• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Hydrogen Permeation in Metals by Means of a New Anomalous Diffusion Model and Bayesian Inference

    2015-12-13 11:35:33MarcoKappelDiegoKnuppRobertoDomingosandIvanBastos
    Computers Materials&Continua 2015年13期

    Marco A.A.Kappel,Diego C.Knupp,Roberto P.Domingosand Ivan N.Bastos

    Analysis of Hydrogen Permeation in Metals by Means of a New Anomalous Diffusion Model and Bayesian Inference

    Marco A.A.Kappel1,Diego C.Knupp1,Roberto P.Domingos1and Ivan N.Bastos1

    This work is aimed at the direct and inverse analysis of hydrogen permeation in steels employing a novel anomalous diffusion model.For the inverse analysis,experimental data for hydrogen permeation in a 13%chromium martensitic stainless steel,available in the literature[Turnbull,Carroll and Ferriss(1989)],was employed within the Bayesian framework for inverse problems.The comparison between the predicted values and the available experimental data demonstrates the feasibility of the new model in adequately describing the physical phenomena occurring in this particular problem.

    Anomalous diffusion,Hydrogen permeation,Bayesian inference,Inverse problems.

    1 Introduction

    Diffusion processes are quite frequently modeled by the classic Fick’s Law for conservation of species.Even though this model is able to describe very satisfactorily several processes,in some particular problems this approach fails to accurately describe the actual physical behavior[Bouchaud and Georges(1990)].This anomalous diffusion behavior is observed,for example,in the permeation of hydrogen in metals,due to temporary and permanent retention,or even sources of hydrogen atoms such as hydrade dissolution.Moreover,this process is strongly influenced by the presence of hydrogen traps such as grain boundaries,dislocations,carbides,and non-metallic particles[Turnbull,Carroll and Ferriss(1989)].In most works of the literature addressing this issue,the classical diffusion equation is adopted as the basic governing equation,but with the arbitrary introduction of sink and source terms to take into account these phenomena.For example,some works considered hydrogen diffusion with trapping[McNabb and Foster(1963)],rapid equilibrium between trapping and normal diffusion sites[Oriani(1970)],irreversible trapping[Iino(1982a);Iino(1982b)]or simultaneous reversible and irreversible trapping[Leblond and Dubois(1983a);Leblond and Dubois(1983b)],besides models that consider a varying degree of occupancy between reversible and irreversible trapping[Turnbull,Carroll and Ferriss(1989)].More general models,such as those based on fractional derivative equations[Metzler and Klafter(2000)],have become quite popular,with applications in several areas,such as diffusion in porous media,turbulence and complex materials(colloids,emulsions,biomaterials,etc.),among others,requiring the development of new numerical schemes for the solution of this class of problems[Chen and Sun(2009);Ray(2015);Wang,Liu,Chen,Liu and Liu(2015)].It should be highlighted that the understanding and adequate modeling of hydrogen diffusion in metals remains of paramount importance in engineering,since it significantly affects the mechanical behavior of steels[Tavares,Bastos,Pardal,Montenegro and da Silva(2015);Santos,Bére?,Bastos,Tavares,Abreu and da Silva(2015)].

    Aiming at unifying all processes of diffusion with retention,Bevilacqua and coworkers derived a new analytical formulation for the simulation of the phenomena of anomalous diffusion[Bevilacqua,Gale?o and Costa(2011a)],explicitly taking into account the retention effect in the dispersion process.In this new model,given by a fourth order differential equation,the blocking process is characterized by two additional parameters that arise naturally in the model,besides the classical diffusion coefficient.Some recent works investigated this new model from an inverse analysis perspective[Silva,Knupp,Bevilacqua,Gale?o and Silva Neto(2014)],but to the best of our knowledge,a practical problem has not yet been analyzed through this approach.

    Therefore,this work is aimed at the direct and inverse analysis,employing this new anomalous diffusion model,of the hydrogen diffusion in a 13%chromium martensitic stainless steel,with experimental data obtained in[Turnbull,Carroll and Ferriss(1989)]on successive hydrogen permeation tests.In order to estimate the parameters appearing in the proposed model,the Bayesian inference is employed for the inverse problem formulation[Kaipio and Sommersalo(2004)],with solution via Markov Chain Monte Carlo methods[Gamerman and Lopes(2006)].As further detailed in the remaining of the paper,the Bayesian framework is particularly adequate for this problem because of the existence of prior information regarding the lattice diffusion coefficient,as reviewed in[Kiuchi and McLellan(1983)].

    2 Problem Formulation

    Following the derivation described with details by Bevilacqua and co-workers,the anomalous diffusion model adopted in this work to describe the hydrogen con-centration in a given medium can be written as[Bevilacqua,Gale?o and Costa(2011a)]:

    where C is the hydrogen concentration,K2is the classical diffusion coefficient,which can be interpreted as the lattice(“true”)diffusion coefficient,for which a theoretical prior information is available in the literature(K2=7.2×10?5cm2/s at 23°C)[Kiuchi and McLellan(1983)],as also used in the analysis performed in[Turnbull,Carroll and Ferriss(1989)],β is the fraction of particles able to diffuse at each time step,K4is the complimentary coefficient related to the anomalous diffusion processes,and L is the membrane thickness.

