow grain growth during the heat treatment.Physically,this difference is due to the presence of molybdenum in the samples used by Semiatin(1994),where the diffusivity of molybdenum in beta Ti is slow as found by[Zwicker(1974)].

    All procedures were repeated for the liquid salt-pot at a temperature of 1032°C,and the results are shown in Figure 6.The comparison again shows good agreement between the experimental and simulation results.

    Figure 6:Predicted grain size Vs.time based on the Monte Carlo method(this study),experimental data[Semiatin,Soper,and Sukonnik(1994,1996)]and the empirical parabolic grain-growth law equation[Semiatin,Soper,and Sukonnik(1994,1996)]at 1032°C.

    4 Conclusion

    A Monte Carlo simulation based on the Q-states Potts model is applied in this work to study the kinetics of beta grain growth during short-time supertransus heat treatment of Ti-6Al4V.The relations between the Monte Carlo simulation iterations and real time-temperature kinetics are developed based on the parabolic grain growth law.The results of this simulation correlate well with the experimental results.This study thus shows that the Monte Carlo simulation of grain growth methodology can be applied to simulate the Ti-6Al-4V microstructure during manufacturing processes that involve fast heat treatment.

    Ahmed,T.;Rack,H.(1998):Phase transformations during cooling in α +β titanium alloys.Materials Science and Engineering:A,vol.243,pp.206–211.

    Anderson,M.;Srolovitz,D.;Grest,G.;Sahni,P.(1984):Computer simulation of grain growth—I.Kinetics.Acta metallurgica,vol.32,pp.783–791.

    Bhuvaraghan,B.;Srinivasan,S.M.;Maffeo,B.;Prakash,O.(2010):Analytical solution for single and multiple impacts with strain-rate effects for shot peening.Computer Modeling in Engineering and Sciences(CMES),vol.57,pp.137.

    Blackburn,M.(1967):The ordering transformation in titanium-aluminum alloys containing up to 25 at.pct aluminum(Ti-Al alloys ordering transformation studied by electron microscopy and electron and X-ray diffraction,showing existence of three phase fields).AIME,Transactions,vol.239,pp.1200–1208.

    Brook,G.(1998).Smithells light metals handbook.Butterworth-Heinemann.

    Cengel,Y.A.;Hernán Pérez,J.(2004):Heat transfer:a practical approach.Transferencia de calor.

    Chen,T.;Ma,H.;Gao,W.(2012):Comprehensive investigation into the accuracy and applicability of Monte Carlo simulations in stochastic structural analysis.Computer Modeling in Engineering&Sciences(CMES),vol.87,pp.239–269.

    Donachie,M.J.(2000).Titanium:a technical guide.ASM international.

    Elmer,J.;Palmer,T.;Babu,S.;Specht,E.(2005):Low temperature relaxation of residual stress in Ti-6Al-4V.Scripta Materialia,vol.52,pp.1051–1056.

    Gao,J.;Thompson,R.(1996):Real time-temperature models for Monte Carlo simulations of normal grain growth.Acta Materialia,vol.44,pp.4565–4570.

    Hernández-Rivera,E.;Tikare,V.;Wang,L.;Wang,H.(2013):Numerical simulation of radiation-induced chemical segregation and phase transformation in a binary system.CMC:Computers,Materials&Continua,vol.38,pp.91–103.

    Huang,M.-J.;Tsai,T.-C.;Liu,L.-C.;Jeng,M.-s.;Yang,C.-C.(2009):A fast Monte-Carlo solver for phonon transport in nanostructured semiconductors.Computer Modeling in Engineering and Sciences(CMES),vol.42,pp.107.

    Incropera,F.P.(2011).Fundamentals of heat and mass transfer.John Wiley&Sons.

    Ivasishin,O.;Shevchenko,S.;Semiatin,S.(2002):Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti-6Al-4V.Materials Science and Engineering:A,vol.332,pp.343–350.

    Ivasishin,O.M.(2001):Mechanism of beta-grain growth in alpha/beta titanium alloys during continuous,Rapid Heating.DTIC Document.

    Kattner,U.;Lin,J.-C.;Chang,Y.(1992):Thermodynamic assessment and calculation of the Ti-Al system.Metallurgical Transactions A,vol.23,pp.2081–2090.