    The diffusion process modeled by Eq.1a is illustrated in Fig.1.At each time step,a fraction of the contents α pnof each nthcell is retained.The exceeding volume β pn,where β =(1?α),is divided between the neighboring cells,each one receiving 0.5β pnfor the case of symmetric distribution.If β =0 the model corresponds to the stationary solution,and for β=1 the classic formulation of pure diffusion is recovered.It should be highlighted that both additional parameters,β and K4,can,in principle,vary with time.However,in this work it is considered the simplest case,with constant coefficients,assuming all permanent hydrogen traps are already filled.

    For the case of hydrogen permeation in membranes investigated in this work,the following boundary and initial conditions are considered:

    where C0is the hydrogen concentration prescribed at one side of the steel membrane,x=0,and Ciis the initial hydrogen concentration in the medium.It should be highlighted that the initial concentration actually refers to the hydrogen atoms able to diffuse,and therefore it is here considered zero even if in the second or third permeation,since in this work it is assumed that the hydrogen trapped in the previous permeations refer to permanent retention,not taken into account by this model.

    Figure 1:Schematic representation of the symmetrical distribution with retention α=(1?β)

    The conditions Eq.1d and Eq.1e refer to null secondary flux at the boundaries[Bevilacqua,Gale?o and Costa(2011b);Bevilacqua,Gale?o and Costa(2011a)],i.e.it is assumed that there is no flux of retained hydrogen at the surfaces.

    The problem given by Eq.1a–Eq.1f is solved with the NDSolve routine of the Wolfram Mathematica system[Wolfram(2005)],under automatic absolute and relative error control.This automatic solution path has been previous covalidated in previous works with the finite difference and finite element methods[Silva,Knupp,Bevilacqua,Gale?o,Simas,Vasconcellos and Silva Neto(2013)].In order to calculate the hydrogen concentrations,information is needed on the values of the model parameters,K2,β and K4.As prior information is available for the lattice diffusion coefficient,K2[Kiuchi and McLellan(1983)],the critical objective is the estimation of β and K4from the available experimental data.In this work,the Bayesian approach for inverse problems is adopted as the basic framework,which allows for modeling the prior information regarding the parameter K2into the inverse problem formulation,as further discussed in the next section.

    3 Inverse Analysis

    Inverse problems are commonly classified as ill-posed problems,once the unique-ness of the solution is not guaranteed.Moreover,it is not stable with respect to the input data,i.e.,the experimental data,which contain the unavoidable measurement noise.Therefore,the solution of an inverse problem is not a trivial task,and many techniques have been proposed in the literature in order to overcome these difficulties.The most known and used approach is the maximum likelihood procedure.If the experimental errors are additive and can be modeled by a normal distribution with zero mean and constant standard deviation,and if the errors are not correlated,the maximum likelihood procedure leads to the very well known ordinary least squares objective function[Ozisik and Orlande(2000)].Even though this procedure can be very useful in several situations,the maximum likelihood approach does not allow for the incorporation of prior information,which eventually can be available for one or more parameters,such as the case of the lattice diffusion coefficient,K2,appearing in Eq.1a,which allows for modeling a theoretical prior information,as discussed in[Kiuchi and McLellan(1983)].In this scenario,the Bayesian approach for inverse problems[Kaipio and Sommersalo(2004)]is employed in this work.

    The main purpose of the Bayesian approach is to calculate the posterior probability distribution for the parameters,from the prior knowledge of their distributions,aggregated with the available experimental data.The inverse problem is formulated as a problem of statistical inference and it is based on four basic principles[Kaipio and Sommersalo(2004)]:(i)All variables of the model are modeled as random variables;(ii)The randomness describes the degree of information;(iii)The degree of information is coded in probability distributions;(iv)The solution of the inverse problem is the posterior probability distribution.Thus,in the Bayesian approach all possible information is incorporated in the model,yielding a better uncertainty assessment of the estimated parameters.

    Considering the prior information available on the model parametersZcan be modeled as a probability density πpr(Z),the Bayes theorem for inverse problems can be expressed as[Kaipio and Sommersalo(2004)]:

    where πpost(Z)is the posterior probability density,πpr(Z)is the prior information on the unknown parameters,modeled as a probability distribution,π(dexp)is the marginal density and plays the role of a normalizing constant,and π(dexp|Z)is the likelihood function.Considering the measurement errors related to the datadexpare additive,uncorrelated,and have normal distribution,the probability density for the occurrence of the measurementsdexpwith the given parameters valuesZcan be expressed as[Beck and Arnold(1977)]:

    whereWis the covariance matrix,related to the experimental datadexp,anddcalcare the calculated data,obtained from the mathematical model solution employing the parametersZ.

    This methodology produces a distribution which might be explored in different ways,using different methods.One of the most common approaches to obtain the estimates is through the maximum a posteriori(MAP)estimator[Knupp,Silva,Bevilacqua,Gale?o and Silva Neto(2014)],but one way of directly exploring the posterior probability distribution is through random sampling methods,such as the Markov Chain Monte Carlo(MCMC)techniques[Kaipio and Sommersalo(2004);Gamerman and Lopes(2006)].

    The present work uses the Metropolis-Hastings algorithm[Kaipio and Sommersalo(2004);Gamerman and Lopes(2006)]to implement the MCMC method.First,a candidate-generating density function q(Zt,Z?)must be implemented.This function gives the probability of choosing a candidateZ?from the current state of the chain,Zt.The following algorithm describes the procedure used in this work:

    Step 1:Sample a candidateZ?from the current stateZt,employing the candidategenerating density q(Zt,Z?)