    Liu,X.;Liu,Y.;Liu,H.(2013):Magnetorheological fluids particles simulation through integration of Monte Carlo method and GPU accelerated technology.CMES:Computer Modeling in Engineering&Sciences,vol.91,pp.65–80.

    Mishra,S.;DebRoy,T.(2004a):Grain topology in Ti-6Al-4V welds—Monte Carlo simulation and experiments.Journal of Physics D:Applied Physics,vol.37,pp.2191.

    Mishra,S.;DebRoy,T.(2004b):Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti-6Al-4V welds.Acta Materialia,vol.52,pp.1183–1192.

    PalDey,S.;Deevi,S.(2003):Single layer and multilayer wear resistant coatings of(Ti,Al)N:a review.Materials Science and Engineering:A,vol.342,pp.58–79.

    Saito,Y.;Enomoto,M.(1992):Monte Carlo simulation of grain growth.ISIJ international,vol.32,pp.267–274.

    Semiatin,S.;Soper,J.;Sukonnik,I.(1994):Grain growth in a conventional titanium alloy during rapid,continuous heat treatment.Scripta metallurgica et materialia,vol.30,pp.951–955.

    Semiatin,S.;Soper,J.;Sukonnik,I.(1996):Short-time beta grain growth kinetics for a conventional titanium alloy.Acta materialia,vol.44,pp.1979–1986.

    Tian,J.;Han,X.;Long,S.;Xie,G.(2009):An analysis of the heat conduction problem for plates with the functionally graded material using the hybrid numerical method.Computers,Materials&Continua(CMC),vol.10,pp.229.

    Vrancken,B.;Thijs,L.;Kruth,J.-P.;Van Humbeeck,J.(2012):Heat treatment of Ti6Al4V produced by Selective Laser Melting:Microstructure and mechanical properties.Journal of Alloys and Compounds,vol.541,pp.177–185.

    Wang,K.(1996):The use of titanium for medical applications in the USA.Materials Science and Engineering:A,vol.213,pp.134–137.

    Weiss,I.;Semiatin,S.(1998):Thermomechanical processing of beta titanium alloys—an overview.Materials Science and Engineering:A,vol.243,pp.46–65.

    Welsch,G.;Boyer,R.;Collings,E.(1993).Materials properties handbook:titanium alloys.ASM international.

    Yang,Z.;Sista,S.;Elmer,J.;DebRoy,T.(2000):Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium.Acta Materialia,vol.48,pp.4813–4825.

    Zhang,M.-K.;Cao,B.-Y.;Guo,Y.-C.(2014):Numerical studies on damping of thermal waves.International Journal of Thermal Sciences,vol.84,pp.9–20.

    Zwicker,U.(1974):Titan und titanlegierungen.

    1Department of Materials Science and Engineering,National Cheng Kung University,University Road,Tainan 701,Taiwan