    Step 2:Calculate

    Step 3:IfU(0,1)<α,then

    else

    where U(0,1)is a random number from a uniform distribution between 0 and 1.

    Step 4:Return toStep 1in order to generate the chain?Z1,Z2,...,ZNMCMC?.It should be mentioned that the first states of this chain must be discarded until the convergence of the chain is reached.These ignored samples are called the burn-in period,whose length will be denoted by Nburn-in.

    In the present work we have used a random walk process in order to generate the candidates,so thatZ?=Zt+η,where η follows the distribution q,which was defined as a normal density in this work.In this case q is symmetric and q(Z?,Zt)=q(Zt,Z?),so Step 2 is simplified and Eq.4 may be rewritten as:

    4 Application

    The experimental data used in the present work were directly obtained from the permeation measurements performed in[Turnbull,Carroll and Ferriss(1989)],in a 13%Cr martensitic stainless steel(AISI 410)commonly used for oil production tubing.The steel was quenched and double-tempered as shown in Table 1.

    Table 1:Chemical composition and heat treatment of AISI 410 stainless steel(mass%)[Turnbull,Carroll and Ferriss(1989)]

    The permeation tests were performed using a Devanathan-Stachurski type cell[Turnbull,de Santa Maria and Thomas(1989);Devanathan and Stachurski(1962)],in which hydrogen is imposed at one side of the permeation membrane during cathodic polarization,whereas the other side of the membrane is kept at a given anodic potential.The measured current in this cell gives the instantaneous rate of hydrogen permeation through the membrane.The dimensionless current density J/J∞,as a function of the dimensionless time τ,is shown in Fig.2 for the third permeation experiment performed in[Turnbull,Carroll and Ferriss(1989)],where the steady state current J∞is calculated as:

    and the dimensionless time is given by:

    where C0=1.3×1017atom/cm3is the hydrogen concentration at x=0,and L=50 mm is the steel membrane thickness of the sample employed in the mentioned experiment[Turnbull,Carroll and Ferriss(1989)].

    Regarding the model predictions,once the hydrogen concentration as function of position and time is calculated,C(x,t),as the solution of Eq.1a–Eq.1f,the current density,J,can be readily evaluated as:

    where F is the Faraday constant.

    The lattice diffusion,calculated with the classic Fick’s law(β =1 in Eq.1a),employing the lattice diffusion coefficient value,as obtained in[Kiuchi and McLellan(1983)],is also plotted in Fig.2,clearly demonstrating that the classical model is not able to describe the real physical dispersion phenomena occurring in this application.

    Figure 2:Dimensionless current transients during permeation for AISI 410 stainless steel in acidified NaCl at 23°C.Experimental data from[Turnbull,Carroll and Ferriss(1989)]

    5 Results and Discussion

    In order to solve the inverse problem for the estimation of the model parameters appearing in Eq.1a with the MCMC method,described in Section 3,the currentdensity measurements for the third permeation test,presented in Fig.2,are employed as the experimental data,dexp.These measurements were directly extracted from[Turnbull,Carroll and Ferriss(1989)],and in the absence of further information regarding the characterization of the experimental error,the measurement fluctuations were considered to follow a normal distribution with zero mean,no correlation,and constant standard deviation.Hence,the covariance matrixW,in the likelihood function,Eq.3,is constituted by a diagonal matrix with the experimental constant variance,σ2.In this case,considering the precision reported in[Turnbull,Carroll and Ferriss(1989)],the experimental standard deviation was considered as σ=0.01.For the calculated values,dcalc(Z)in Eq.3,onceC(x,t)is calculated,as the solution of Eq.1a–Eq.1f employing the valuesZfor the model parameters,Eq.10 is employed to calculate the current density,which is in fact the desired quantity to compare with the experimental data.

    Table 2:Estimated parameters with the Bayesian inference via MCMC([K2]≡cm2/s,[K4]≡cm4/s)

    For the prior information modeling,πpr(Z)in Eq.2,it was considered for the parameter K2a normal distribution with mean μK2=7.2×10?5cm2/s[Kiuchi and McLellan(1983);Turnbull,Carroll and Ferriss(1989)].Since no uncertainty assessment was reported for this value,it was here assumed a quite reliable prior information,with σK2=10?7cm2/s(< 0.15%ofμK2).For the parameters β and K4non-informative priors(uniform distributions)were employed.Tab.2 summarizes three runs of the MCMC algorithm,considering different initial states in the Markov Chain for the parameters β and K4,for which prior information are not available.For the parameter K2the available prior information,μK2,was considered as the initial state in all cases.The candidate-generating density q was chosen as a normal distribution with mean given by the current state,and the standard deviation empirically adjusted as 2%of the initial state,10?7,and 10%of the initial state for β,K2and K4,respectively,in order to roughly achieve a 30%acceptance ratio.From the first run,constructed with a total of 5,000 states with the first 1,000 states discarded as the burn-in,to the second,constructed with a total of 10,000 states with the first 2,000 states discarded as the burn-in,it is clear,from the divergent estimated confidence intervals,that the chains were still not converged for NMCMC=5,000.On the other hand,comparing the second and third runs,constructed with 10,000 and 20,000 states,respectively(both with the first 2,000 s-tates discarded as the burn-in),employing different initial states,one can clearly observe that the chains are converged,with the estimated 95% confidence intervals being remarkably similar for all three parameters.

    Figure 3:(a)Markov chain evolution and(b)inferred histogram of the posterior probability density function for the parameter β

    Figure 4:(a)Markov chain evolution and(b)inferred histogram of the posterior probability density function for the parameter K2

    Fig.3 to Fig.5 depict the Markov chain evolution for the third run presented in Tab.2 as well as the inferred histogram of the posterior probability density function for all three parameters β,K2and K4,respectively.These results clearly demonstrate that the chains achieve the equilibrium distributions quite rapidly in the present case,clearly illustrating that the first 2,000 states,discarded as the burn-in,is more than enough to achieve the equilibrium of the chains.Moreover,from the histograms,one observes that the posterior probability density functions of all three parameters tend to normal distributions.

    Figure 5:(a)Markov chain evolution and(b)inferred histogram of the posterior probability density function for the parameter K4

    After con firming the good convergence behavior of the Markov chains constructed through the inverse problem solution,we now investigate the solution behavior of the anomalous diffusion model,Eq.1a to Eq.1f,regarding the hydrogen concentration distribution within the steel membrane,employing the estimated parameters.

    Figure 6:Calculated dimensionless hydrogen concentration in the stainless steel membrane for different instants(3rdpermeation test)

    Fig.6 depicts the calculated dimensionless hydrogen concentration along the stainless steel plate,from x=0 to x=L,at different instants.It is interesting to notice that at the early stages,the predicted hydrogen concentration is below zero at some positions.As reported in the careful numerical study carried out by Bevilacqua and co-workers[Bevilacqua,Gale?o and Costa(2011b)],this phenomenon is associated with a counter- flux process when the decaying speed of the concentration exceeds the one corresponding to the classical diffusion equation.This solution is physically compatible if there is a local stock able to supply particles.Indeed,it can be the case in the particular problem of hydrogen permeation in a medium with reversible traps,since during the third permeation here considered it is expected that a fraction of hydrogen atoms is trapped within the metal structure,being able to supply this flux.It should be recalled that the zero concentration level,here imposed as the initial condition,actually refers to hydrogen atoms not permanently trapped within the membrane.On the other hand,if a sufficient supply is not available,the model would be no longer valid and,physically,the concentration continuity would be broken,yielding instability in the diffusion process.This can be the case in the earlier permeations,and could explain,at least in part,the embrittlement caused by hydrogen diffusion in steels,since the permanent hydrogen-metal interaction can cause mechanical damage.

    Figure 7:Calculated current density after the inverse problem solution and comparison against experimental data[Turnbull,Carroll and Ferriss(1989)]

    Finally,the current density as calculated with Eq.10 with the predicted hydrogen concentration,C(x,t),is compared with the experimental measurements obtained in[Turnbull,Carroll and Ferriss(1989)].These results are depicted in Fig.7,illustrating an excellent adherence of the predicted values,as calculated from the anomalous diffusion model here employed,with the experimental data,demonstrating the feasibility of this model in accurately describing the diffusion process in hydrogen permeation.

    6 Conclusions

    The hydrogen permeation process within a medium has been investigated by means of a new anomalous diffusion model.In order to estimate the model parameters,the Bayesian framework for inverse problems was adopted,employing experimental data available in the specialized literature for a 13%chromium martensitic stainless steel[Turnbull,Carroll and Ferriss(1989)].The new model was demonstrated to accurately describe the real physical phenomena,bringing a new perspective to the analysis of hydrogen permeation in steels.A counter- flux behavior was predicted in the early stages of successive permeation,indicating that the concentration continuity may be broken in some circumstances,if the stock of hydrogen trapped in the medium is not enough to supply this demand,yielding instability of the diffusion process.This phenomenon is not predicted in diffusion models that only consider the Fickian flux of hydrogen,even in successive permeations.

    Acknowledgement:The authors acknowledge the financial support provided by the Brazilian sponsoring agencies CNPq and FAPERJ.

    Beck,J.V.;Arnold,K.J.(1977): Parameter Estimation in Engineering and Science.Wiley,New York.

    Bevilacqua,L.;Gale?o,A.C.N.R.;Costa,F.P.(2011a): A new analytical formulation of retention effects on particle diffusion processes. Annals of the Brazilian Academy of Sciences,vol.83,no.4,pp.1443–1464.

    Bevilacqua,L.;Gale?o,A.C.N.R.;Costa,F.P.(2011b):On the significance of higher order differential terms in diffusion processes.Journal of the Brazilian Society of Mechanical Sciences and Engineering,vol.33,no.2,pp.166–175.

    Bouchaud,J.-P.;Georges,A.(1990): Anomalous diffusion in disorded media:Statistical mechanisms,models and physical applications.Physics Reports,vol.195,no.4-5,pp.127–293.

    Chen,W.;Sun,H.(2009):Numerical solution of fractional derivative equations in mechanics:advances and problems.In ICCES:International Conference on Computational&Experimental Engineering and Sciences,volume 9,pp.215–218.

    Devanathan,M.;Stachurski,Z.(1962): The adsorption and diffusion of electrolytic hydrogen in palladium.In Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,volume 270,pp.90–102.The Royal Society.

    Gamerman,D.;Lopes,H.F.(2006): Markov Chain Monte Carlo:stochastic simulation for Bayesian inference.Chapman&Hall/CRC,2nd edition.