    2Corresponding author.E-mail:wshwang@mail.ncku.edu.tw

    咕卡用的链子| 日韩精品免费视频一区二区三区| xxxhd国产人妻xxx| 18在线观看网站| 51午夜福利影视在线观看| 深夜精品福利| 精品国产一区二区三区四区第35| 美女国产高潮福利片在线看| 欧美久久黑人一区二区| av网站在线播放免费| 日本vs欧美在线观看视频| 精品乱码久久久久久99久播| 中文字幕制服av| 一边摸一边抽搐一进一出视频| 免费av中文字幕在线| 欧美激情高清一区二区三区| 国产男靠女视频免费网站| 热re99久久精品国产66热6| 美女国产高潮福利片在线看| 少妇的丰满在线观看| 麻豆国产av国片精品| 丝袜美腿诱惑在线| 新久久久久国产一级毛片| www日本在线高清视频| 亚洲 欧美一区二区三区| 国内久久婷婷六月综合欲色啪| 日本一区二区免费在线视频| 啪啪无遮挡十八禁网站| 大陆偷拍与自拍| 久久中文看片网| 亚洲精品成人av观看孕妇| 看免费av毛片| 欧美成人免费av一区二区三区 | 岛国毛片在线播放| 亚洲 国产 在线| 精品一区二区三区视频在线观看免费 | 欧美日韩av久久| 一本大道久久a久久精品| 啦啦啦在线免费观看视频4| 大香蕉久久成人网| 国产一区二区激情短视频| av视频免费观看在线观看| 亚洲美女黄片视频| 激情视频va一区二区三区| 国产精品电影一区二区三区 | 成人特级黄色片久久久久久久| av不卡在线播放| 99久久99久久久精品蜜桃| 欧美色视频一区免费| 亚洲欧美一区二区三区黑人| 免费观看人在逋| 午夜福利视频在线观看免费| 少妇 在线观看| av电影中文网址| 精品卡一卡二卡四卡免费| 熟女少妇亚洲综合色aaa.| 国产精品偷伦视频观看了| 高清黄色对白视频在线免费看| 午夜福利,免费看| 80岁老熟妇乱子伦牲交| 国产一区在线观看成人免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品第一综合不卡| 精品电影一区二区在线| 黑人巨大精品欧美一区二区mp4| 丰满迷人的少妇在线观看| 最新在线观看一区二区三区| 欧美日韩视频精品一区| 午夜亚洲福利在线播放| 国产精品二区激情视频| 极品少妇高潮喷水抽搐| 麻豆成人av在线观看| 国产激情欧美一区二区| 国产精品免费大片| 国产成人一区二区三区免费视频网站| 一级,二级,三级黄色视频| 国产精品自产拍在线观看55亚洲 | 国产精品成人在线| 亚洲精品中文字幕一二三四区| 中国美女看黄片| 青草久久国产| 成人黄色视频免费在线看| 丝袜美腿诱惑在线| 国产欧美日韩精品亚洲av| 亚洲国产精品sss在线观看 | 亚洲精品av麻豆狂野| 精品国产国语对白av| 国产精品 欧美亚洲| 国产成人一区二区三区免费视频网站| a在线观看视频网站| 精品免费久久久久久久清纯 | 国产精品永久免费网站| av福利片在线| 国产成人影院久久av| 一级,二级,三级黄色视频| 99riav亚洲国产免费| 国产色视频综合| 亚洲熟女精品中文字幕| 日韩有码中文字幕| 久久久精品国产亚洲av高清涩受| 久9热在线精品视频| 成人手机av| 欧美人与性动交α欧美精品济南到| 亚洲成人国产一区在线观看| av天堂在线播放| 美女视频免费永久观看网站| 丁香六月欧美| 久久这里只有精品19| 欧美精品人与动牲交sv欧美| 成人亚洲精品一区在线观看| 天堂√8在线中文| 午夜福利一区二区在线看| av视频免费观看在线观看| 午夜福利欧美成人| 成年动漫av网址| 日韩欧美国产一区二区入口| 欧美 日韩 精品 国产| 国产成人欧美| 日韩中文字幕欧美一区二区| 日韩中文字幕欧美一区二区| 一区二区三区激情视频| 成人av一区二区三区在线看| 中文字幕制服av| 亚洲欧美激情在线| 日韩中文字幕欧美一区二区| 日韩成人在线观看一区二区三区| 另类亚洲欧美激情| 国产av一区二区精品久久| 91成人精品电影| 两个人免费观看高清视频| 午夜福利免费观看在线| 18禁裸乳无遮挡免费网站照片 | 国产精品久久视频播放| 久久久国产成人免费| 人妻久久中文字幕网| 天天躁日日躁夜夜躁夜夜| 亚洲国产精品合色在线| 纯流量卡能插随身wifi吗| 久久久精品免费免费高清| 亚洲精品久久成人aⅴ小说| 人妻一区二区av| 国产免费现黄频在线看| 中亚洲国语对白在线视频| 成熟少妇高潮喷水视频| 中文字幕av电影在线播放| 妹子高潮喷水视频| 日本精品一区二区三区蜜桃| 91国产中文字幕| 国产成人啪精品午夜网站| 欧美国产精品va在线观看不卡| 妹子高潮喷水视频| 一a级毛片在线观看| 视频区欧美日本亚洲| 欧美日韩成人在线一区二区| 可以免费在线观看a视频的电影网站| 伦理电影免费视频| 高清欧美精品videossex| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 黄色视频,在线免费观看| 大香蕉久久网| 成人手机av| 