    Iino,M.(1982a):Analysis of irreversible hydrogen trapping.Acta Metallurgica,vol.30,no.2,pp.377–383.

    Iino,M.(1982b): A more generalized analysis of hydrogen trapping. Acta Metallurgica,vol.30,no.2,pp.367–375.

    Kaipio,J.;Sommersalo,E.(2004): Statistical and Computational Inverse Problems.Springer-Verlag.

    Kiuchi,K.;McLellan,R.(1983):The solubility and diffusivity of hydrogen in well-annealed and deformed iron.Acta Metallurgica,vol.31,no.7,pp.961–984.

    Knupp,D.C.;Silva,L.G.;Bevilacqua,L.;Gale?o,A.C.N.R.;Silva Neto,A.J.(2014): Uncertainty analysis in the solution of an inverse anomalous diffusion problem employing maximum likelihood and bayesian estimation.In Proceedings of 17th Scientific Convention on Engineering and Architecture,November 24-28,2014,Havana,Cuba.

    Leblond,J.;Dubois,D.(1983a):A general mathematical description of hydrogen diffusion in steels-i.derivation of diffusion equations from Boltzmann-type transport equations.Acta Metallurgica,vol.31,no.10,pp.1459–1469.

    Leblond,J.;Dubois,D.(1983b):A general mathematical description of hydrogen diffusion in steels-ii.numerical study of permeation and determination of trapping parameters.Acta metallurgica,vol.31,no.10,pp.1471–1478.

    McNabb,A.;Foster,P.(1963):A new analysis of the diffusion of hydrogen in iron and ferritic steels.Transactions of the Metallurgical Society of AIME,vol.227,pp.618.

    Metzler,R.;Klafter,J.(2000):The random walk’s guide to anomalous diffusion:a fractional dynamics approach.Physics Reports,vol.339,no.1,pp.1–77.

    Oriani,R.A.(1970): The diffusion and trapping of hydrogen in steel. Acta Metallurgica,vol.18,no.1,pp.147–157.

    Ozisik,M.N.;Orlande,H.R.B.(2000): Inverse Heat Transfer:Fundamentals and Applications.Taylor&Francis,New York.

    Ray,S.S.(2015):A new coupled fractional reduced differential transform method for the numerical solution of fractional predator-prey system.CMES:Computer Modeling in Engineering&Sciences,vol.105,no.3,pp.231–249.

    Santos,L.;Bére?,M.;Bastos,I.;Tavares,S.;Abreu,H.;da Silva,M.G.(2015):Hydrogen embrittlement of ultra high strength 300 grade maraging steel.Corrosion Science,vol.101,pp.12–18.

    Silva,L.;Knupp,D.;Bevilacqua,L.;Gale?o,A.;Simas,J.;Vasconcellos,J.;Silva Neto,A.(2013): Investigation of a new model for anomalous diffusion phenomena by means of an inverse analysis.In Proceedings of the 4th Inverse Problems,Design and Optimization Symposium-IPDO 2013,Albi,France.

    Silva,L.G.;Knupp,D.C.;Bevilacqua,L.;Gale?o,A.C.N.R.;Silva Neto,A.J.(2014): Inverse problem in anomalous diffusion with uncertainty propagation. Computer Assisted Methods in Engineering and Science,vol.21,pp.245–255.

    Tavares,S.S.;Bastos,I.N.;Pardal,J.M.;Montenegro,T.R.;da Silva,M.(2015):Slow strain rate tensile test results of new multiphase 17%Cr stainless steel under hydrogen cathodic charging.International Journal of Hydrogen Energy,vol.40,no.47,pp.16992–16999.

    Turnbull,A.;Carroll,M.;Ferriss,D.(1989): Analysis of hydrogen diffusion and trapping in a 13%chromium martensitic stainless steel.Acta Metallurgica,vol.37,no.7,pp.2039–2046.

    Turnbull,A.;de Santa Maria,M.S.;Thomas,N.(1989): The effect of H2S concentration and pH on hydrogen permeation in AISI 410 stainless steel in 5%NaCl.Corrosion Science,vol.29,no.1,pp.89–104.

    Wang,J.;Liu,L.;Chen,Y.;Liu,L.;Liu,D.(2015): Numerical study for a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.CMES:Computer Modeling in Engineering&Sciences,vol.104,no.1,pp.69–85.

    Wolfram,S.(2005):The Mathematica Book.Wolfram media,Cambridge.

    1Instituto Politécnico,Universidade do Estado do Rio de Janeiro,Nova Friburgo,RJ,Brazil

    av在线蜜桃| 成人av在线播放网站| 亚洲图色成人| 一个人看的www免费观看视频| 人人妻,人人澡人人爽秒播| 国产高清视频在线观看网站| 成年人黄色毛片网站| 亚洲图色成人| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 乱人视频在线观看| 无人区码免费观看不卡| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久 | 最近中文字幕高清免费大全6 | 熟女电影av网| 美女黄网站色视频| 久久国内精品自在自线图片| 在线播放国产精品三级| 在线观看免费视频日本深夜| 亚洲综合色惰| 禁无遮挡网站| 欧美一级a爱片免费观看看| 国产黄片美女视频| www.色视频.com| 免费人成视频x8x8入口观看| 日本三级黄在线观看| 国产精品国产高清国产av| 国产三级在线视频| 最近视频中文字幕2019在线8| 午夜爱爱视频在线播放| 亚洲中文日韩欧美视频| 国产三级在线视频| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区| 搡老岳熟女国产| 免费看美女性在线毛片视频| 欧美3d第一页| 特级一级黄色大片| 日韩精品有码人妻一区| 免费人成视频x8x8入口观看| 久久人妻av系列| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕| 午夜福利视频1000在线观看| 国产综合懂色| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 三级毛片av免费| 国产在线男女| 久久久午夜欧美精品| 九九热线精品视视频播放| 国产成人aa在线观看| 99久久精品一区二区三区| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 国产成人aa在线观看| 少妇的逼水好多| 1000部很黄的大片| 九色成人免费人妻av| 亚洲国产色片| 搡老熟女国产l中国老女人| 日日啪夜夜撸| 亚洲aⅴ乱码一区二区在线播放| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 床上黄色一级片| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 亚洲美女黄片视频| 91久久精品国产一区二区三区| 国产淫片久久久久久久久| 欧美成人免费av一区二区三区| 久久人人精品亚洲av| 国产精品av视频在线免费观看| 亚洲美女视频黄频| 99久久中文字幕三级久久日本| 亚洲av成人av| 欧美性猛交黑人性爽| 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 两个人的视频大全免费| 亚洲狠狠婷婷综合久久图片| 99久国产av精品| 久久久久国产精品人妻aⅴ院| 色噜噜av男人的天堂激情| 夜夜爽天天搞| 99热精品在线国产| 午夜影院日韩av| 嫩草影院新地址| 亚洲人成网站在线播| 国产白丝娇喘喷水9色精品| 他把我摸到了高潮在线观看| 能在线免费观看的黄片| 搞女人的毛片| 国产精品国产三级国产av玫瑰| 午夜精品在线福利| 欧美日本视频| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 久久人妻av系列| 我的老师免费观看完整版| 成人特级av手机在线观看| 欧美色欧美亚洲另类二区| 内射极品少妇av片p| 国产一区二区在线观看日韩| 在现免费观看毛片| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 久99久视频精品免费| 欧美高清成人免费视频www| 亚洲美女黄片视频| 色播亚洲综合网| 国产av一区在线观看免费| 身体一侧抽搐| 国产黄色小视频在线观看| 精品久久久久久成人av| 国产女主播在线喷水免费视频网站 | 久久久午夜欧美精品| 欧美日韩乱码在线| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区视频了| 亚洲国产欧美人成| 人妻久久中文字幕网| 三级男女做爰猛烈吃奶摸视频| 88av欧美| 欧美中文日本在线观看视频| av.在线天堂| 不卡视频在线观看欧美| 99热只有精品国产| 毛片女人毛片| 在线观看舔阴道视频| eeuss影院久久| videossex国产| 亚洲欧美日韩高清在线视频| 精品人妻视频免费看| 99国产精品一区二区蜜桃av| 可以在线观看毛片的网站| av在线观看视频网站免费| av视频在线观看入口| 乱码一卡2卡4卡精品| 在线天堂最新版资源| 国国产精品蜜臀av免费| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| 最近中文字幕高清免费大全6 | 五月伊人婷婷丁香| 在现免费观看毛片| 黄色一级大片看看| 变态另类丝袜制服| 亚洲av不卡在线观看| 黄色一级大片看看| 3wmmmm亚洲av在线观看| 精品乱码久久久久久99久播| 日日干狠狠操夜夜爽| 俺也久久电影网| 高清在线国产一区| 搞女人的毛片| 日韩欧美 国产精品| 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图| 国产精品久久视频播放| 国产美女午夜福利| 黄色一级大片看看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲美女搞黄在线观看 | 日本精品一区二区三区蜜桃| 婷婷丁香在线五月| 国产爱豆传媒在线观看| 少妇猛男粗大的猛烈进出视频 | 在线播放国产精品三级| 国产高清视频在线播放一区| 日本 欧美在线| 欧美最黄视频在线播放免费| 成人三级黄色视频| 日本欧美国产在线视频| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 精品日产1卡2卡| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 久久人妻av系列| 亚洲精品一区av在线观看| 嫩草影院入口| 国产午夜精品论理片| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 免费在线观看影片大全网站| а√天堂www在线а√下载| 日本一本二区三区精品| 美女免费视频网站| 国产精品美女特级片免费视频播放器| 日本成人三级电影网站| 美女xxoo啪啪120秒动态图| 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 亚洲aⅴ乱码一区二区在线播放| 联通29元200g的流量卡| avwww免费| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看 | 成人特级av手机在线观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 久久久色成人| 精品福利观看| 一夜夜www| 成人综合一区亚洲| 国产精品久久久久久精品电影| 精品人妻熟女av久视频| av.