制服人妻中文乱码| 色在线成人网| 亚洲精华国产精华精| 人妻丰满熟妇av一区二区三区 | 亚洲av欧美aⅴ国产| 最新美女视频免费是黄的| 91字幕亚洲| 久久人妻熟女aⅴ| 校园春色视频在线观看| 亚洲av成人不卡在线观看播放网| 黄频高清免费视频| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 69精品国产乱码久久久| 99国产精品一区二区三区| 久久中文看片网| 很黄的视频免费| 成年版毛片免费区| 久久久水蜜桃国产精品网| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 久久久水蜜桃国产精品网| 99热网站在线观看| 美国免费a级毛片| av线在线观看网站| 国产一区二区三区综合在线观看| 欧美精品人与动牲交sv欧美| 免费不卡黄色视频| 少妇猛男粗大的猛烈进出视频| 国产高清视频在线播放一区| 亚洲久久久国产精品| 精品免费久久久久久久清纯 | 久久久精品区二区三区| 欧美黑人精品巨大| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 欧美不卡视频在线免费观看 | 这个男人来自地球电影免费观看| 亚洲av片天天在线观看| 亚洲精品一二三| 国产黄色免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 久久狼人影院| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 人成视频在线观看免费观看| 美国免费a级毛片| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 成在线人永久免费视频| 我的亚洲天堂| 午夜福利欧美成人| 国产97色在线日韩免费| 国产亚洲精品久久久久久毛片 | 麻豆成人av在线观看| 国产精品一区二区在线观看99| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 日本wwww免费看| 国产亚洲av高清不卡| 国产av精品麻豆| 国产高清国产精品国产三级| 婷婷精品国产亚洲av在线 | 乱人伦中国视频| 1024视频免费在线观看| 欧美激情久久久久久爽电影 | 中文字幕人妻丝袜一区二区| 欧美另类亚洲清纯唯美| 亚洲专区中文字幕在线| 久久国产精品大桥未久av| 老司机午夜十八禁免费视频| 国产精品电影一区二区三区 | 亚洲精品自拍成人| 久久午夜综合久久蜜桃| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 亚洲av电影在线进入| 青草久久国产| 午夜久久久在线观看| 精品高清国产在线一区| 日韩中文字幕欧美一区二区| 少妇 在线观看| 少妇粗大呻吟视频| 搡老岳熟女国产| 一进一出好大好爽视频| 少妇裸体淫交视频免费看高清 | 一二三四在线观看免费中文在| 亚洲精品美女久久av网站| 国产成人啪精品午夜网站| av天堂在线播放| 午夜精品在线福利| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 精品第一国产精品| 人妻 亚洲 视频| 精品一区二区三区四区五区乱码| 三上悠亚av全集在线观看| 国产黄色免费在线视频| 成人精品一区二区免费| 欧美精品高潮呻吟av久久| 男人舔女人的私密视频| 丰满的人妻完整版| 亚洲五月婷婷丁香| 久久午夜综合久久蜜桃| av电影中文网址| 亚洲精品中文字幕在线视频| 亚洲美女黄片视频| 美女高潮到喷水免费观看| 日本a在线网址| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黄色淫秽网站| 国产成人av激情在线播放| 欧美国产精品一级二级三级| 国产成人精品久久二区二区免费| 一边摸一边做爽爽视频免费| 亚洲国产看品久久| 男女之事视频高清在线观看| 日本vs欧美在线观看视频| 99国产精品一区二区三区| 村上凉子中文字幕在线| 国产有黄有色有爽视频| 国产男女内射视频| 国产精品久久久av美女十八| 国产精品亚洲av一区麻豆| 999久久久国产精品视频| 十八禁人妻一区二区| 激情在线观看视频在线高清 | 亚洲成人手机| videosex国产| 日日爽夜夜爽网站| 99re在线观看精品视频| 国产精品成人在线| 丁香六月欧美| 亚洲熟女毛片儿| 大型黄色视频在线免费观看| 岛国毛片在线播放| 久久九九热精品免费| 人人妻人人添人人爽欧美一区卜| 侵犯人妻中文字幕一二三四区| 99re在线观看精品视频| 99国产综合亚洲精品| 久久这里只有精品19| av电影中文网址| 亚洲伊人色综图| 91成年电影在线观看| 欧美日韩福利视频一区二区| 人人澡人人妻人| 日韩免费av在线播放| 人人妻人人澡人人爽人人夜夜| 久久久精品国产亚洲av高清涩受| 国产1区2区3区精品| 国产日韩欧美亚洲二区| 欧美激情 高清一区二区三区| 