在线天堂| 校园人妻丝袜中文字幕| 国产在线男女| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久久久免| 久久久午夜欧美精品| 午夜老司机福利剧场| 亚洲国产日韩欧美精品在线观看| АⅤ资源中文在线天堂| 久久精品国产亚洲av天美| 国产精品久久久久久亚洲av鲁大| 日本欧美国产在线视频| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 真实男女啪啪啪动态图| 久久精品夜夜夜夜夜久久蜜豆| 国产成人aa在线观看| 免费av不卡在线播放| or卡值多少钱| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 亚洲人与动物交配视频| 搞女人的毛片| av国产免费在线观看| 欧美在线一区亚洲| av黄色大香蕉| 午夜福利欧美成人| 又爽又黄无遮挡网站| 国产精品一区二区性色av| 亚洲av熟女| 赤兔流量卡办理| 国产私拍福利视频在线观看| 99久国产av精品| 午夜福利高清视频| 国产亚洲av嫩草精品影院| 特级一级黄色大片| 色综合站精品国产| 日日夜夜操网爽| 久久久成人免费电影| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 日本 欧美在线| 国产伦一二天堂av在线观看| a级毛片免费高清观看在线播放| 午夜久久久久精精品| 日韩欧美精品v在线| 简卡轻食公司| 国产免费一级a男人的天堂| 久久亚洲真实| 婷婷亚洲欧美| 一区二区三区四区激情视频 | 免费观看精品视频网站| 免费不卡的大黄色大毛片视频在线观看 | 一本精品99久久精品77| 久久亚洲精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 男女啪啪激烈高潮av片| 久9热在线精品视频| 国产高清不卡午夜福利| 久久亚洲真实| 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验 | 婷婷六月久久综合丁香| 麻豆国产av国片精品| 国内精品久久久久精免费| 久久精品人妻少妇| 日本欧美国产在线视频| 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 欧美激情久久久久久爽电影| 少妇裸体淫交视频免费看高清| av专区在线播放| 国产精品免费一区二区三区在线| 精品人妻一区二区三区麻豆 | 欧美精品国产亚洲| 精品久久久久久久久久免费视频| 国产精品免费一区二区三区在线| 午夜久久久久精精品| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| 日本五十路高清| 乱系列少妇在线播放| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 99视频精品全部免费 在线| а√天堂www在线а√下载| 亚洲午夜理论影院| 亚洲精品国产成人久久av| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久av不卡| 国产乱人伦免费视频| 亚洲七黄色美女视频| 中国美白少妇内射xxxbb| 女生性感内裤真人,穿戴方法视频| 又黄又爽又刺激的免费视频.| 国内揄拍国产精品人妻在线| 亚洲美女搞黄在线观看 | 一个人观看的视频www高清免费观看| 国产伦一二天堂av在线观看| 制服丝袜大香蕉在线| 少妇的逼水好多| 有码 亚洲区| 高清在线国产一区| 日韩一本色道免费dvd| 免费看美女性在线毛片视频| 51国产日韩欧美| 欧美最黄视频在线播放免费| 日本色播在线视频| 毛片女人毛片| 国产伦精品一区二区三区四那| 久久精品国产亚洲av香蕉五月| 欧美成人a在线观看| 欧美3d第一页| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 午夜精品一区二区三区免费看| 亚洲精品在线观看二区| 亚洲av一区综合| 久久精品国产鲁丝片午夜精品 | 久久久久国内视频| 亚洲av成人精品一区久久| 成人国产一区最新在线观看| 天美传媒精品一区二区| 别揉我奶头 嗯啊视频| 日本-黄色视频高清免费观看| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 欧美日韩综合久久久久久 | 欧美3d第一页| 亚洲成人免费电影在线观看| 舔av片在线| 亚洲av成人精品一区久久| 午夜福利欧美成人| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 欧美性感艳星| 国产综合懂色| 人人妻,人人澡人人爽秒播| 最后的刺客免费高清国语| 久久久久久久久久成人| 亚洲国产欧洲综合997久久,| 麻豆av噜噜一区二区三区| 国产精品久久久久久久电影| 久久久久久久午夜电影| 午夜福利成人在线免费观看| 99久久久亚洲精品蜜臀av| 丝袜美腿在线中文| av专区在线播放| 高清日韩中文字幕在线| 又爽又黄a免费视频| 久久久成人免费电影| 直男gayav资源| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| www.色视频.com| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 欧美激情在线99| 看十八女毛片水多多多| a在线观看视频网站| 中文亚洲av片在线观看爽| 日本一二三区视频观看| 12—13女人毛片做爰片一| 午夜爱爱视频在线播放| 日日啪夜夜撸| 91麻豆av在线| 色综合亚洲欧美另类图片| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 观看免费一级毛片| 哪里可以看免费的av片| 日韩在线高清观看一区二区三区 | 99热这里只有是精品50| 国产成人福利小说| 在线观看舔阴道视频| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 男插女下体视频免费在线播放| 日本黄大片高清| 国产精品一区www在线观看 | 成人一区二区视频在线观看| 国产精品爽爽va在线观看网站| 久久久久免费精品人妻一区二区| 成人午夜高清在线视频| 国产精品1区2区在线观看.