亚洲精品中文字幕一二三四区| 极品人妻少妇av视频| 成人精品一区二区免费| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区三| 夜夜爽天天搞| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 午夜福利视频在线观看免费| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 我的亚洲天堂| 国产成人欧美| 成在线人永久免费视频| 极品人妻少妇av视频| 亚洲成人手机| videos熟女内射| 亚洲av美国av| 亚洲欧美一区二区三区黑人| 国产亚洲欧美98| netflix在线观看网站| 国产男靠女视频免费网站| 亚洲av日韩在线播放| 777米奇影视久久| 午夜福利影视在线免费观看| 成人国产一区最新在线观看| 99在线人妻在线中文字幕 | 一级毛片女人18水好多| 美女国产高潮福利片在线看| 丝瓜视频免费看黄片| 91精品三级在线观看| 中文欧美无线码| 久久热在线av| 国产99白浆流出| 露出奶头的视频| e午夜精品久久久久久久| 老司机深夜福利视频在线观看| av视频免费观看在线观看| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 国产在线一区二区三区精| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 热re99久久精品国产66热6| 免费高清在线观看日韩| 日本vs欧美在线观看视频| 窝窝影院91人妻| 亚洲少妇的诱惑av| 欧美精品人与动牲交sv欧美| 日日夜夜操网爽| 无遮挡黄片免费观看| а√天堂www在线а√下载 | 变态另类成人亚洲欧美熟女 | 成人三级做爰电影| 免费在线观看影片大全网站| 国产91精品成人一区二区三区| a在线观看视频网站| 黑人欧美特级aaaaaa片| 在线观看免费视频日本深夜| 亚洲成人国产一区在线观看| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 美女视频免费永久观看网站| 欧美激情 高清一区二区三区| 高清毛片免费观看视频网站 | 黑丝袜美女国产一区| 国产成人一区二区三区免费视频网站| 亚洲国产欧美网| 国产深夜福利视频在线观看| 他把我摸到了高潮在线观看| 两性夫妻黄色片| xxx96com| 好男人电影高清在线观看| 国内毛片毛片毛片毛片毛片| 正在播放国产对白刺激| 欧美日韩亚洲国产一区二区在线观看 | 久久精品亚洲精品国产色婷小说| 国产av一区二区精品久久| 无人区码免费观看不卡| 日韩欧美国产一区二区入口| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 亚洲avbb在线观看| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 一夜夜www| 下体分泌物呈黄色| 久久精品亚洲av国产电影网| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 亚洲精品国产区一区二| 欧美精品人与动牲交sv欧美| 咕卡用的链子| 99re6热这里在线精品视频| 亚洲成国产人片在线观看| 精品福利观看| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 午夜日韩欧美国产| 欧美精品高潮呻吟av久久| 十八禁人妻一区二区| 搡老乐熟女国产| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 777米奇影视久久| 午夜两性在线视频| 欧美日本中文国产一区发布| 久久九九热精品免费| 久久精品国产综合久久久| 美女午夜性视频免费| 51午夜福利影视在线观看| 亚洲avbb在线观看| 丝袜在线中文字幕| 国产精品自产拍在线观看55亚洲 | 国产在视频线精品| tube8黄色片| 亚洲av欧美aⅴ国产| 国产精品电影一区二区三区 | 亚洲成a人片在线一区二区| 又紧又爽又黄一区二区| 国产亚洲欧美在线一区二区| 国产精品永久免费网站| 91成人精品电影| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| 亚洲成人国产一区在线观看| 成年女人毛片免费观看观看9 | 午夜成年电影在线免费观看| 巨乳人妻的诱惑在线观看| 多毛熟女@视频| 亚洲av美国av| 成人精品一区二区免费| 大型av网站在线播放| 在线观看66精品国产| 后天国语完整版免费观看| 日韩欧美国产一区二区入口| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 看黄色毛片网站| 久久精品国产亚洲av高清一级| 侵犯人妻中文字幕一二三四区| 波多野结衣一区麻豆| 亚洲少妇的诱惑av| www.熟女人妻精品国产| 美女高潮到喷水免费观看| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 国产精品综合久久久久久久免费 | 成在线人永久免费视频| 国产精品一区二区精品视频观看| 久久九九热精品免费| 老熟女久久久| 国产成人啪精品午夜网站| 中文字幕人妻丝袜一区二区| 香蕉久久夜色| 18禁裸乳无遮挡免费网站照片 | 久久午夜亚洲精品久久| videos熟女内射| 免费av中文字幕在线| 捣出白浆h1v1| 免费在线观看视频国产中文字幕亚洲| 欧美亚洲 丝袜 人妻 在线| 大型黄色视频在线免费观看| 校园春色视频在线观看| 国产欧美日韩精品亚洲av| 亚洲一区二区三区不卡视频| 色精品久久人妻99蜜桃| 91字幕亚洲| 久久久国产成人精品二区 | 亚洲人成电影观看| 老熟女久久久| 色尼玛亚洲综合影院| 国产精品九九99| 老司机亚洲免费影院| 中文欧美无线码| 新久久久久国产一级毛片| 黑人猛操日本美女一级片| 国产欧美亚洲国产| 岛国在线观看网站| 久久九九热精品免费| 国产日韩欧美亚洲二区| av天堂久久9| 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区| bbb黄色大片| 久久精品熟女亚洲av麻豆精品| 国产激情久久老熟女| 久热这里只有精品99| 国产成人啪精品午夜网站| 国产淫语在线视频| 女人精品久久久久毛片| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩另类电影网站| 免费人成视频x8x8入口观看| 黑人操中国人逼视频| 亚洲精品国产精品久久久不卡| 亚洲欧洲精品一区二区精品久久久| 村上凉子中文字幕在线| 国产欧美日韩综合在线一区二区| 国产精品亚洲一级av第二区| 在线看a的网站| 午夜日韩欧美国产| 人妻 亚洲 视频| 很黄的视频免费| 成人特级黄色片久久久久久久| 久久中文字幕人妻熟女| 99国产精品99久久久久| 美女高潮喷水抽搐中文字幕| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 欧美日韩一级在线毛片| 久久国产精品影院| 黄频高清免费视频| 国产在线精品亚洲第一网站| 国产xxxxx性猛交| 99香蕉大伊视频| 一二三四在线观看免费中文在| 亚洲av日韩在线播放| 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 中文字幕精品免费在线观看视频| 18禁美女被吸乳视频| 欧美不卡视频在线免费观看 | 国产精品一区二区在线不卡| 一级a爱视频在线免费观看| 超色免费av| 久久久久久免费高清国产稀缺| 人人妻人人澡人人看| 国产成人系列免费观看| 狂野欧美激情性xxxx| 日韩欧美一区视频在线观看| 丰满迷人的少妇在线观看| 高清视频免费观看一区二区| 亚洲 欧美一区二区三区| 亚洲久久久国产精品| 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 久久中文字幕人妻熟女| 天天躁日日躁夜夜躁夜夜| 国产一区二区激情短视频| 一级毛片高清免费大全| 五月开心婷婷网| 看片在线看免费视频| 国产男女超爽视频在线观看| 国产亚洲精品一区二区www | 18禁黄网站禁片午夜丰满| 自线自在国产av| 久久精品91无色码中文字幕| 国产精品国产高清国产av | 国精品久久久久久国模美| 亚洲av美国av| xxxhd国产人妻xxx| 国产亚洲欧美在线一区二区| 丝袜美足系列| 国产免费现黄频在线看| netflix在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 亚洲五月婷婷丁香| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 777久久人妻少妇嫩草av网站| 欧美精品人与动牲交sv欧美| 久热爱精品视频在线9| 国产精品 国内视频| 变态另类成人亚洲欧美熟女 | 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 欧美日韩乱码在线| 色婷婷久久久亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 两性夫妻黄色片| 18禁观看日本| 久久久精品国产亚洲av高清涩受| ponron亚洲| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 性少妇av在线| 亚洲第一av免费看| 色尼玛亚洲综合影院| 男女床上黄色一级片免费看| xxxhd国产人妻xxx| 日韩三级视频一区二区三区| 99精品在免费线老司机午夜| 亚洲免费av在线视频| 国产在线观看jvid| √禁漫天堂资源中文www| 深夜精品福利| 精品卡一卡二卡四卡免费| 免费女性裸体啪啪无遮挡网站| www日本在线高清视频| 老鸭窝网址在线观看|