| 中国美女看黄片| 国产精品久久久久久久电影| 成人性生交大片免费视频hd| 日本与韩国留学比较| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av香蕉五月| 老师上课跳d突然被开到最大视频| 深夜精品福利| 色综合婷婷激情| 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 色哟哟哟哟哟哟| 国产精品久久久久久av不卡| 亚洲国产日韩欧美精品在线观看| 国产蜜桃级精品一区二区三区| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 精品免费久久久久久久清纯| 国产激情偷乱视频一区二区| 丰满人妻一区二区三区视频av| 亚洲av不卡在线观看| 午夜福利在线在线| av女优亚洲男人天堂| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 搡老熟女国产l中国老女人| 国产黄a三级三级三级人| 精品人妻一区二区三区麻豆 | 国产高清视频在线播放一区| 春色校园在线视频观看| 一个人看的www免费观看视频| 日韩欧美免费精品| 中文字幕高清在线视频| 国产精品人妻久久久影院| 直男gayav资源| 国产真实乱freesex| 国产熟女欧美一区二区| av视频在线观看入口| 欧美日本视频| 麻豆国产97在线/欧美| 国产成人a区在线观看| 99久久精品热视频| 亚洲欧美精品综合久久99| 国产精品福利在线免费观看| 国产美女午夜福利| 三级国产精品欧美在线观看| 高清毛片免费观看视频网站| 国产乱人伦免费视频| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 欧美一区二区国产精品久久精品| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 亚洲第一电影网av| 一a级毛片在线观看| 性欧美人与动物交配| 国产精品,欧美在线| 国产精品一区www在线观看 | 性插视频无遮挡在线免费观看| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 男人的好看免费观看在线视频| 白带黄色成豆腐渣| 久久6这里有精品| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 国产午夜精品久久久久久一区二区三区 | 自拍偷自拍亚洲精品老妇| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 日韩强制内射视频| 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 亚洲国产色片| 国产精品久久久久久久电影| 国产精品久久久久久av不卡| 欧美日韩瑟瑟在线播放| 美女xxoo啪啪120秒动态图| 看黄色毛片网站| 热99在线观看视频| 亚洲欧美精品综合久久99| 国产男靠女视频免费网站| 免费在线观看成人毛片| 日日啪夜夜撸| 老司机福利观看| 国产男人的电影天堂91| 91在线观看av| 夜夜爽天天搞| 日韩人妻高清精品专区| 精品久久久久久成人av| 波多野结衣高清作品| 韩国av一区二区三区四区| 国产精品久久视频播放| 日韩欧美国产一区二区入口| 欧美高清性xxxxhd video| 床上黄色一级片| 少妇熟女aⅴ在线视频| 久久亚洲真实| 22中文网久久字幕| 免费黄网站久久成人精品| 亚洲熟妇中文字幕五十中出| 国产伦在线观看视频一区| 在线观看午夜福利视频| av天堂在线播放| 日韩欧美在线二视频| 国产黄a三级三级三级人| 免费看光身美女| 午夜精品在线福利| 精华霜和精华液先用哪个| av在线老鸭窝| 欧美日韩乱码在线| 不卡一级毛片| 精品午夜福利视频在线观看一区| 久久精品影院6| 国内精品一区二区在线观看| 麻豆国产av国片精品| 婷婷色综合大香蕉| 大又大粗又爽又黄少妇毛片口| 日本爱情动作片www.在线观看 | 99热网站在线观看| 亚洲国产日韩欧美精品在线观看| 日韩欧美精品免费久久| 国产三级在线视频| 亚洲av成人精品一区久久| 天美传媒精品一区二区| 我的老师免费观看完整版| 亚洲av不卡在线观看| 国产成人福利小说| 国语自产精品视频在线第100页| 国产成人aa在线观看| 搡女人真爽免费视频火全软件 | 亚洲经典国产精华液单| 国产中年淑女户外野战色| 久久亚洲精品不卡| 在线国产一区二区在线| 久久久久国内视频| 国产精品福利在线免费观看| 亚洲av成人精品一区久久| 精品免费久久久久久久清纯| 国产高清视频在线播放一区| 亚洲美女搞黄在线观看 | 成年免费大片在线观看| 久久中文看片网| 搞女人的毛片| 国产淫片久久久久久久久| 午夜a级毛片| 久久久久久久久中文| 性色avwww在线观看| 国产午夜精品久久久久久一区二区三区 | 色av中文字幕| 国产一区二区亚洲精品在线观看| av福利片在线观看| 色视频www国产| 天堂动漫精品| 黄色一级大片看看| 美女 人体艺术 gogo| 久久久成人免费电影| 亚洲无线观看免费| 精品欧美国产一区二区三| 亚洲成人中文字幕在线播放| 联通29元200g的流量卡| 欧美成人a在线观看| av天堂在线播放| 亚洲人成网站高清观看| 成人午夜高清在线视频| 国产三级中文精品| av在线老鸭窝| 狠狠狠狠99中文字幕| 大型黄色视频在线免费观看| 久久久久精品国产欧美久久久| 免费大片18禁| 我的老师免费观看完整版| 日韩欧美在线二视频| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕一区二区三区有码在线看| 女的被弄到高潮叫床怎么办 | 网址你懂的国产日韩在线| 在线看三级毛片| 国产精品一区二区三区四区久久| 免费无遮挡裸体视频| 97超级碰碰碰精品色视频在线观看| 日本精品一区二区三区蜜桃| 亚洲色图av天堂| 夜夜夜夜夜久久久久| 国产国拍精品亚洲av在线观看| 亚洲经典国产精华液单| 麻豆av噜噜一区二区三区| 少妇的逼好多水| 黄色日韩在线| 亚洲一区高清亚洲精品| 麻豆国产97在线/欧美| 欧美区成人在线视频| 婷婷丁香在线五月| 久久久久久大精品| 永久网站在线| 日本三级黄在线观看| 亚洲av一区综合| 22中文网久久字幕| 真实男女啪啪啪动态图| 91久久精品国产一区二区成人| 国产三级中文精品| 精品久久久噜噜|